Volume 5, issue 4 (2005)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The space of intervals in a Euclidean space

Shingo Okuyama

Algebraic & Geometric Topology 5 (2005) 1555–1572
Bibliography
1 J Caruso, S Waner, An approximation to $\Omega^{n}\Sigma^{n}X$, Trans. Amer. Math. Soc. 265 (1981) 147 MR607113
2 F Cohen, Homology of $\Omega^{(n+1)}\Sigma^{(n+1)}X$ and $C_{(n+1)}X$, $n\gt 0$, Bull. Amer. Math. Soc. 79 (1973) MR0339176
3 A Dold, R Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. $(2)$ 67 (1958) 239 MR0097062
4 S Kallel, Spaces of particles on manifolds and generalized Poincaré dualities, Q. J. Math. 52 (2001) 45 MR1820902
5 J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer (1972) MR0420610
6 D McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975) 91 MR0358766
7 P Salvatore, Configuration spaces with summable labels, from: "Cohomological methods in homotopy theory (Bellaterra, 1998)", Progr. Math. 196, Birkhäuser (2001) 375 MR1851264
8 G Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213 MR0331377
9 K Shimakawa, Configuration spaces with partially summable labels and homology theories, Math. J. Okayama Univ. 43 (2001) 43 MR1913872