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Regular homotopy and total curvature II:
sphere immersions into 3–space

TOBIAS EKHOLM

We consider properties of the total curvature functional on the space of 2–sphere
immersions into 3–space. We show that the infimum over all sphere eversions of the
maximum of the total curvature during an eversion is at most 8� and we establish a
non-injectivity result for local minima.

53C42; 53A04, 57R42

1 Introduction

An immersion of manifolds is a map with everywhere injective differential. Two
immersions are regularly homotopic if there exists a continuous 1–parameter family of
immersions connecting one to the other. The Smale–Hirsch h–principle [10; 4] says
that the space of immersions M !N , dim.M / < dim.N / is homotopy equivalent to
the space of injective bundle maps TM ! TN . In contrast to differential topological
properties, differential geometric properties of immersions do not in general satisfy
h–principles, see [3, (A) on page 62]. In this paper and the predecessor [2], we study
some aspects of the differential geometry of immersions and regular homotopies in
the most basic cases of codimension one immersions. We investigate whether or not
it is possible to perform topological constructions while keeping control of certain
geometric quantities.

Consider immersions S2!R3 . In this case the h–principle implies a famous theorem
of Smale [9]: all immersions S2! R3 are regularly homotopic. In particular, there
exists sphere eversions (ie, regular homotopies connecting the unit 2–sphere in R3 to
the same immersion with the opposite (co)orientation).

The total curvature �.f / of a sphere immersion f W S2! R3 is the mapping area of
its Gauss map:

�.f /D

Z
S2

jKj d�;

where K is the Gaussian curvature and d� the area element induced on S2 by the
immersion f . The functional � (and its higher dimensional generalizations) is also
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known as the Lipschitz–Killing curvature. It follows from the Gauss–Bonnet theorem
that the global minimum of � equals 4� . An immersion for which this value is attained
is called tight (or convex) and is known to be the boundary of a convex body in R3 ,
Kuiper [5]. This characterization of tight immersions immediately implies that any
sphere eversion ft , 0 � t � 1, has an instant f� with �.f� / > 4� . The following
result gives a corresponding upper bound.

Theorem 1.1 For every � > 0 there exists a sphere eversion ft , 0� t � 1, with

max
0�t�1

�.ft / < 8� C �:

In fact, ft can be chosen so that for each t 2 Œ0; 1� there exists a unit vector vt 2 R3

such that the height function hft ; vt iW S
2! R has exactly two non-degenerate critical

points.

Theorem 1.1 is proved in Section 2.2. It is interesting to compare this result to the fact
that the L2 –norm of the mean curvature W .f / (also known as the Willmore energy)
of immersions f W S2! R3 has the following property. For any sphere eversion ft ,
0� t � 1, there exists some � 2 .0; 1/ such that W .f� /� 16� . (This is a consequence
of two results: any sphere eversion has a quadruple point, Max–Banchoff [8], and
W .f /� 16� for any immersion f with a quadruple point, Li–Yau [7].)

It is unknown to the author whether the result in Theorem 1.1 is best possible. We
therefore ask: what is the infimum of max0�t�1 �.ft / over all sphere eversions ft ,
0� t � 1?

In Propositions 3.3 and 3.4 we make two general observations about local minima
of � : an immersion of a closed n–manifold into RnC1 which is a critical point of �
must have total curvature a multiple of the volume of the unit n–sphere and its Gauss
map cannot have fold singularities. These observations imply that all local minima
of � with curvature function which meets a non-degeneracy condition are so called
relatively isotopy tight (RIT) immersions with certain special properties, see Section
4.2. (Relatively isotopy tight immersions were introduced by Kuiper and Meeks in [6],
we recall their definition in Section 4.1.) We show in Theorem 4.2 that RIT immersions
with the special properties just mentioned are non-injective. As a consequence we
obtain the following result.

Theorem 1.2 Any local minimum f W S2 ! R3 of � with 0 a non-trivial regular
value of K is an RIT immersion such that any component of K�1..�1; 0�/ is an
annulus. In particular, no such local minimum is an embedding.

