Volume 4, issue 1 (2004)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On symplectic fillings

John B Etnyre

Algebraic & Geometric Topology 4 (2004) 73–80

arXiv: math.SG/0312091

Abstract

In this note we make several observations concerning symplectic fillings. In particular we show that a (strongly or weakly) semi-fillable contact structure is fillable and any filling embeds as a symplectic domain in a closed symplectic manifold. We also relate properties of the open book decomposition of a contact manifold to its possible fillings. These results are also useful in proving property P for knots [P Kronheimer and T Mrowka, Geometry and Topology, 8 (2004) 295–310] and in showing the contact Heegaard Floer invariant of a fillable contact structure does not vanish [P Ozsvath and Z Szabo, Geometry and Topology, 8 (2004) 311–334].

Keywords
tight, symplectic filling, convexity
Mathematical Subject Classification 2000
Primary: 53D05, 53D10
Secondary: 57M50
References
Forward citations
Publication
Received: 7 January 2004
Accepted: 19 January 2004
Published: 14 February 2004
Authors
John B Etnyre
Department of Mathematics
University of Pennsylvania
209 South 33rd St
Philadelphia PA 19104-6395
USA