|
|
Recent Issues |
Volume 19, 1 issue
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
Abstract
|
For an arbitrary simplicial complex
,
Davis and Januszkiewicz have defined a family of homotopy equivalent CW–complexes
whose integral cohomology rings are isomorphic to the Stanley–Reisner algebra of
.
Subsequently, Buchstaber and Panov gave an alternative construction (here called
),
which they showed to be homotopy equivalent to Davis and Januszkiewicz’s
examples. It is therefore natural to investigate the extent to which the homotopy
type of a space is determined by having such a cohomology ring. We begin
this study here, in the context of model category theory. In particular, we
extend work of Franz by showing that the singular cochain algebra of
is formal as a differential graded noncommutative algebra. We specialise
to the rationals by proving the corresponding result for Sullivan’s
commutative cochain algebra, and deduce that the rationalisation of
is unique for a special
family of complexes
.
In a sequel, we will consider the uniqueness of
at
each prime separately, and apply Sullivan’s arithmetic square to produce
|
Keywords
colimit, formality, Davis–Januszkiewicz space, homotopy
colimit, model category, rationalisation, Stanley–Reisner
algebra
|
Mathematical Subject Classification 2000
Primary: 55P62, 55U05
Secondary: 05E99
|
Publication
Received: 21 May 2004
Revised: 23 December 2004
Accepted: 5 January 2005
Published: 7 January 2005
|
|