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Abstract

This work deals with Adem relations in the Dyer-Lashof algebra from
a modular invariant point of view. Our purpose is to give a moderate
explanation of the complexity of Adem relations. An algorithm is provided
which has two effects. Firstly, to calculate the hom-dual of an element
in the Dyer-Lashof algebra; and secondly, to find the image of a non-
admissible element after applying Adem relations. The advantage of our
method is that one has to deal with polynomials instead of homology
operations.
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1 Introduction

The relationship between the (canonical sub-co-algebras) Dyer-Lashof algebra,
R[k] and the Dickson invariants D[k] is well-known, see May’s paper in [3], rele-
vant parts of which will be quoted here. We provide an algorithm for calculating
Adem relations in the Dyer-Lashof algebra using modular co-invariants. Much
of our work involves the calculation of the hom-duals of elements of R in terms
of the generators of the polynomial algebra D[k]. The results described here will
be applied to give an invariant theoretic description of the mod —p cohomology
of a finite loop space in [6].

We note that the idea for our algorithm was inspired by May’s theorem
3.7, page 29, in [3]. The key ingredient for relating homology operations and
polynomial invariants is the relation between the map which imposes Adem
relations and the decomposition map between certain rings of invariants. This
relation was studied by Mui for p = 2 in [8], and we extend it here for any prime.
Recall R[n] is obtained as the quotient of a free associative algebra by imposing



two conditions, one that elements of negative excess are 0 and the other that
the Adem relations hold. T'[n] is the analogue obtained by imposing only the
condition that elements of negative excess are 0.

Theorem 43 Let p : T[n] — R[n] be the map which imposes Adem relations.
Let i : S(E(n))¢t» ® D[n] — S(E(n))®» ® B[n] be the natural inclusion. Then
p* =1, i.e. for any er € T[n] and d"M* € S(E(n))%L~ ® D[n],

< d™M?®, p(er) >=< i(d™M*®),er > .

Campbell, Peterson and Selick studied self maps f of Q{)"“Sm+1 and proved
that if f induces an isomorphism on H2p73(96"+15m+1,Z/pZ), then f,) is a
homotopy equivalence for p odd and m even [2]. A key ingredient for their proof
was the calculation of

AnnPH*(QIT1S™ L Z/pZ)

They gave a convenient method for calculating the hom-dual of elements of
H,(Qrt 8™+ /p) which do not involve Bockstein operations. Our algorithm
computes the hom-duals of elements of R[n] in terms of the generators of the
polynomial algebra D[n]. Please see Theorem 45 and a short description before
Example 44.

A direct application of the last two theorems is the computation of Adem
relations. The main difference between the classical and our approach is that we
consider Adem relations globally instead of consecutive elements and it requires
fewer calculations. This algorithm is described in Proposition 56 and a short
description before Example 54.

The paper is purely algebraic and its applications are deferred to [6]. There
are three sections in this paper beyond this introduction, sections 2, 3 and 4.
Section 2 recalls well known facts about the Dyer-Lashof algebra from May’s
article, cited above. In section 3, the Dickson algebra and its relation with the
ring of invariants of the Borel subgroup is examined. That relation is studied
using a certain family of matrices which suitably summarizes the expressions
for Dickson invariants in terms of the invariants of the Borel subgroup. In the
view of the author, the complexity of Adem relations is reflected in the different
ways in which the same monomial in the generators of the Borel subgroup can
show up as a term in a Dickson invariant. The ways in which this can happen
can be understood using these matrices. For p odd, the dual of the Dyer-Lashof
algebra is a subalgebra of the full ring of invariants. This subalgebra is also
discussed in full details. In the last section a great amount of work is devoted to
the proof of the analog of Mui’s result mentioned above. Then our algorithms
more or less naturally follows. A number of examples are included.

This paper has been written for odd primes with minor modifications needed
when p = 2 provided in statements in square brackets following the odd primary
statements.

We must note that the first draft of this work did not concern with Bock-
stein operations and Campbell, Peterson and Selick’s paper was not mentioned
because we were not aware of their method.



We thank Eddy Campbell very much for his great effort regarding the pre-
sentation and organization of the present work.

2 The Dyer-Lashof algebra

Let us briefly recall the construction of the Dyer-Lashof algebra. Let F' be the
free graded associative algebra on {fi, i > 0} and {B8f?, i > 0} over K := Z/pZ
with | f¢| = 2(p—1)i, [|fi| = i] and |Bf?| = 2i(p—1) — 1. F becomes a co-algebra
equipped with coproduct ¥ : FF — F ® F given by

'l,[Jfl _ Zfi—j ®fj and "»[),8]” _ Zﬁfi—j ®fj + Zfi—j ®,8fj-

Elements of F are of the form fI¢ = B fi . 3% fir where (I,e) =
((31,...,%n), (€1,...,€n)) with € = 0 or 1 and ¢; a non-negative integer for
=1 1 =2 -1 (0] - (Se) 101 = (i) L

= t=1
I(I,e) = n denote the length of I,e or 1 and let the excess of (I,e) or fI:°,
denoted exc(f1°) =iy — 1 — | 2|, where (I, 1) = ((is---1%n)s (€ts-- -y €n))-

exc(fl)=i1—e —2(p—1) i;:it, lexc(fT) =41 — XZ:zt]

The excess is defined oo, if I = () and we omit the sequence (eg, ..., €,) if all
e; = 0. We refer to elements f! as having non-negative excess if exc(f’) is
non-negative for all t.

It is sometimes convenient to use lower notation for elements of F' and its
quotients. We define f'z = fi(y; |2 [f'z = fi|ojz]. Let I = (i1,...,in) and

€ = (€1, ..., €,), then the degree of Q1 is
n
= (Z it2f1>]
t=1

In lower notation we see immediately that fr. has non-negative excess if and
only if (I,¢€) is a sequence of non-negative integers: exc(l,e) = 2i; — e;

Given sequences I and I' we call the direct sum of I and I' the sequence
Il =(i1,...,0n, 11, .., i, ). Using a sequence I we use the above idea for the
appropriate decomposition. Let 0z denote the zero sequence of length k.

n

el =20-0) (S ) - (S ewt ) D

t=1

Remark 1 Let us make a remark at this point concerning the sequences (I,¢)
in upper and lower terms.

For upper notation: We consider N as a monoid of the rationals, then (I,¢)
is an element of N™ x (Z/2Z)™. [I € N"]

For lower notation: Let < N,% > be the monoid generated by N and % in
the rationals. Let < N, % >™ be the monoid which is the n-th Cartesian product
of <N,%>. Then (I,e) €< N, 1 >" x(Z/2Z)". [[ € N"]



F admits a Hopf algebra structure with unit n : K — F and augmentation
e : F — K given by:
; 1, ifi=0
7y — H
e(f) = { 0, otherwise.

Definition 2 There is a natural order on the elements f(I°) or f1,e) defined
as follows: for (I,e) and (I',e') we say that (I,e) < (I',€') if exc(l;,e;) =
exc(I],e;) for 1 <1<t and exc(ly, &) < exc(Ij,e}) for somel <t <n.

We define T = F/T,,., where I, is the two sided ideal generated by ele-
ments of negative excess. T inherits the structure of a Hopf algebra and if we let
T'[n] denote the set of all elements of T with length n, then T'[n] is a co-algebra
of finite type. We denote the image of f1° (f7.) by el** (er,). Degree, excess
and ordering for upper or lower notation described above passes to T and T'[n)].

The Adem relations are given by:

((p—1)(i—5)-1 i .
roS -1 r+i (p r+s—1i_i f . 1
e"e ;( ) < pi—r )e e’, ifr>ps; (1)
. -1(i—-s5)—-1
eres = Z(—l)’_l ((p )i =) >6r+ps_pi6i, ifr>s

- r—i—1
(3

and if p > 2 and r > ps,

e"Be’ = Z(_l)r+i ((p _p;)_(ir_ s))ﬁer-i-s—iei _ Z(_l)r-i-i <(P _p:)_(ir—_s)l - 1) ertoigel

i i

enfes = Z(_l)r+i+1/2 <(I; : 11)/(; : :)>/Be’r+ps—pi—1/2ei+

. —1)(i—s)—1 .

;(_1)1‘4‘1 1/2 ((p . _)g-/2 _)7: >er+ps—piﬂei, lf P Z s.

Let Zggem be the two sided ideal of T' generated by the Adem relations. We
denote R the quotient T'/Zag4em and this quotient algebra is called the Dyer-
Lashof algebra. R is a Hopf algebra and R[n] is again a co-algebra of finite
type. We will denote the obvious epimorphism above which imposes Adem
relations by

p:T >R

If (I,¢) is admissible then Q7 is the image of e/*. Respectively, Qr. of er .

The following lemma will be applied in section 4.

Lemma 3 a) p(eyrep) = QoQpu—1; plereg) = 0.
b) P(ep"+1/261/2) = Ql/zQph—1+1/2; P(63/261/2) =0.
c) plepryie1) = Q1Qpr-1,1; pezer) = 0.

d) P(ep"el) = Qonk—1+1; pleper) = 2QoQ:.

e) p(eyrBe1/2) = QoBQpr-141/2; pleifeiyz) = BQ1/2Q1/2-
f) p(eprs1/2€1/2) = 0; p(es/afBer) = BQ1Q:.

g9) P(epk+1ﬂ€1/2) = ﬂQ1/2ka—1+1/2; P(62ﬂ61/2) =0.



The passage from lower to upper notation between elements of R is given as
follows. Let by Jze and Ize as defined above. Then,

B Q)07 Qj, = Q™ ..67 Q"

up to a unit in Z/pZ, where i,, = jn, and

in—t = = (20n—t + [In—t+1T€n—_t+1])

— DN =

Jn—t = = (28—t — |Jn—t+12€n—t41])

[\

Definition 4 We say that QT or (I,¢) itself is admissible if there are no Adem
relations between its factors: if iy < pizy1 — €441 for all t. Note that in lower
notation an element Q. is admissible, if 0 < 24 —24;_1+e;—q for2 <t <n-1.

The ordering described above passes to R and R[n].

