Volume 5, issue 3 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Discrete Morse theory and graph braid groups

Daniel Farley and Lucas Sabalka

Algebraic & Geometric Topology 5 (2005) 1075–1109
Bibliography
1 A Abrams, private communication
2 A Abrams, Configuration spaces of braid groups of graphs, PhD thesis, University of California, Berkeley (2000)
3 A Abrams, Configuration spaces of colored graphs, Geom. Dedicata 92 (2002) 185 MR1934018
4 A Abrams, R Ghrist, Finding topology in a factory: configuration spaces, Amer. Math. Monthly 109 (2002) 140 MR1903151
5 M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 MR1465330
6 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1999) MR1744486
7 K S Brown, The geometry of rewriting systems: a proof of the Anick–Groves–Squier theorem, from: "Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989)", Math. Sci. Res. Inst. Publ. 23, Springer (1992) 137 MR1230632
8 M M Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics 10, Springer (1973) MR0362320
9 F Connolly, M Doig, Braid groups and right angled Artin groups arXiv:math.GT/0411368
10 J Crisp, B Wiest, Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups, Algebr. Geom. Topol. 4 (2004) 439 MR2077673
11 M Farber, Collision free motion planning on graphs arXiv:math.AT/0406361
12 R Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90 MR1612391
13 Ś R Gal, Euler characteristic of the configuration space of a complex, Colloq. Math. 89 (2001) 61 MR1853415
14 R Ghrist, Configuration spaces and braid groups on graphs in robotics, from: "Knots, braids, and mapping class groups—papers dedicated to Joan S. Birman (New York, 1998)", AMS/IP Stud. Adv. Math. 24, Amer. Math. Soc. (2001) 29 MR1873106
15 R W Ghrist, D E Koditschek, Safe cooperative robot dynamics on graphs, SIAM J. Control Optim. 40 (2002) 1556 MR1882808
16 K A Mihaĭlova, The occurrence problem for direct products of groups, Mat. Sb. $($N.S.$)$ 70 (112) (1966) 241 MR0194497
17 M H A Newman, On theories with a combinatorial definition of “equivalence.”, Ann. of Math. $(2)$ 43 (1942) 223 MR0007372
18 C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982) MR665919
19 J C Stillwell, Classical topology and combinatorial group theory, Graduate Texts in Mathematics 72, Springer (1980) MR602149
20 J Świątkowski, Estimates for homological dimension of configuration spaces of graphs, Colloq. Math. 89 (2001) 69 MR1853416