Volume 5, issue 3 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Discrete Morse theory and graph braid groups

Daniel Farley and Lucas Sabalka

Algebraic & Geometric Topology 5 (2005) 1075–1109
Bibliography
1 A Abrams, private communication
2 A Abrams, Configuration spaces of braid groups of graphs, PhD thesis, University of California, Berkeley (2000)
3 A Abrams, Configuration spaces of colored graphs, Geom. Dedicata 92 (2002) 185 MR1934018
4 A Abrams, R Ghrist, Finding topology in a factory: configuration spaces, Amer. Math. Monthly 109 (2002) 140 MR1903151
5 M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 MR1465330
6 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999) MR1744486
7 K S Brown, The geometry of rewriting systems: a proof of the Anick–Groves–Squier theorem, from: "Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989)", Math. Sci. Res. Inst. Publ. 23, Springer (1992) 137 MR1230632
8 M M Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics 10, Springer (1973) MR0362320
9 F Connolly, M Doig, Braid groups and right angled Artin groups arXiv:math.GT/0411368
10 J Crisp, B Wiest, Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups, Algebr. Geom. Topol. 4 (2004) 439 MR2077673
11 M Farber, Collision free motion planning on graphs arXiv:math.AT/0406361
12 R Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90 MR1612391
13 Ś R Gal, Euler characteristic of the configuration space of a complex, Colloq. Math. 89 (2001) 61 MR1853415
14 R Ghrist, Configuration spaces and braid groups on graphs in robotics, from: "Knots, braids, and mapping class groups—papers dedicated to Joan S. Birman (New York, 1998)", AMS/IP Stud. Adv. Math. 24, Amer. Math. Soc. (2001) 29 MR1873106
15 R W Ghrist, D E Koditschek, Safe cooperative robot dynamics on graphs, SIAM J. Control Optim. 40 (2002) 1556 MR1882808
16 K A Mihaĭlova, The occurrence problem for direct products of groups, Mat. Sb. $($N.S.$)$ 70 (112) (1966) 241 MR0194497
17 M H A Newman, On theories with a combinatorial definition of “equivalence.”, Ann. of Math. $(2)$ 43 (1942) 223 MR0007372
18 C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982) MR665919
19 J C Stillwell, Classical topology and combinatorial group theory, Graduate Texts in Mathematics 72, Springer (1980) MR602149
20 J Świątkowski, Estimates for homological dimension of configuration spaces of graphs, Colloq. Math. 89 (2001) 69 MR1853416