Since R[n] and T'[n] are of finite type, they are isomorphic to their duals
as vector spaces and these duals become algebras. We shall describe these
duals giving an invariant theoretic description, namely: they are isomorphic to
subalgebras of rings of invariants over the appropriate subgroup of GL(n, K) in
section 4.

3 The Dickson algebra and a special family of
matrices

Let V* denote a K-dimensional vector space generated by {ei,...,ex} for 1 <
k < n. Let the dual basis of V™ be {z1,...,z,} and the contragradient repre-
sentation of Wy . (V") — Aut(V") = GL, induces an action of GL, on the
graded algebra E(z1,...,25n) ® P[y1, .-, Un], [P[Y1,--, Yn]], where Bz; = y;. Let
E(n) = E(z1,...,2z,) and S[n] = K [y1, -+ ,yn]. The degree is given by |z;| =1
and |y;| =2 (if p = 2, then |y;| = 1).

The following theorems are well known:

Theorem 5 [/] S[n]%L» := D[n] = K [dno,** ,dn,n—1] is a polynomial algebra
where the degrees are |dy, ;| = 2 (p™ — p?), 2" — 2¢].

Din] is called the Dickson algebra.

Theorem 6 [7] S[n] := B[n] = K [h1,--- ,hn] is a polynomial algebra where
the degrees are |h;| = 2p' 1 (p— 1), 2071

The generators above are related as follows:

k-1 .
Let fo 1(z) = [ (z—wu), then fr 1(z) = 3 (=1)" ‘2P dy_1, and
ueVk-1 i—0
hi = [l (yx —u). Moreover, (see [5]),
’U,EVk71

dn,nfi - Z H (hjs)pn_i+s_js (2)

1<j1<-<ji<n s=1



Let us consider an example.

Example 7 Let n = 3.
2
ds2 = hY + hE + h3. We associate the following family of matrices to the
last decomposition.

hi hs hs hy hs hs hy hs bhs
Aus = dso 0 0 O dso 0 0 O dso 0 0 O
82 = ds; 0 0 0 |’ dss 0 0 0 |’ dss O 0 0
d3,2 p2 0 0 d3,2 0 p 0 d3,2 0 0 1
Respectively: d3 1 = hih% + h¥hs + hahs.
hi hs hs hi hs hs hi hs hs
Aei = dso 0 0 O dso 0 0 O dso 0 0 O
1 d3p p p 0 || dsg » O 1 |’| dspy O 1 1
ds2 0 0 O ds2 0 0 0 ds2 0 0 0
And dg’o = h1h2h3.

hi hy hs

_ dsop 1 1 1

Az = ds; 0 0 0

dz> 0 0 O

Rows are associated with Dickson generators and columns with certain powers
of B[n] generators.

Next we shall give an interpretation of formulae 2 using matrices. We will use
this interpretation to examine relations between Dickson generators of different
height. Those relations will be used for the proof of the main theorem in section
4.

Let m = (my,...,mp_1) and k = (ky, ..., k,) be sequences of non-negative
n—1

integers. Let d™ denote an element of D[n| given by [] di and h* denote
t=0

an element of B[n] given by [ hi*. Let I;) denote the ¢-th element of the
t=1
sequence I = (i, ...,41,) from the left: i.e. Iy :=1iy,.

For any non-negative matrix C' with integral entries and 1 = (1,...,1), the
matrix product 1-C is a sequence of non-negative integers, then h*'C stands for

n .

11 hil O Let C(d,,;) = {h' € B[n] and h' is a non-trivial summand in d, ;},
t=1

then C(d,,;) N C(d, ;) = 0 for j # i.

Remark 8 1) Before we start considering sets of matrices, we would like to
stress the point that the zero matriz is excluded from our sets, unless otherwise
stated.

2) Until the end of this section, we number matrices beginning with (0,0) in

n (1.
the upper left corner. In this case h*C stands for | hE Jo-n,
t=1




Let 0 < j <n —1. Here j corresponds to the value n — ¢ in formula 2.

Definition 9 For each matrizx A = (a;z) such that a;; is a non-negative integer
n—1 n—1

(N), ajt =n—j and >, aix = 0 for i # j, we define an n x n matriz
t=0 t=0

C(A) = (bij) = (bo)s - »b(n—1)) such that by = ap* 1 tTaotFai  Let us

call this collection A, ;.

For C € A, ;, 1.C is the j-th row of C' which is the only non-zero row of
that matrix.
Let us also note that there is an obvious bijection between A, ; and C(d, ;).

Lemma 10 d,; = Y h'C.
CEeA, ;

Definition 11 Let m = (mqg,- - ,mn—1) be a sequence of zeros or powers of p.
Let A}; stand for
An; ={m-Cj = (mob), -+ ,mn-1b(n-1)) | Cj = (bo), " ,b(n-1)) € An,jg’ ;
3
and AT for

n—1
Azl:{_z:om'oj|cj€An,j}
j=

Note that different elements of A7 may provide the same element of B[n]
as the next example demonstrates:

0 0 0 0O
p p 0 1 1
Example 12 Let m = (0,1,1,0,0). Then C = p> 0 p 0 1 and
0 0 0 0O
0 0 0 0 O
0 0 0 0O
p pp 01
C'=]| p> 0 0 1 1 | are different elements of A™ but h*'C = h1'¢",
0 0 0 0O
0 0 0 0O

Note that the remark made above indicates why Adem relations are com-
plicated as we shall examine more in Proposition 18. We shall also note that
the motivation of this section was exactly to demonstrate this difficulty using
an elementary method.

The following lemma is easily deduced from formulae 2

Lemma 13 Let m = (mg,--+ ,mp_1) such that m; = 0 or p*i, then
n—1 n
an =TIl dzi= 3> [Lk) ™
0 CeAmrt=1



Example 12 implies that coefficients might appear in the last summation.
Hence one needs to partition the set A" as the following lemma suggests.

Lemma 14 Let m = (myg,--- ,m,_1) be a sequence of zeros or powers of p.
n—1 n—1
Let A = (ait) and A" = (a};) such that ait,a;y € N, > aj = Y, ayy =n—j
t=0 t=0
if m; # 0, otherwise the last sums are zero. Suppose that 1-A =1-A' and
let {i1,...,14} denote their different columns. Consider only their different rows
and for each column i, partition them according to where 1’s appear: {j1,...,Js}
and {ji,...,j.}. If for each j; there exists a j; such that the number of zeros next
to ai,j, and a;_ ;i are equal and this is true for all i, then 1-C(A) = 1.C(4").
Proof. We use the definition of C(A4) in 9. m
The next example seeds some light to the required partition of A} in order
to control coefficients.

Example 15 Letp = 2 and A =

-0 oo
O = = O
O = = O
OO = O
O = = O
o= OO
= o = O

On 1zn or nxl matrices we give the left or upper lexicographical ordering
respectively.

Definition 16 Let m be a non-negative integer, we denote by |4, ;|(m) the set
of partitions of m in |Ay ;| terms. A typical element of |4, ;(m) is of the form
T = (T1,00 T4, 4|)-

For m = (W1, ..., T4, ;|) €|4,,,(m), let () denote the integer Hm! -
s s !

£
Lemma 17 Let m; = ), m;.p*. Then
a=0

L _ 2o p71-Cj,;
d:j" - § : H (ﬂ(J,a)) B Cj,i€4n,j
0<a<t; a=0

n(i’“)ewn’j [(mja)
Proof. First, we show the formulae above for m; :
aldre) p*1-C

Z (ﬂ-(j»a)) B Cii€4n,

7)€ a, 11 (Mj,a)

3yi

and then we extend by direct multiplication. m



Proposition 18 Let m = (my,...,m,_1) be a sequence of non-negative inte-
gers, then

n—1 ¢; . i« Cj,i€An,;
dm™ = ) I1 11 (w(""’)) h 0<i<n =1
0<j<n-1,0<a<e; J=0a=0

r(Ja“)e‘An’jl(m‘i’a)

The following lemma which is of great importance for dealing with Adem
relations involving Bockstein operations is an application.

Lemma 19 Each term of dii¢s is also a term of dy sdpitr. Here 0 < s < k
k4t

and 1 < t. Moreover, no term of di sdp+tx — diyt,s s divisible by [] h;.
k41

Proof. Let us consider a non-zero row of a typical matrix of Ag4ss. Such
a row is of the form
bsl — aslpsflfl+aso+---+asz
Let j, such that a,;, = 1forl <r < k—s+t. Let b, = by for jp_s41 <1 < k+t
and b, =0for 1 <1 < ji_s41. Let b’s’l =bg for1 <1< jp_, and b’s’l =0 for
Ji—s +1 <1 <k+t. Then by = b, +b,,. Now (b)) is an element of Ags,s
and (b)) is an element of Ay s under the obvious assumption. For the second

k-t
statement: there is only one term in di sdg4t,r which is divisible by [ A,

k+1
k+t

namely d s [] h;, and this is also a term in djy+s. The lemma follows. m
k+1

In order to prove the main theorem in the next section, the following formula
for decomposing Dickson generators will be needed. This formula is a special
case of the lemma above. Formulas of this kind might be of interest for other
circumstances involving the Dickson algebra. One of them may be the transfer
between the Dickson algebra and the ring of invariants of parabolic subgroups.