Theorem 1.2 is proved in Section 4.3.
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2 Total curvature and a sphere eversion

In this section we recall properties of the total curvature of a closed n–manifold
immersed into RnC1 . We then describe a sphere eversion which constitutes a proof of
Theorem 1.1.

2.1 Total curvature

Let f W M ! RnC1 be an immersion of a closed oriented n–dimensional manifold.
Let �W M ! Sn , where Sn is the unit sphere in RnC1 , be its Gauss map which takes
a point p 2M to the positive unit normal of df .TpM /. The total curvature �.f / of
f is the mapping area of � . Standard results, see Cecil and Ryan [1], then imply

�.f /D

Z
M

jJ.�/j d� D
1

2

Z
Sn

�.fv/ dv;

where in the first expression jJ.�/j is the absolute value of the Gauss–Kronecker
curvature of f and d� is the volume element of the metric induced by f , and where
in the second, integral geometric expression, �.fv/ denotes the number of critical
points of the function fvW M ! R , fv.x/D hf .x/; vi, where v 2 Sn is a unit vector.

2.2 A sphere eversion

Let f W S2 ! R3 be any immersion. Then for generic unit vectors v in R3 the
composition of f with the orthogonal projection �v along v to a plane perpendicular
to v is a map with only stable singularities. In particular this means that the image
of the singular set of �v ı f is a piecewise regular curve with cusp singularities.
More precisely, the jet transversality theorem implies that for generic v 2 S2 the set
of points p 2 S2 such that v 2 df .TpS2/ is a smooth 1–dimensional submanifold
†v.f /� S2 and that v gives a vector field along †v.f / which is tangent to †v.f /
with order one tangencies at isolated points in †v.f /. These points form a subset
which we denote †0v.f /�†v.f /. We call the image of the singular set †v.f / under
�v ı f the fold curve of �v ı f . It is a piecewise regular curve with singularities
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corresponding to the points in †0v.f /, where the fold curve looks like a semi-cubical
cusp f.x;y/ 2 R2W x2 D y3g up to left–right action of diffeomorphisms of the plane,
we call such singularities cusps. Define the total curvature � of a piecewise regular
planar curve with cusps as the sum of the total curvatures

R
c jkj ds of its regular pieces

c , where k is the curvature function of the regular curve c . (Note that there are no
curvature concentrations at the cusps.) We then have the following

Lemma 2.1 If f W S2! R3 is an immersion then

(2–1) �.f /D
1

2�

Z
v2S2

�.�v ıf .†v.f /// dv:

Proof This is immediate from the integral geometric expression for the total curvature:
the local extrema of the height function fw for w perpendicular to v are in one to
one correspondence with the local extrema of the height function in direction w on
the curve � ı f .†v.f // which are not cusps, see (2–2) below. This implies that (2–1)
holds up to an over all normalizing constant. Considering the round sphere it is easy to
see that this constant equals 1

2�
as claimed.

Consider an immersion f W S2! R3 and let v be a generic unit vector. Thinking of
R3 as R2�R , where v points in the R–direction we write f D .�v ıf; fv/. For �> 0

the map f �;v D .�v ıf; �fv/ is an immersion.

Lemma 2.2 As �! 0, �.f �;v/ tends to twice the total curvature of the fold curve
of �v ıf . As �!1, �.f �;v/ tends to 2� times the number of critical points of the
Morse function fv .

Proof The first statement is a consequence of Lemma 2.1 together with the fact if
w ¤˙v is any unit vector, w D ˛vCˇw0 , hw0; vi D 0, hw0; w0i D 1, and ˇ > 0,
then f �;vw! fw0

as �! 0. The second statement follows similarly from the integral
geometric formula for the total curvature.

