Volume 4, issue 2 (2004)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Partition complexes, duality and integral tree representations

Alan Robinson

Algebraic & Geometric Topology 4 (2004) 943–960

arXiv: math.CT/0410555

Abstract

We show that the poset of non-trivial partitions of {1,2,,n} has a fundamental homology class with coefficients in a Lie superalgebra. Homological duality then rapidly yields a range of known results concerning the integral representations of the symmetric groups Σn and Σn+1 on the homology and cohomology of this partially-ordered set.

Keywords
partition complex, Lie superalgebra
Mathematical Subject Classification 2000
Primary: 05E25
Secondary: 17B60, 55P91
References
Forward citations
Publication
Received: 17 February 2004
Accepted: 21 September 2004
Published: 22 October 2004
Authors
Alan Robinson
Mathematics Institute
University of Warwick
Coventry CV4 7AL
United Kingdom