Lemma 20 Let 0 < s < k. Then di,sdpt1,x — Art1,s =

s—1 t42 t s s+1 s—1 s—1
/4 p p /4 p /4 p
E dkftfl,sftdkftfl,k7t72hkft + dkfs,Od —s,k—s—1 + dkfs,lhkfsqu'

=0
Proof. We shall use the formula dy s = d},_; , ; + dg—1,shy. Firstly:
disp1,k —drt1,6 = disdy . —dp ;. We use reverse induction starting from

s—1 s s

D D _ qp _
dk—s+1,1dk—s+1,k—s dk—8+1»0 -
p871 p8+1 p371 ps ps+1 p871 p371 h i i
B g1 B—s—s—1P—si1 T s 08— g k51 T D1 Bk gy For the inductive
¢ t+1 t+1
. JP 4 —dP =
step: dp 4, 4y p g g~y g1 =
1 . t4+2 t

t2 t
D o D D D
Aot 1,5 t—1%%—t—1h—t—2 — Op—t—1,5-t—2 T s 1,5-t8p_t_1 g—t_2Pf_¢- W



Lemma 21 Each term of dyyqrdrits s also a term of diyq sdrkit 1. Here
0<s<kand0<gq<t. Morever, no term of diiqsdk+tt — Aktqrdrtt,s 15

k4t
divisible by [ hi.
k+q+1

Proof. We consider (k + t)z(k + t) matrices of the following form:

sth | « k+tg—s— sith | « k+t—s -

E-th | < t

k+q
I
|
| - k-th | < a—
|

k+q
|
|
|
|

The last column of the matrices above is of size t — ¢. If this column is full of
non-zero elements in the last matrix, we require the same in the k-th row of the
first matrix. Then our matrices under consideration become:

t—q

— k+qg-s —

k+q k+q
|
|
|
— «— q—
|
Now the assertion follows because there is no other choice for the first matrix

of this kind. For the general case, let the non-zero elements in the last column
of the second matrix be [ <t — q. Then the situation is as follows:

k—i—q k—i—q

— k+t—s-—1 !

I o
|

T “ g |
| |

Hence we have to consider the following (k + q)z(k + ¢) matrices:

—~ k+g-s — — k+t-s5-1 —

— t—1 — — q —

Here the s-th column of the second matrix and the k-th column of the first one
have been raised to the power p!~?!. Because the exponents are of the right
form the assertion follows. m

For the rest of this section we recall the ring of invariants (E(z1,...,z,) ®
Ply1, ..., yn]) ¢ from [7]. Here p > 2.

10



Theorem 22 [7]1) The algebra (E(n)® S[n])B~ is a tensor product between the
polynomial algebra Bln] and the Z/pZ -module spanned by the set of elements
consisting of the following monomials:

Ms;sl,...,sngiz; 1<m<n m<s<n, and0<s <---<8p, =8—1.
Its algebra structure is determined by the following relations:
a) (Mg, L272)2 =0, for 1 <s<m,0<s; <s—1.
b) Mys,,...s, LE-2(LE )71 =
8
(_1)m(m71)/2 HZL1( E Mr;rfngizhr+1 cee hsdrfl,sq)
r=sg+1

Herel1<m<n m<s<n,and0<s <---<sp=s5—1.

2) The algebra (E(n) ® S[n])%E~ is a tensor product between the polynomial
algebra D[n] and the Z/pZ -module spanned by the set of elements consisting of
the following monomials:

M5 L2772 1<m<n, and0< s <+ <8y <m— 1.

Its algebra structure is determined by the following relations:
a) (Mps, .5, L272)2=0for1<m<mn,and0<s; <---<sp,<n-—1
b) Mpss,,.. Ly 2amt = (—1)mm=D2 Moy LB72 . Mg, L2

n,n—1 —

Herel1<m<n,and0<s1 << 8p <n-—1.

8m

The elements M, s, ,...,s,. above have been defined by Mui in [7]. The degree
of elements above are |[My.s,,...s..| =m+2((1+---+p" 1) — (p¥* +--- + p°™))
and |[L572| = 2(p—2)(1 + - +p"1).

Definition 23 Let S(E(n))B~ be the subspace of (E(n)® S[n])B» generated by:
i) MS;S—l(Ls)p_2 for1<s<mn,

L
") tl:ll (M52t—1+1§s2t71(L52t—1+1)p72Ms2t+1§s2t (LS2t+1)p72) /d82t71+1,0 fO’l" 0 S
§1 < .. < 83y <n-—1,

4
"’Z) MS1+1;S1 (Ls)piz H (Ms2t+1§s2t (L32t+1)p72M32t+1+1;S2t+1 (L82t+1+1)p72) /ds2t+110

for0<s; <. < 32[;1 <n;
and S(E(n))%L~ be the subspace of (E(n) ® S[n])¢L generated by:
Mus(L,)P"2 for0<s<n-1,

4
[T Muisy, 1500 (Ln)?P 2 for 0 <1 < ...<say<n-—1,
t=1
I4
Mn;5171(Ln)p72 H Mn;52t,s2t+1 (Ln)piz fOT 0 S S1 <L < 52[+1 <n.
t=1

The following lemmata provide the decomposition of My, m (Ln)?~2 in S(E(n))B»®
Bln] and relations between them.
Lemma 24 Let s < £, then Ms;s,lL’s’_2Mu,1L§72 can be written with respect
to basis elements of B[k] ® S(Ey)B*.

11



Proof. We use inductionon s =/¢—1,...,1.
—2 —2 —2,p-1 —2 —2
My 1oL Mpp L] “hg = =My 201 LY "LV = Myyy_o L} "My 1L " =

2 -2 -2 —2 —2 -
(Myp—1,0—2 L)~ Myyg 1 LY "o+ Mgy 1 LY dy 1 oo Myyy 1 LY °) = My_y50_o LY M1 L}

Now the general step:

p—1
_ —2 (L
M,y 1LP~2My (LP (#) -

p—1
-2 -1 p—2 2( L,
_Ml;s,lfng L? - Ms+1;sLs+1 ds s— 1Ml L— le ( ) -

L1

Ly_o
the claim follows by induction hypothesis. m

p—
-2 -2 L p—2 —1
M[_g;[_3L§72dg_g’s_lMg;[_ng ( £ ) +M[;g_2’[_1Ll d[_g,s_ng . Now

Lemma 25 Letm < s—1, then Ms;g,s_1L€_2Mm;m_1L£;2 can be written with
respect to basis elements of B[k] ® S(Ey)B".

Proof. Let £ <m < s —1, then
Ms;l,s—lLIs)_sz;m—lL?n_2L€_1 = — s;lLls)_zMs;s—lLg_2Mm;m—1L?n_2 =
M, leisz m—1Lp7 Mss 1Lpi2
p—1 p—1
(Megr;e LY 2 (#il) + Mg LY Sderay (Lf+2) + ot
Ms;s—ng 2ds—1,Z)Mm;m—1L?n 2Ms;s—1L€ 2
Now the claim follows by the previous lemma. m

Lemma 26 Mn;S,m(Ln)p_2 =

> Mgia;q(Lg1)? *Miy1;6(Liy1)? *heyo.hn(dg,edem—dy,, dt o) /dgi10-

s<q<t
m<t<n—1

Here d;; =1 and d;; =0 if i < j.

Corollary 27 Let k = [%F!] and € = (€1, ...,€n) € (Z/2Z)", then S(E,)%L» is
spanned by at most kK monomials:

[932] rpoa a5 s
M= nist)s2 Lp My, 1o LP=2, if n is even
o 22 e gl feyten)
. _ _
Mnlleg’L Mn;S2,S3 LP=2.  Mys, 2 s, L2772, if n is odd

The analogue corollary holds for S(E,)B".

The Steenrod algebra acts naturally on S(E(n))¥I» ® D[n] and S(E(n))B~ ®
Bin)].

Let 7 : S(E(n))%L» ® D[n] — S(E(n))B» ® B[n] be the inclusion, then
i(d™M?*) means the decomposition of d™M?¢ in S(E(n))B» ® Bn].

Lemma 28 Let 0 < s1(s}) < ki(ky) < ... < sp(sp) < klr(k ) <n-1. If

n—1 . 4 n—1 ’ ’
> mi(p® — p') + 2" —p% —pM) = X mi(p" - )+E( —p% = ph),
0 1 0

then s; = s, and k; = ki. Moreover, if in addition 0 < ko(k ) < s1(s}) and

n—1 U n—1

> mi(p™ —pt) + (" —pFo) + S (p" —p* —pt) = 3 mi(p" —p') + (p" —pho) +
0 1 0
l’ I I
El:(p” —p% —phi), then s; = s} and k; = k.

12
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Proof. We prove the first statement, the second is completely analogous.
Let kj, > ky, then ky < kj, — 1. Thus p*v > 1 +... +pf =1 > " (p*i + p%).
Hence, 33(p" +p%) > 32 (p" +p%) = 2 (p" = p* —p™) < 2 (p" —p* —p™).
Now, if k;, < n — 1, then ) (p" —pFi —p%) = S (p" — pF — p%) < p L.
Otherwise (k;, =n—1), Y (p" — pki —psz) -~ (p" —p* —p*) < p"~! —1. But
n—1

p" 1 —1< 3 (m)—m;)(p" — p') and this is a contradiction. Finally, k;, = ky.
0

4 Calculating the hom-duals and Adem relations

We start this section by recalling the description of R[n]* as an algebra, for p
odd please see May [3] Theorem 3.7 page 29. The analogue Theorem for p = 2
was given by Madsen who expressed the connection between R[n]* and Dickson
invariants back in 1975, [9].

For convenience we shall write I instead of (I,¢).

Let I,; = (0,...,0,1,...,1). Here 0 < ¢ < n — 1 and n — ¢ denotes the

2 n—iu

number of p-th powers. The degree |Q7,
exc(Qr, ;) =0,if i <n,and 1ifi=0.

Let Jy; = (%,...,%,1,...,1):1:(0,...,0,1,0,...,0). Here € = (0,...,0,1,0,...,0)

—— Se—— N ——— S

n—i i+1 n—i—1 [ n—i—1

and 0 <4 <n—1. The degree |Q, .| = 2p'(p" ¢ —1) —1 and the ezc(Q, ) = 1.