We will next construct a sphere eversion ft W S
2 ! R3 , 0 � t � 1, such that

max0�t�1 �.ft / � 8� C � . To this end we first describe the middle stage g 1
2

of

a sphere eversion gt W S
2! R3 , 0� t � 1, closely related to ft . This middle stage is

a nearly planar immersion: g 1
2
D .�v ıh; �hv/ for some immersion h and for small

� > 0. In Figure 1 we depict the image of the projection �v ı h. In order to see that
Figure 1 is really the projection of a sphere immersion we argue as follows. Subdivide
S2 into three parts: an thin band B around the equator, a northern disk Dn , and a
southern disk Ds . Figure 2 depicts the images under �v ıh of Dn and Ds . In order
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v w

Figure 1: Middle stage of a sphere eversion

to connect these pieces with the band B to form an immersed sphere we consider the
local model of an immersion projecting with a cusp. If .u; v/ are local coordinates
around a point in S2 and .x;y; z/ are coordinates in R3 we have

x.u; v/D u;

y.u; v/D v.v2
Cu/;

z.u; v/D v:(2–2)

The fold curve of the projection to the xy –plane is given by f.u; v/W uD�3v2g. The
projection of the curve f.u; v/W uD�3v2C �g to the xy –plane is a curve with a kink
and one transverse double point for � > 0, as �! 0 the kink shrinks, for � D 0 the
curve has a cusp, and for � < 0 the curve is injective. Using this model around the small
kinks of the curves �v ıh.@Dn/ and �v ıh.@Ds/, see Figure 2, it is straightforward to
connect h.Dn/ and h.Ds/ with an immersion h of B so that �v ıh is as in Figure 1.

In order to describe the sphere eversion gt it thus remains to connect the middle stage
g 1

2
described above with standard spheres of opposite coorientations. To this end, we

use an abstract argument (although it is straightforward to draw a sequence of somewhat
complicated pictures).

Consider any sphere immersion f W S2! R3 such that the height function fv.p/D
hv; f .p/i has exactly two non-degenerate critical points for some direction v . We say
that such a critical point is positive (negative) if the direction of the coorienting normal
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Figure 2: Two immersed disks

of the immersion agrees (does not agree) with its mean curvature vector at that point.
Let the minimum of fv be fv.q�/ D m and the maximum be fv.qC/ DM . Then
for m< a<M , f .f �1

v .a// is an immersed planar curve in a plane perpendicular to
v . In this way we can view f as a 1–parameter family of immersed planar curves
which begins and ends at embedded circles. In particular, since the tangential degree
of the members of such a family is constant, it follows that the two critical points in
the direction v have the same sign.

Lemma 2.3 Let fj W S
2 ! R3 be immersions and let vj be unit vectors, j D 0; 1.

Assume that the height functions .fj /vj
, j D 0; 1, have exactly two non-degenerate

critical points and that the signs of the critical points of .f0/v0
agree with the signs

of the critical points of .f1/v1
. Then there exists a regular homotopy ft W S

2! R3 ,
0� t � 1, from f0 to f1 , and a continuous family vt , 0� t � 1, of unit vectors such
that .ft /vt

has exactly two non-degenerate critical points for all t .

Proof After composing f0 with a rotation of R3 which takes v0 to v1 , and a scaling
and translation in the v1 –direction we may assume that v0Dv1Dv and that the maxima
(minima) of the functions .f0/v and .f1/v both equal M (m). The lemma is then a
consequence of the Smale–Hirsch h–principle for immersed planar circles as follows.
We view the two immersions as two paths F0W S

1�Œ0; 1�!R2 and F1W S
1�Œ0; 1�!R2

of immersed plane curves, where the curve Fj .�; �/ is fj

�
.fj /

�1
v .mC ıC �.M �

m� 2ı//
�
, j D 0; 1, for some small ı > 0. Then the start- and end-curves Fj .�; 0/

and Fj .�; 1/, j D 0; 1, are very close to simple convex planar curves since they are
intersections of the original immersions with planes perpendicular to the direction
of the height function very close to its extrema. The Smale–Hirsch h–principle says
that these paths of curves can be extended to a family of plane curve immersions
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F W S1� Œ0; 1�2!R2 with F.�; �; j /DFj , j D 0; 1, if and only if the corresponding
paths EFj W S

1 � Œ0; 1� ! R2 � f0g, which assign to a point .�; t/ 2 S1 � Œ0; 1� the
non-zero tangent vector @

@�
Fj .�; t/, can be similarly extended as a continuous map EF

into R2�f0g.

