Volume 3, issue 2 (2003)

Download this article
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Cohomology rings, Rochlin function, linking pairing and the Goussarov–Habiro theory of three-manifolds

Gwénaël Massuyeau

Algebraic & Geometric Topology 3 (2003) 1139–1166

arXiv: math.GT/0307396

Abstract

We prove that two closed oriented 3–manifolds have isomorphic quintuplets (homology, space of spin structures, linking pairing, cohomology rings, Rochlin function) if, and only if, they belong to the same class of a certain surgery equivalence relation introduced by Goussarov and Habiro.

Keywords
$3$–manifold, surgery equivalence relation, calculus of claspers, spin structure
Mathematical Subject Classification 2000
Primary: 57M27
Secondary: 57R15
References
Forward citations
Publication
Received: 1 September 2003
Revised: 9 November 2003
Published: 17 November 2003
Authors
Gwénaël Massuyeau
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764
014700 Bucharest
Romania