= 2pi(p™~i — 1) [2" — 2i] and the

1 1
Let Kp.5: = (0,...,0, IR 1,...,1)«(0,...,0,1,0,...,0,1,0,...,0). Here ¢ =
s T n—i s i—s+1 n—i

(,...,0,1,0,...,0,1,0,...,0) and 0 < s < ¢ < n — 1. There are two Bockstein
—_—— ———— ——

s i—8 n—i
operations in this element: at the s-th and i-th position from the left. The

degree |Qk,... .| = 2(p'(p" " — 1) — p*) and the ezc(Qk,,, ) = 0.
Let O,; = (0,...,0,1,0,...,0), where there are n — ¢ zeros. Its degree is

leo,..| = 2p""(p — 1) [2¢7'] and ezc(eo, ;) = 0. Here 1 <4 < n.
1 1
Let J,, 561 = (5, ey 5,0, ...,0)z(0,...,0,1,0,...,0). Heree = (0,...,0,1,0,...,0)
S i i n—i i1 n—i
2
and 1 <4 <n. Its degree |Q, .. .| = 2p" *(p—1)—1and the ezc(Qy, ;;,) = 1.
1 1
Let Kpiigic1 = (0,0, =,y =, 1,0, ..., 0)(0, ..., 0, 1,0, ..., 0, 1,0, ..., 0). Here
—— 2 2 —— e e e e
8 X n—i 8 i—s n—i

e = (0,..,0,1,0,...,0,1,0,...,0) and 0 < s < ¢ —1 < m — 1. Its degree
—_—— ———— ——

|QKn,i;s,i—1| = 2(pi —p° _piil) and the emc(QKn,i;s,i—l) =0.
Let £,0 = ((Q0)™)* = ((Q°)™)*;

13



bt = (Qr,)" = (QWT (" TR n e 0 < S — 1

(
Tt = (@1,,)" = (QU T s d)eeye 0 < < 1,

i—1(, n—i s—1 i—s—1( n—i n—i n—i—1
— -1 —1),..e 1 wopl
Ongs,i (QKn;.s,i)* (Q(p (p )=p* "y (p )seens P P P )26)*,
)

Cn,i = (eon i)* = (e(pi72(p—l),...,(p—l),l,o,...,o))*’ 1 S i S n;

Vnyisic1 = (€7, 501)* = (e(p"‘z(1771),...,(1771),1,0,...,0)15)*, 1<i<m;

_ *
’Un,i;'s,i—l = (eKn,i;.s,i—l)' - . . .
(e(p”l(p”’”—l)—p"’l,---,p”“’l(p”’”—1),---,19”"—1,17”"’1,---,p»l,O»---»O)”)*, 0<s<i—

1<n-1.

Theorem 29 (Madsen p =2, May p >2) . As an A algebra R[n]* = free
associative commutative algebra generated by {&,, ;,Tnyi, and 0p,; | 0 < 0 <
n—1,and 0 <s <i}, {{,;]0<i<n—1}], modulo the following relations:
a) Tnyi Tnyi = 0.

b) TnisTnyi = Onys,i€po- Here 0 <s <i<n—1.

) TnysTniTnyg = TnysOnsinj€no- Here 0 < s <i<j<n-—1

d) TnisTniTngi Tk = on;s,ia'mj,kﬁi,o. Here0<s<i<j<k<n-1.

Theorem 30 /5] R[n]* = S(E(n))¥I" ® D[n] [R[n]* = Dn]] and T[n]* =
S(E(n))B» ® B[n] [T[n]* = B[n]] as algebras over the Steenrod algebra and the
isomorphism ® is given by (¢, ; = (Qr,)*) = dnn—i, ®(Tni = (Q7,,)*) =
Myi(Ln)P72, ®(0nis,i = (QK,,ni)*) = Mnys,i(Ly)P2. Here 0 <i<n—1 and
0<s <.
B(Cpi = (€0ns) ) = hi, ®Wnyii 1 = (e, 15 1)*) = Miyi 1(Li)? 2, (v isai 1 =

(eKn,i;s,i—l)*) = (Ms+1;S(Ls+1)p_2Mi;ifl(Li)p_z)/ds+1,0- Here 1 <i < n and
0<s<i—1.

Under isomorphism & in Theorem 30 we identify R[n]* with S(E(n))¢t~ ®
Di[n] and B[n]* with S(E(n))B~ ® Bn].

Let p : T[n] — R[n| be the induced map which imposes Adem relations
between the respected coalgebras of length n.

pler) =Y arsQs

The set T[n] and R[n] of admissible monomials in T'[n] and R[n] provide
vector space bases respectively. Let 6 : R[n] —T|[n]| be the map given by

0(Qr) = er

The image of the dual of these bases are denoted by T[n]* in &(T'[n])* =
S(E(n))B» ® B[n] and B[n]* in ®(R[n])* = S(E(n))¥I» ® D[n]. Of course there
are also the bases of monomials which are denoted by 8, (S(E(n))®» ® B[n]) and
B,(S(E(n))%L» ® D[n]) respectively. We shall note that T[n]* =8, (S(E(n))?®

The decomposition relations between the other two bases are not obvious
and this is the first topic of this section. Campbell, Peterson and Selick pro-
vided a method to pass from 8, (S(E(n))*I» ® D[n]) to B[n]* in [2]. We shall

14



describe and compare their algorithm with ours. Firstly we shall establish some
machinery to work with those bases.

Definition 31 Let x,;, and Xpay be the set functions from B(D[n]®S(E,)%L~)
(B(B[n] ® S(E,)B") ) to the monoid < N, 1 >™ x(Z/2Z)™ given by

1) Xmm(dn,z) = n i and
Xmax(dn, ) = (p 71.’0’""0)3}(0"")0)'
2) Xmm(Mn SL(p 2 ) = Jn,s and
1 1.1 1
Xmax( L(p 2)) :(2a 2a1§aa1§a1)m(0aa0a1)
s n—s—1

8) Xmin(Muss,mLE ™)) = Knipm and

1 1
Xenax(Mnse.m LP72) = (0, ..., 0, 155015, 1)z(0, ...,0,1,0, ...,0, 1).
——r —— N——

a’nd the rule Xmin (dd’MM’) = Xmin (d) + Xmin (dl) + Xmin (M) + Xmin (MI) Here
d, d' €f(D[n]) and M, M' €f(S(E,)%"). The same holds for X ax-

Note that the function x,,;, always provides an admissible element and
i(dn,;) contains a monomial with a unique admissible sequence, namely hXmin(dn,i)
and a monomial with a unique maximal sequence, namely hXmex(?=i)  The same
is true for elements M,,;—1L2~2 and Mp,s.mLE~2. Moreover, #(d™ M) might
contain a number of monomials with admissible sequences and this is the main
point of investigation because of its applications in [6]. Namely, those mono-
mials provide possible candidates for (d*M)*. Primitives in R are well known
and so are their duals as generators in R*. But it is not the case for their ex-
pression with respect to the Dickson algebra. On the other hand, the action on
the Dickson algebra is well known on S(E(n))¢I» ® D[n] and hence it is easier
to compute the annihilator ideal in the mod —p cohomology of a certain finite
loop space.

Definition 32 Let ¥ be the correspondence between ,(S(E(n))¢L» ® D[n])
and R[n] given by d — ¥(d) = Q,_. (a) and the corresponding one between
B.(S(E(n))B» ® Bln]) and Tn] denoted by U where

Ur(hIM®) = e The maps ¥ and 1 are set

Tter Ty + 9[22 Koy gy
bijections.
Let ¢ be the map
L1 B (S(E(n))%"" ® Dln]) — B, (S(E(n))®" ® Bln)) (4)

defined by 1(d) = hXmin(d),

15



Note that ey (a),ey_. (4) €ET[n]. The following diagram is commutative.

Ba(S(E(n))B ® Bln]) <~ B,(S(E(n))" ® D[n]) = < N,1>"x(z/22)

I ¥ U vd
[

Tin] — R[n]

>

Definition 33 A monomial in 8, (S(E(n))B" ® B[n]) is called admissible if it
is an element of ¢ (8,(S(E(n))®I» ® D[n])).

Lemma 34 Let h' M* € S(E(n))B» ® B[n]. The following are equivalent:
i) h' M* is admissible;

1
i) jr < jig1 fort =1,...,n — 1 and h” is divisible by T (Rsy,qt2..-hn)c2+
=0

1
for  odd (see 27); or [ (hsy,+2---hn ), otherwise. If sap1 +2 or Sapi2 +2 =

n + 1, then the correspgnding product must be 1.
iii) p(¥r(h? M®)) is admissible in R[n)].

Proof. This follows from the following relation: Mk;stc’f2 = s+1;sL§;fhs+1...hk+

k—s , l
Z Ms+t;s+t—1Lg;fds+t—1,shs+t+1---hk- EXpllCltly, if hJ = hJ/ H (h32t+1+2...hn)e2t+1,
t=2 t=0

—1 eate en—1ten
then Ypin (d™M?) = (J',€). Here d™M*® = | dl Mg, LB -2 Mhi2 o0 L2 2. MY,y 2, . L2

- n;s1
i=0

and my = j; — ji_4, Mo = jo- M
Firstly, we shall show that p* =7, 7 as in 3, i.e. for any ey € T'[n] and d™M?,
< d™M°¢, p(er) >=< i(d™M*®),er > .

Here, < —, — > is the Kronecker product. This is done by studying all mono-
mials in T'[n] which map to primitives in R[n] after applying Adem relations.

(mae)
Let n(mze) = 3 m; + . Let ¥, * R[n] — e R[n] be the iterated
coproduct n(mze) times. Let J admissible, pe; = @7, then
YQs =tpes =ppe;=p(Etes, ® - ®es,..,), ZJi=J
d}n(m:m—:)QJ = 2aJ1,...,Jn(,.,,~,35)QJ{ ®---QQy

n(mae)
Since J; may not be in admissible form, after applying Adem relations we have
J < J;.

n—1 n—1
< desapeI >=< H dnm,iiME"(»[}n(mzs)peI >=< H dnm,iiME’plbn(mzs)eI >=
=0 =0

n—1 n(mee) n(m) . n(e) [e]-,1+e]-]
< MM dyiMe,> @ per, >=> [ <d ;iper; > [ < Mnys; 21 s; L2~ per, >.
=0 I; 7 I; J J
t—1
n n ooomy "
Lemma 35 Let d™ = [[ d}'i. Then «(d™) = [[ h™ and (L(d™))" =
i=1 t=1

€mo€mo+my--Cmo+..mpn_1-
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Lemma 36 Let I = X, (dnn—i), then p(er) = Q1

nyn—i

=¥ (dp,n—i) in R[n].

