Volume 4, issue 1 (2004)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups

John Crisp and Bert Wiest

Algebraic & Geometric Topology 4 (2004) 439–472

arXiv: math.GR/0303217

Abstract

We prove by explicit construction that graph braid groups and most surface groups can be embedded in a natural way in right-angled Artin groups, and we point out some consequences of these embedding results. We also show that every right-angled Artin group can be embedded in a pure surface braid group. On the other hand, by generalising to right-angled Artin groups a result of Lyndon for free groups, we show that the Euler characteristic 1 surface group (given by the relation x2y2 = z2) never embeds in a right-angled Artin group.

Keywords
cubed complex, graph braid group, graph group, right-angled Artin group, configuration space
Mathematical Subject Classification 2000
Primary: 20F36, 05C25
Secondary: 05C25
References
Forward citations
Publication
Received: 10 April 2003
Accepted: 20 May 2004
Published: 27 June 2004
Authors
John Crisp
Institut de Mathématiques de Bourgogne (IMB)
UMR 5584 du CNRS
Université de Bourgogne
9 avenue Alain Savary
B.P. 47870
21078 Dijon Cedex
France
Bert Wiest
IRMAR
UMR 6625 du CNRS
Campus de Beaulieu
Université de Rennes 1
35042 Rennes
France