Proof. For the sake of simplicity, we write I instead of @y or e;. By hypoth-
esiS Xmax(dnn—i) = I = (P"7%,...,p"4,0,...,0). Let us apply Adem relations
between the last n-i+1 elements of I : ((p"~¢,0,...,0)). The last sequence be-
comes (0,p" 71,0, ...,0), because of excess and the binomial coefficients in the
Adem relations: pk —p"~¢ > 0 and (p(kp:;,,)’f,._jl) # 0modp = k = p"~ L. For
the same reason (0,p" *°1,0,...,0) becomes (0, ...,0,1). Next we consider the
first i elements of the new sequence: (p"~i*1,0,...,0,1) and we continue on the
same pattern. ®m

n—ita-ja

Lemma 37 Let ey € T[n] be such that ey = &1 <H1 h%. ) in (2). Here
e

1<j1 <..<ji<n. Then p(er) = Qnn—i =¥ (dnn_i) in R[n].

Proof. The sequence I is given by:

0)"' ,0’pn7i+17j1’0’_‘_ ’0’pn7i+27j2’_‘_ aOa"' ,0,pnfj,-,0,_._ aO
—_——

~" ~" ~"

Ji Ji—2—J1 Ji—Ji—1 n—ji

Please note the analogy between I above and the corresponding row of a matrix
in Ap, n—; in section 3. Here p™ := 0, whenever m < 0. We shall work out the
first steps to describe the idea of the proof. First, we consider the last n—i+1 el-

ements of Xmax(dnn—i): (p" %0, ...,0) which becomes (0,-- ,0,p" %,0,---,0).
_-{_/ H/.—/
Ji—Ji—1 n—yi

Thus applying Adem relations on certain positions on Q, (4
tained and the lemma follows. =

i) Q7 is ob-

Proposition 38 Let er € T[n] be the hom-dual of a monomial h’ € T[n] such
that |h7| = 2 (p™ — p"~%) and b7 is not a summand in (2). Then p(er) =0 in
R[n].

n—t—ji_y

Proof. Let j;_; be the biggest index such that h;,_,? does not

divide 7 or hjt.ftpn_i_“*t+1 divides h7. In other words, exponents do not
have the right form. Two cases should be considered, namely: i) p"~Ji-* has
been replaced by p?~t=Ji-¢ — m(t) and ii) by p"t~Ii-t + m(t).

Let us start with i) and recall that In—«—j,_,  , of (h”)* has the form

n—t—j;_ n—t+1—7;_ n—t+2—j;_ n—j;
b J t_m(t)a 0,"',0 »D J Hrla 0)"'a0 D J t+2a"'ap ]aoa"'

—— ——
Jimt41—Ji—t Ji—t42—Ji—t41

i) Let us start with m(¢) > 0. The last n — j;_+ + 1 elements of the sequence

becomes (p"~t~Ji—t —m(t),0,---,0,1,---,1) after applying Adem relations. Be-

cause of excess and Adem relations, m(t) must be divisible by p"~*~Ji-¢. Hence

m(t) = 0.
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ii) Now m(t)pfi—+—t < p»~i 4 .. +pn 1 —pnt=1 —  — p"~! because of
the degree. Thus m(t) can be divisible at most by p? *~Ji-+~1. Because of
excess and Adem relations, m(¢t) must be divisible by p®*~*~Ji-t=1. We obtain
a contradiction.

Now the following theorem is easily deduced because R[n] is a coalgebra,
the map p is a coalgebra map, and primitives which do not involve Bockstein
operations have been considered. m

Theorem 39 Let p' be the restriction of p between the subcoalgebras T'[n] and
R'[n] where no Bockstein operations are allowed. Let i : D[n] < B[n] be the

* —

n—1
natural inclusion. Then (p')* = 7', i.e. for any er € T[n] and d™ = [] d; €
=0

Din],
<d™,p'(er) >=< 7 (d™),er > .

We shall extend last Theorem to cases including Bockstein operations as
well.
—2
Xmin(Mn;sLstp )) = Jnss-

Proposition 40 a) Let J = Jy ;¢ 1+(I;_1 s®0n t11)+1n s such that p’(eIt:_1 )
Q1,_,, for s+ 1<t <n. Then p(es) = Q. = ¥(Mp,L2?).
b) Let J be a sequence of length n such that |J| = 2(p™ —p°) — 1 and J is

not of the form described in a), then p(ey) = 0.
¢) i(Mn;s L% 2) = p*(Mn;s LY, 2).

Proof. a) If J = Jy 441 + (It—1,6 ® On_¢41) + Iny, then p(es) = Q,,, by
direct computation. Let J = Jy, 4,11 + (I£—1,s ®0p_t11) + Ing, then Jp_yyq1 =
J1,0 ® In—t,0 = Jn_t11;0- Let us call J{_; such that J = J/_; & J,_tt1, then
Ji1=@-1I 14 2+1I; ; ,. Now using theorem 39 the conclusion is received.

b) The proof of this part is divided into two steps. i) If J contains Jy ¢;¢—1,
then J also contains I :. Suppose that is not the case, then using theorem
39 Jp—t+1 = (Jio + 1) & I,,_, and I_, contains a zero. Adem relations
between the first two elements of J,_ 11 give a zero. ii) We proceed by re-
verse induction on the position where the Bockstein operation appears since
it can be moved to the right only. Let s = n — 2, then there are two candi-
dates for this case: J contains Jp;p—1 and Jp n—1;n—2. The second case has
been considered in i). Because of degree, J contains a sequence I},_; of degree
2(p"t —p"2). Thus J = ((p — 1)I—1,n—2 + I},_1) ® J1,0. Because of the-
orem 39, it follows that p(ey) = 0 unless I],_; is of the form described in a).
For the general step. In order to apply induction hypothesis, we consider the two
extreme cases: Jpn—1;5—1+Inn—1 and Jy.n—1+1I,—1 such that |I,_q| = 2(p" ' —
ps—l)_
® Jon—1;5—1+Inn_1: Using step i) and induction hypothesis, all possible candi-
dates are as follows. Jy ;¢ 1+(Li_1 s—1®0n—t+1)+(Ln—1,t®01)+In,n1 such that
pler_,, ) = Qr_,,, for s < t < n — 1.
® Jpn—1+In_1: Our sequence can be decomposed as follows, ((p—1)Ip_1,n—2+
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I,_1) ® J1,0. We note that we are interested in finding sequences I,,_; such that

P(€((p=1)Tn_1.m2+Tn_1)) = Q((p=1)In_1.n_2+In_1.._1)- Using theorem 39, we con-

clude that all possible candidates I,_1 are such that p(e(s,_,)) = Qr,_,. .)-
c¢) Now part c) follows from parts a) and b). m

Lemma 41 a) Let the sequences Ky, t11,9¢ and I, 111, then pe(x
QKn;q’t ’ 9

b) Let the sequence K = Ky.qt + (I; ® On—g) + (I ® On—) such that I} =
e, plerr) = Qr,, and pler) = Qr,,.- If we allow Adem relations
everywhere in the first t positions except at positions between q and ¢ + 1 from
left, then p'(ex) = exr where K' = Ky + (I, ® 0n_g) +p' 0 ™2(I} . &
On—q)+ (0g®L; g, ®0n—t) 0r K' = Kpig 4 +p* 7" (I o 1n, q®O0n—q)+(04®
L m, ®0n_t). For the first case p(er;) = QILq,M s plery) = th—q—m”;’m and

m = my+mes, and for the second s+m; > q and p(e[”q+1’"z) = Qpi-a-map . .
q,8t+tmq—q

nt+tiq,t+HIn,t41) —

Proof. This is an application of theorem 39. =

Proposition 42 a) Let K = Ky ¢y1;5,6 + (I;®0p—¢) + In 111 such that p'(ep) =
Qr1,.,. form <t <mn-—1. Then p(ex) = Qk..... = ¥ (Mn;s,;mL2?).

b) Let K = Ky mt1;t,m + (I} ® 0p—t) + Inmt1 such that ,0'(61;) = Qy,, for
s<t<m—1. Then p(ex) = Qxk,.... =¥ (Mp;s,m L2 ?).

¢) Let K = Kppy19¢ + 1+ Intyr form < g <t <n—1withI =
I'+ D, I' = (I, ® On—y), I” = (I, ® On—¢) such that: p'ler) = Qr,,. and
p'(eI;) = @1, and not of the form p'(e;y) = Qr,,, and p’(eI;) =Q1,,.- Then
plex) = Qkpm = ¥ (Mupj,m LE2).

d) Let K be a sequence of length n such that |K| = 2(p™ — p* — p™) and K
is not of the form described in a), b) and c) above, then p(ex) = 0.

e) i(Muss,m L8 %) = p* (Mp;sm L% ).

Proof. Since K, . contains two Bockstein operations, there are three
choices for moving Bockstein operations from right to left by applying Adem
relations and each choice provides the degrees of the additional sequences. Let
us call first Bockstein operation the first one from left.

a) If the first Bockstein operation is fixed, the second one can be in any
position to the left of its m-th position: (—,...,—, 8, —...,—, ¢, —, .0, ..., —).

- - =

s m <

Thus we have the sequence K, 111,5: plus two more sequences different in the

sense that one is needed to fill the zeros to the left of K, +1,5,+ and the other

one to force the second Bockstein to be moved to its final position after Adem
relations. Now the assertion follows by direct computation.

b) If the second one is fixed, the first one can be in any position to the left of

it: (—, .., —, ¢, —,...0, ..., —, B, —..., —). Thus we have the sequence K, m+1;t,m

$ +— — = ='m

plus two more sequences different in the sense that one is needed to fill the zeros
to the left of Ky, ;m11;t,m and the other one to force the first Bockstein to be
moved to its final position after Adem relations. Again the assertion follows by
direct computation.
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c) Of course, there is also the choice of both first and second Bockstein opera-

tions being to the right of the m-th position: (—,...,—, e, —...,—, e — ...63,.... 0, ...,
8 m¢— —

This is the difficult case. Three sequences are needed in this case: one (I ++1)
to fill the zeros to the left of Ky, 111;4,t, one (Ig,s ® 0,—_q) to force the first Bock-
stein to be moved to its final position, and the third one (I3, ® 0,_¢) to force
the second Bockstein to be moved to its final position. Sequences in brackets
are the final ones after Adem relations. But we must exclude those sequences
which will move the second Bockstein on the first one. Those will provide a
zero, because two Bockstein operations will be on the same position after ap-
plying Adem relations and this is not allowed. They are all sequences which will
provide Ky, t41;9t + (Igm ® 0n—q) + (It,s ® 0,_¢) after suitable Adem relations.
Please see lemmata 19 and 21 to get an idea of those sequences.

In order to avoid the bad cases we consider for example sequences of the
form

1 13 3
(05 erey int7Q7l5 “.,ptqul,ptqul + 1’ ---’pt7Q7l + 1’:855 eeey 5’ 5’ seey 55;315 05 0)
t—m—‘;—q—&-s q—s Hl/_/
(5)
or
t—m—I
- a ~ 1 13 3
(0,...,0,&[,...,1,])’57’14-|-1,...,pt7q*l+11,,35,...,5,5,...,5,,31,0...,0) (6)
qts Hl,_/

and not of the form (0, ...,0,1,...,1,2, ..., 2,,8%, %, - %,,81,0...,0). All the above
S—— Y~

m—s g—m
are expressed in the assertion of c).

Now we prove the statements above. We consider only ¢ > m. If ¢ = m, it is
completely analogous. Let us start with the second one. The relevant sequences
are of the following form.

s m g g+1 t t+1
\ \ U \: \
le 0 0 .. 0 . 0 p1/2 1/2 p1
2 0 pY P 1 0
— — — t—8—luonseo — — 4  luonzeo —
3¢ 0 ... 0 p¢ 1 0 0
— g — Mnonsero — —

The three rows marked with e should be added. We apply Adem relations

between columns g + 1 and t. Note that row le do not effect the result and

row 2e becomes (0,...,0,1,...,1), because of Theorem 39. We also note that
——

6 =t —q— 1. Next we consider the first ¢ columns. For the same reason rows
2 and 3e become (0, ...,0,p°, ...,p%) and (0,...,0,1,...,1).
———— ——

t—s—1 g—m
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[¥|We consider columns ¢, ¢g+1, and ¢+ 2 and apply Adem relations between
the first two: [+] (1 + p®,81/2,1/2). Lemma 3 is used repeatedly. We get
(81/2, 91 +1/2,1/2).

[**]Applying Adem relations repeatedly to the right of 3, the second g is
moved one position to the left because § = t—g—1 equals the number of positions
between the 3’s.

[***|Now we start again from column ¢ — 1 and finally the first 8 is moved
to its m-th position: (p?,p®,B1/2,...,1/2,61).

—_———

t—l—q
[****¥|Now we get (p’,0, B’ + 1/2,...,1/2,81) and the second 3 will moved

t—l—q
one position to its left. We repeat, (0,p°*,31/2,...,1/2,41,1). And finally
—_———

t—l—q—1
the two @’s will be at the same position because the number of p-th pow-
ers to the righ}; of th’e first 8 equals the exponent of p i.e. t —1 — q. The
case (0,...,0,p°,...,p°,0,..,0,1,...,1) + (0,...,0,p°, ...,p%) is excluded because
—_——— —— ———

[ qg—m—=0 t—s—1
' =t—s—1l—qg+m+60>t—1—qis not of the right form.

For the other case, after suitable Adem relations, rows 2 and 3 are of the
form described in 5 and 6. Let us start with 5: We suppose that t —qg—1 > 1,
otherwise it is reduced to the previous case. As in [¥], [**], and [***] the first
B will be moved to the s-th position and the second one to the t — ¢ — [ + s-th
position. As in [****]  the second § will be moved to the m-th position. The
case (0, ...,0,p5’, ...,p‘s’,O, ey 0,1,...,1) + (0, ...,0,p%, ..., p°) has been considered

—— —— ——
6 qg—s—6 t—m—1
above because we must have 8' =t —m —l—qg+s+0=t—Il—qgorm=s+4.

For 6: Applying [¥] and [**], the first £ is moved to g—t+m+1[ and the second

one to the m-th position: (0,...,0, 1,..,1 ,8%,..,1,81,..,1,0...,0). Using
N——

g—s—t+m+l
lemma, 19, the first 3 is moved to the s-th position. The case (0, ..., 0, py, ...,py ,0,...,0)+
——
q—s
(o,..., 0,p°, ...,p6) provides ¢ = m, because we must havet —m — I =t -1 —¢q
——

orm = q.timil

d) follows from a), b), and c).

e) follows from a), b), ¢), d) and lemmata 19, 21, and 26. m

It would be a nice exercise to find for example all e; € T[n] such that
per = Qk,, , (please see example 55). That would provide the reader a good
feeling of the computations involved.

Theorem 43 Let p : T[n] — R[n] be the map which imposes Adem relations.
Leti: S(E(n))%I» @ D[n] — S(E(n))B» ® B[n] be the natural inclusion. Then
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*

p* =1, i.e. for any er € T[n] and d™M?® € S(E(n))%I» ® D[n],

< d™M?®, p(er) >=< i(d™M*®),er > .

Next, an example is worked out to demonstrate the idea of our algorithm.
We would like to express elements of the monomial basis B,(S(E(n))¢t~ ®
Din]) with respect to the dual basis R[n]. Roughly speaking: Given d™, define
Xmin(d™) and evaluate all greater sequences I with the same degree. For each
such a sequence consider x,;,(%¥) as an element in T[n]. Start with the

gm

dd
5)- This
dn,O

greatest sequence I and evaluate the coefficient of (x,,;, (42))* in #(
is the coefficient of (Qr)* in d™. Then we continue with the next sequence.

mq
dao

Example 44 Let p = 3 and d' = d3 (d3%;, then I = (2,19) and xp;,(d") =
(2,21). To calculate its expression with respect R[n] the following elements given
by greater sequences of the same degree should be considered: Q14,17), Q(11,18),
Q(s,19), Q(5,20), and Q(221). And their images under U~ should also be con-
sidered: défodg,l, dé}od;l, dg,odé’ll, dg,odé?l, and dg,odé?l. Here we examine the
Kronecker product < d3 od3*, Qs > for Q one of the elements defined above.

i) Start with the greatest sequence (14,17). Calculate the coefficient of
(Q(1a,17))* in dl. Divide both d}*%,d3 , and d” by d3 , since sequences of the form
II,o do not effect Adem relations. Let I") = (0,19) and JM) = (12,3). Let
'TM = (0,19) and 'JV) = (12,15) the corresponding sequences. Let (Q:;q)) =
Q12Q15 be considered as ejzers an element of T[n]. Decompose dlm = (h? +
h2)'® in B[n] and find the coefficient of ®(eize15)* = h24h3° in the last decom-
position: (ig) = 0mod3. Zero is the coefficient of (Q(14,17))* in dr.

i) Check for (Q(11,18))* +— d3dl,. Let I) = (0,19) and JV) = (9,7).
Let 'TM = (0,19) and 'JM) = (9,16) the corresponding sequences. Let €(9,16)
be the corresponding element of T[n]. Decompose ar' = (hS + h2)'° in Bin|
and find the coefficient of ®(e(9,15))* = hi%h3? as an element of B[n] in the last
decomposition: (ig) = 0mod3. That is the coefficient of (Q(11,18))* in dr.

i) Check for (Q(s19))* <— dg,odé’ll. By repeating steps described above, we
obtain: (ig) = 0mod 3.

iv) (Q(s,20))" +— d30d3% .(13) = 1 mod 3.

18
Thus d3 4d3% = (Q(2,21))* + (Q(5,20))*-

Let us make some remarks on the last remarks. Firstly, the exponent 19
of d»,1 and its p-adic analysis plays an important role. The maximal involved
element is d3%d3; and hence the least exponent for hy is 15. Thus we shall
start counting from 15. On the other hand, only 18 and 19 contribute a non-
zero binomial coefficient mod 3 in this range.

Theorem 45 Let d™M*® be an element of $,(S(E(n))*I" ® D[n]), then the
following algorithm calculates its image in R[n]*:

d™M* = 7> Z(d ) <d™, Q5 > (Qrsxmn(nre))”
2 Xmin (4™
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1) Find all elements Qs in R[n] such that |d™| = |Qs| and J > Xpin(d™),
n—1
i.e. solve the Diophantine equation Y. k;(p™ — p') = |d™| for (ko,...,kn_1) >
0
(moy ..., mp_1). For each such a sequence J, let J(1) = J — me(1,...,1) and
consider ¥~1(Q 51)) = d” ) in D[n].
2) Let d™M* = (QXmin(deE))*'

3) Let dm() = dd:o and d¥ be an element in step 1) corresponding to the
n,0

biggest sequence among those which have not been considered yet. If dX() =
d™1) ) then gy =< d™,Qx >= 1. Otherwise, proceed as follows: find
the coefficient, a (), of t(dX®M) in i(d™V), gy =< d™,Qk >. Then add
a(K)(QK+Xmin(ME))* in d™MEe.

4) Repeat step 3).

Proof. Since R[n]* is a free module over D[n] with basis all elements which
involve Bockstein operations, the computation of d™M?® reduces to that of d™,
ie.

dm= Y <d™Qs;>(Qu) =>d"M*= Y = <d"™, Qs> (Quix,, )"
I>Xmin (d™) I>Xmin (d™)

n—1

Let d™ = ) a()(Qr)* and n(m) = > m;. Because of the definition of the
t=0

hom-dual, we have : < d™,Qy_. (g») >= 1 and < d™,Q1 >= a(1) # 0 for a

sequence I such that in the n(m)-times iterated coproduct:

I Ad
PQ" = Z €5, ®..® €T (m) =" Za111"'11n(m)QIl ®..® QIn(m)

SJy=I

n—1 m;

a(r) t@) @(QIM) is a summand. Thus I > x,;,(d™). Let I > --- > I; >

Xmin(d™) be all sequences such that |Qr,| = [Qy_ . (am)|-

We quote from May page 20: if for each d™M° we associate its coefficients
a(ry as a matrix (ay . (4mame<),(1)), then this matrix is upper triangular with ones
along the main diagonal. This allows us to express one basis element d™ M® with
respect to the dual basis of admissible monomials.

We consider the first sequence ;. Our task is to evaluate o (z,). Let ¥Qr, be
the iterated coproduct applied n(m)-times. We shall write I; as a sum of n(m)
sequences such that each of them is a primitive element of R[n] equals to one of
those involved in x,,;,(d™). This is possible, since n(m) > n (X (T 1(Q1)))-
The common element d;') between ¥~*(Q(;,)) and d™ does not change the co-
efficient a(;,), because no Adem relation can reduce @1, , to a smaller sequence.
Instead, we consider Qr, —mo1, , (@7 = ¥71(Q(1,))/dn'5) and Q.. (4™)—moL..0)
(dm™(V) = d™/d;'5). Now the iterated coproduct is applied n(m(1))-times.

For the second part of step 3), we use ¥p = p, lemma 37 and proposition
38. All elements ey € T'[n], which have the property per = Q; are known.

nyn—i?

Moreover, the dual of those elements, (er)* € B[n], are summands in i(dy,n—;).
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Using commutativity in D[n] induced by symmetry in coproduct, we deduce
that the required coefficient is the coefficient of ¢+(d”*) in #(d™1)). m

Remark 46 Suppose that (Q1)* is to be expressed with respect to $3,,(S(E(n))*®

D[n]), then one starts with the biggest sequence, say K(1), ¥ " (Qg()) =
(Qx(1))*, then substitutes in the next element ¥~ (Qx(2)) = (Qx(2))* +ak(2),k(1)(@x(1))*
= (Qkp)" = ‘I’_l(QK(z)) - aK(z),K(1)‘I’_1(QK(2)) and so on.

Let us make some comments. If the degree m of a monomial d™ is quite
high, then there exist many elements of the same degree such that the dual of
their images under ® do not appear in d™ for a variety of reasons. We shall
give a refinement of the algorithm described above through the next lemmas.

Example 47 Letd = dg,od;ld;;pa. We will use relation ??, 37 and 4 in order

3
to improve the algorithm described above. The idea is to use d3; and or d;fg”

to create d' such that (¥(d'))* will be a term in the image of d in R[n]*. Please

note that we abuse notation for simplicity here. For i(ds 1) = hahs we need a
2

suitable product of d3». Since d3» = hY + hY + hs, our candidate d3,; must

have exponent at least p (because of ho) and dg , also is needed to get h§. On the

other hand we have (1+1p3) = (1) choices for hy. Thus ¥(d' = d370d§f’1d’3’,32_p) =
Q1Q2p+1Qp31p+1 18 a term in d. Next we consider i(dso) = hihahs to a suitable

power. Let us try to use d3» only. We need such a product Jg’(; )dg,(; )Jgg ) and
we shall define the exponents and its binomial coefficient. If v(3) = 1, then
2
d;’(; ) provides hY and forces v(2) = p and y(1) = p? for hy and hs respectively.
Now its binomial coefficient: (1"'1”3) (1;3) = 0. Hence i(ds0) can not be created
using only powers of d3 2. Now let us consider dg,o. Using d3,1d§’2 with two
different ways ((hyh2)” (hs)? or hPhs (he)? (hs)” ") we get dy o with coefficient
2 2
(® +® (1+1p3)] = Omodp. Using d3 ,d3 , we get d3 o with two different ways
((haha)”" (ha)”" or BY BE (ho)? (hs)? 7P), ice. d' = dB o dEs » "1, Here the
coefficient is [(Z) + (Z) (Hpgs)] = 1modp. Moreover, repeating this process we
n_ gp’+1 p o’ —pP—p
also get d" =d3 o "d3 1d3 5 . Finally,

*

d=(Q1Qp+1Qps1pi2)*" + (Q1Q2p+1Qp3+p+1)* + (Qp2+1Qp3+2Qp3+2) +

*
(Qp>+1Qp> 4 p+1Qps11)

n—1
Definition 48 Let d™ = [] d'i be a monomial in the Dickson algebra and
=0

£;
m; =Y. a;+p'. Let ip = max{i | m; # 0} and 0 <t < io. Let §(t) be a positive
t=0
Y(8(2))

integer such thatt < y(s) <n—1fors=1,...,6(t) and > (n—v(s)) =n—t.
1
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Let also L4 (1),...y(5(¢))) = max{y(s) — (21: @) + (s —1)n|s=1,..,7v((t)}
s—1

and 0 < ¢ < min{ly(s) = Lty (1),...n(5()) T 2 (0 —7(5))}. We define
=1

Y(3(t)) a

— =2
C(t,’y(l), )y(s(t))ac) IJ‘) - Z;O S mﬂy(l) _ Mpﬁ_e("lf’(l) ,,,,, ~¥(8(t)))

0, otherwise

Here 1 < p < min{a

1
Proposition 49 Let d™ = ] dnmﬂ be a monomial in the Dickson algebra as
i=0

*

£
above. Then d™ contains \P(dmd,’;’(tt’ﬁl) """ fm(s) )

with coefficient

> (1), (8(8),0,1)+

Y(1),...7(8(¢))

% et v ision)
¥ (1) e (8 (#)) P01 (D 87 () 7i(t,7' (1), 7' (' ()

s—1
Y(E@) s T E (@)

such that £t 1(1),....y(68) = Lty 1),y (8 (1)) ¥ 111 &y s =
I it W GO pree £(1), .., y(3(8))} and {' (1), ., 7' (8'(£))}

€Iy 1 (1), (3 (4)))

are partitions of {t + 1,...,n} of consecutive and non-consecutive elements re-
spectively. For the definition of Iy (1), ..y (5'(t)) and o;(t,y'(1), Y (8'(1))),
please see the second case in the proof bellow because they strongly depend on
the particular partition.

Proof. Since i(dn:) = (hty1..-hn)P !, we are interested in partitions of
(ht+1...hn)(p_1)g such that each part of each partition is a term of an appropriate
power of d,, (5 for a suitable y(s).

1) Suppose that each of these terms consists of consecutive h;’s. In other
words we consider all partitions of the set {t + 1,...,n} such that
{t+1,..,t+n—v(0(),t+n—v(()) +1,....t + 2n—(6(t)) —y(6(t) — 1), ...,
YO+ .o +v(68)—(s—Dn+1,...v1)+ ... +v(s = 1) — (s — 2)n, ...,
where

(p-1)p" (o)
(Py () 4t (o)~ (5 1)t 1Py (1) oy (5 1) (5-2)m)
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v(8(2))
is a term of a suitable power of d, (). Firstly, we must have »  (n —
1
v(s)) = n —t. Secondly, the appropriate powers must be considered. Let

Lty (1),y(a()) = max{y(s) — (Zi)v(j)) +(s—1n[s=1,.,7(6(t)} Here

we considered the p-th power of hy(1)1.. 44(s)—(s—1)nt+1- Let that entry be ;.
Actually, in this case ¢, = y(§(¢)). We shall use the general description in the
next case. We start with d,, ,(«) having exponent 1. This forces the rest of the
exponents to be as follows:

s—1
I sco —v(B(E)—t ‘f(m(l),...n(m))r;("*W” P s
P (8 (1,007 (3(8))) » j Pt (B (1,07 (3(8)))

n,y(8(%)) " Pnyy(s) Ty (1)

£
. (B (1) (B(8) . .
and we are expecting to get dﬁ’t with an appropriate coefficient

because of the different choices which there exist for each particular term.

The last term (hv(l)ﬂ...hn)p_l has no choice and each of the other terms
s—1

ay(s), bty (1), ., Gy — 2 (n—(H) . . .
has ( ! K = ) choices. In general, if £ is the exponent
1

s—1

£(t,7(1)5eeyr (5(£))) ™ Z (n=v()
j=1 | s =

of dy ¢, then £ can be at most min{m, ) — | p

1,...,7(6(¢))}. Since we are considering only multiples of p-th powers we can
increase each p-th power by ¢ where

s—1
0 < ¢ < minfly (o) = Lty + (= ¥())}
j=1
and each multiple y can be between 1 and min{a -
‘Y(S),C+f(¢,~,(1),...,~,(s(t)))—jzl(n—‘Y(j))

(38—t
2,...,6(t)}. In that case, d“% is expected with coefficient which contains

¢(t, (1), ...,77(5(:‘,)), ¢, 1) as a summand, because of choices of the

Y(1)5e57(8(2))scom
second case.

2) Now we consider the case where partitions contain at least a part with
no consecutive entries. The only difference is that extra elements d, ,(5)’s are
needed in order to bring the exponents to the right number but this creates
technical difficulties. So we will skip the definition of the analogue of ¢ and p
in this case. Let such a partition be

(i’y(s),h seey 7:'y(s),nf'y(s))

Let (iy(s),a15 -+ Gv(s),a,) D€ @ subset of the set above such that a; > 1, 4,(s),a, +
1= i’Y(S),OlrJrl forr =1,..,4—1 and i’y(s),alfl +1< i’y(s),au i.y(s),aq +1=

iy(s),aq.1+ FOr €ach such a subset we consider:

P (e (Dseyy (8(1)) TP HITIHEL by (1),0,y (8(1)) TR FIT I eLFy(o) 1 h 01 T iy (a) g

d

n,n—q
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with the appropriate coefficient:

Mg
ity )y 3o — eIt en _ pley 1),y () eIt iy (o) 1 Fer 1y () 0y

Here £; (1),....v(5(¢))) is @s in case 1). Note that many different parts of a par-
ticular partition may need powers of d,, ,_4. We also need the set of indices for
such dy n—q. Let this set be {g1,.--,4, 4. @) - The set of indices given by
Ity (1)eer(6(8)) 2= {715 ¥(0(E)} U — @1, m — @, Ly 00y} TOUSE e
considered. Let o;(¢,v(1),...,7(6(¢))) denote the total number of d, ; involved
in the particular partition for ¢ € I(; y(1),... (5(¢))), then the coefficient for d,, ;
18 (5 (try(1) ey (5(6)) -

Finally, we combine both cases such that only partitions {y(1),...,y(6(¢))}

(for the first case) and {'(1),...,7'(8'(t))} (for the second case) which provide
dp‘(t,v(l) ,,,,, e g
n,t

_ H da'i(tv7’(1)1"'17’(5’(t)))

d = are con-
y ( ) . n7l
e 1€T (4 4 1(1),..,97 (87 (1))
sidered. And the coefficient for .
s—1
5 L) - (n—v(5))
\I,(dmdﬁlrw(l) ..... v (8(1))) v(3(2) p “(7(1) v(@E®D i=1 v ) in d™ is
) 1 (8)
Y L), y(61),0,)+ Y 11 (oster (v (37 1))

Y(1),--7(8(2)) Y (1)5ee ¥ (8" () 2€ 14,47 (1), 07! (57 (1))
[

Next we consider a lemma in the opposite direction of last proposition.

Lemma 50 Let k <n —1i and i <n, then
i (w(r ) s

n,n—i n,n—i

o )( o )) (q’(dmin(ah,ag)pkd(ah7min(ah,ag))pk+(a07min(ak,a0))dmin(ak,ao)))*

(min(ak,ao) min(ag,a0 n,n—i—k n,n—i n,n—i+k

k ap
Proof. We consider all admissible sequences in (z(dﬁnﬂ)) (i(dn,n—i))™.
[
Note that di:’:ﬁj"'+a° can be computed by repeated use of the formulae in
the last lemma, for all possible choices.

Remark 51 We must admit that if m(n) >> 0, then there exist many candi-
dates for m' and the bookkeeping described above can not be done by hand. We
believe that it is harder but safer to consider all possible choices.

Let us briefly discuss and describe Campbell, Peterson and Selick’s method
which calculates

d" =5 <d™Qr > (Qn)”
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Recall that Qr, , = ¥(s) " 1(h'mi). For d™ = dno...dno--dnn1--dnn-1 =
’ —_— —- ——

mo Mn—-1
n(m)
I d(7), let S(d™) be the set of all n(m) x n matrices C' whose i-th row C; has
i=1

the property that p(ec,) = e (u(d(7))).
For example, if d(i) = dy ¢ then p(ec,) = Q. (d(i)-
For each C € &(d™), let S(C) =1-C. Here 1 = (1,...,1). Then

" = Qs(c)
{CEeS(d™)|S(C) is admissible}
Please note the analogy between matrices of exponents defined in section 3

and elements of &(d™).
We copy the next example from [2] and compare the two methods.

Example 52 Letp =2 andn = 3. Let d = dsodj ;d3 ,. The matriz associated
with d is
1{0 0 1
0 01

2

1{1 1 1
5(C) = (1312)

Since p = 2, in computing S(d) it suffices to consider only matrices C whose
braced rows are identical, since for other C, S(C) will occur an even number of
times by symmetry. There are 3-3-3 = 9 choices. Most of them will be excluded
by admissibility. This refinement can easily be done if the exponents involved
are relatively small. Since the rest of them appear just once:

—

O O o
=
_ =

1{0 2 0 1{0 0 1 1{0 2 0
00 1 0 0 1 00 1
8 : 8 : 8
00 1 00 1 00 1
01 1 2 2 0 2 2 0
2{0 11 202 2 0 2Y2 2 0
1{1 1 1 1{1 1 1 1{1 1 1
S(C) = (15 11) S(C) = (55 10) S(C)=(579)

SO d = Qz‘ls3912) + Qzlvssll) + Qz(5s5»10) + QE597s9)-

According to our method, ds,o is not considered and 9 = 8 + 1. There are
3-3-3 = 9 monomials in d3 ;d3 , and only 4 of them are admissible elements of
B[n]. Namely: h2hl! h5h1% hih3h3 and A{hShS. So d = Q?1,3,12) + QE‘175’11) +
Q?5,5,10) + Q?5,7,9)'
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Remark 53 C-P-S’s method is more or less the same with our method of de-
composing d™ using matrices in section 3.

One advantage of the method of monomials is the use of computational pack-
ages and a theoretic advantage is the description of the inclusion map

P8y [ [Sp = Spn

in mod —p (co)homology.
In principal both methods are equivalent.

Next, the algorithm which calculates Adem relations using modular invari-
ants is demonstrated. Roughly speaking: For the given ey, let hl = (er)* and
compute all admissible sequences K with the same degree and smaller than the
given one. For each such a K, let X' = ¢(Qx) and evaluate i) the coefficient of
KT in i(dX") and ii) d¥ in R[n]*. Starting with the greatest sequence K whose
coefficient in p(er) has not been defined yet, using the Kronecker product, and
i) and ii) above, we compute its coefficient in p(eyr). Then we proceed to the
next sequence.

Example 54 Let p = 3 and I = (20,15). Then p(e;) = 2Q(11,15) + 2Q(s,19)
using Adem relations in the Dyer-Lashof algebra. We shall also evaluate p(e;)
using the following algorithm.

1) Solve the Diophantic equation: mo(p? — 1) + m1(p? — p) = (p — 1)(20 +
p15) and for each solution define d™ or find all sequences K, Qg € R[n] and
1(Qk) = d¥' € D[n] such that |[d¥ | = |er| = 2(p—1)(20 + p15). Using their
decomposition in B[n] check those which contain (er)* = h3°hl® as a summand.
Those are:

d%?odg,p Q(14,17); no;

d%}od;p Q(11,18), yes with coefficient 2;

dg,odélu Q(s,w), noy

dg,od% 17 Q(s,zo), no;

d%,od%,p Q(2,21), no.

2) Calculate their duals:

d%j‘od;l = (Q(14,17))* (there is only one choice).

d3ld; 1. Divide both dy%d3 | and dyyd5, by dif,. Consider d3 od3, and
d;,l. 7=2-3+ 1. Hence we can take only d1 and replace it by hi. This gives
hih3? = hib(dgg) = L(dg,odg,1)- Thus d%,lodgg = (Qu1,18))" + (Qua7))"-

d3 od3';. Repeating steps described above, we obtain: dj ,d3Y = (Qs,10))* +
2(Q1,18)" + (Qua,17))" -

dg,odésl = (Q5,20))" + 2(Q14,17))*-

d%,od%J = (Q2,21))" + (Q(5,20))"-

3) Use the Kronecker product to evaluate p(e;).

Start with dX' such that K' is the biggest sequence where the first non-zero
coefficient of (er)* = h2°h1® appears in dX .

< dypds s pler) >=<i(dyds ), er >=2= < (Quias))*+(Qam)*,pler) >=
2 = Q11,18) has coefficient 2 in p(e;).
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< d 8%, pley) >=< i(d5odsh),er >= 0 = < (Q,19)" +2(Quias)* +
(Qua,m)* pler) >= 0= < (Qs,19))", () > +1 =0 = Q(s,10) has coefficient
2 in p(ey).

< d3od3%, pley) >=< i(d3ods%),er >= 0 = Q(s.20) has coefficient 0 in
p(er)-

C B od%, pleg) >=< ABodi),er >= 0 = Qo) has coefficient 0 in
p(e;)

Hence p(e;) = 2Q(11,18) + 2Q(s,19) -

Example 55 Let I = (p° +pp + p,p® + p,0, ,32,2,[‘71), then ‘1’;1(61) =
(hahahs)?* P (Msa L2~ Mg L2 2 /ds o).
We apply Adem relations on er: I — (p +p,p> +p,0,p> +1 ,82, 2,,81)
- (0* +p,0,p> +1,p° +1,ﬂ2,2,ﬂ1) ( P+ 1,07+ 1,07 + 1, ﬂz,z,ﬂl)
(0,p +1,p? +1,ﬂ2,p+2,2, 1) = (0,p* +1,p° +1,ﬂ1,§,§, 1) = (0,p* +

]- 162{ 1 é’é’g’ﬂ]‘) ( » D +1]- 16235;52525161) (01ﬂ2$p+§ % % %aﬂlz !
(Oaﬂ§a§a§a§a§a/31)_)(0 /32a§ » 9 §aﬁ1 1) (Oaﬁ2a§ 2)/31 1 1)_)( gazaﬁlalalal):

K7§173' Thus p(eI) = QK7;1,3'

We use the monomial method. For degree reasons Qk,,, , is the only pos-
sible candidate. We must check whether i(¥7" (Qxk,,, ,)) = WMy 3L22) con-
tains (hyhahs)? ™ (M5, L2 "> My,g L2 2 /ds o). (M7 sI22) contains (lemma
26) (M5;4L€_2M7;6L$_2/d5,0)(d4,1d6,3 — d4,3d6,1) and (hlhzhg)p3+p 1S a sum-
mand in (application of formula 2) (ds1de,3 — da3ds,1). It follows that p(e;) =
QK7;1,3'

Now, the following proposition is obvious.

Proposition 56 Let e; € T[n]. The following algorithm computes p(er) in
Rin].

i) Let ® = {m = (mo, ..., mn_1)} be all solutions of |I| = Y m;(p™ — p*) +
0
v
S (p" — p% — p*i). Note that s; and k; are uniquely defined by lemma 28. Let
1
K be the set of all admissible sequences K such that | K |=| I | and K < I.
Moreover, Qk € R[n] and Qx = ¥~1(d™M¢) for m € R.

i) Let h' = W7 (er) and find br i the coefficient of kT in i(d™M?¢) for all
elements of R.

iii) Compute the image of d™ M€ in (R[n])*.

ii) Use the Kronecker product to evaluate p(ey) :

Start with the first non-zero br k,, p(er) contains ar i, Qk,; i.e. < dKi,p(eI) >=
ar,k, = br,x,. Proceed to the next sequence K> and use by x, (whether or not
is zero) and the image of d¥> to compute the coefficient ar,x, of Q%2 in p(er).
Repeat last step for all remaining sequences.

We close this work by making some remarks about evaluating p(er) using
matrices introduced in section 4. Since (er)* = h! is an element of B|n], one
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has to find all sequences m = (mg,--- ,m,_1) such that d™ contains (er)*
as a summand. This is equivalent to find all matrices C such that (er)* =
n

1T h,El'C)i—l and then group them in different sets such that each set corresponds
=1

to an m. The coefficient ar,, of Q™ in p(es) is a function of the order of the
set corresponding to m. Given Al , there is a great number of choices for C
depending on I’ as the interested reader can easily check and this is the reason
for the high complexity of Adem relations.
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