Such a family F W S1� Œ0; 1�2!R2 of plane curves can be used in an obvious manner
to construct a regular homotopy ft W S

2!R3 , 0� t � 1, which connects f0 to f1 and
which has properties as claimed. In order to finish the proof of the lemma we thus need
only show that the topological extension problem has a solution. This is straightforward:
consider S1 as a union of a 0–cell e0 and a 1–cell e1 � Œ0; 1� with both endpoints
identified with e0 . First define an extension of EF on e0 � fj g � Œ0; 1� connecting
EF0.e0; j / to EF1.e0; j /, j D 0; 1, in such a way that the loop EF on e0 � @Œ0; 1�

2

is contractible. Then extend it to EF W e0 � Œ0; 1�
2! R2 � f0g. Since, EF0je1 � fj g is

homotopic to EF1je1�fj g, j D 0; 1, we can define EF also on e1�fj g� Œ0; 1�, j D 0; 1.
With this done EF is defined on the boundary of Œ0; 1�3 . Since �2.R

2 � f0g/D 0 we
can find the desired EF by extension over the cube.

With Lemma 2.3 established, we return to our sphere eversion gt . If the immersion
g 1

2
depicted in Figure 1 is sufficiently elongated in the v–direction then the resulting

immersion has exactly two critical points in the v–direction which are both negative.
Lemma 2.3 then implies that we can connect g 1

2
with the standard immersion with

the outward coorientation. On the other hand, if g 1
2

is sufficiently elongated in the w–
direction then the resulting immersion has exactly two critical points in the w–direction
which are both positive and Lemma 2.3 implies that g 1

2
can be connected with the

standard immersion with the inward coorientation as well. This gives a sphere eversion
gt , 0� t � 1.

Proof of Theorem 1.1 We show that the sphere eversion gt described above can
be carried out in such a way that � exceeds 8� by an arbitrarily small amount. As
shown in Figure 3, we can deform the middle stage depicted in Figure 1 keeping it an
immersion until it is arbitrarily close to the degenerate middle stage depicted on the
right in Figure 3. Furthermore, as the middle stage approaches the degenerate middle
stage, it is clear from the picture that the total curvature of the fold curve approaches the
sum of the angles marked on the degenerate middle stage (exterior angles at ordinary
corners of the fold curve, interior angles at cusps). In Figure 4, we show how to connect
the degenerate middle stage to an immersion which is very elongated in one direction
in which it has only two local extrema. The angles contributing to the total curvature
of the fold line of the degenerate immersion are easily seen to have sum equal to 4�

at the middle stage and to decrease toward 2� as we rotate to obtain the elongated
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Figure 3: Deforming towards a degenerate middle stage

version on the left in Figure 4. It follows that we can connect two immersions g0 and
g1 with exactly two extrema in directions v and w , respectively, where hv;wi D 0,
which are very elongated in their respective directions and such that the critical points
of g0 in direction v have signs opposite to those of g1 in direction w , by a regular
homotopy gt , 0 � t � 1, with max0�t�1 �.gt / < 8� C � for any � > 0. To finish

Figure 4: Deformation of the degenerate middle stage

the proof we note that Lemma 2.2 implies that g0 and g1 can be taken to have total
curvature arbitrarily close to 4� . It will thus be sufficient to connect these immersions
with standard spheres keeping � smaller than 8� . Regarding the elongated immersions
with two extrema in the long direction as a family of immersed plane curves as in the
proof of Lemma 2.3 it is not hard to show that it is possible to connect these to standard
sphere keeping � close to 4� by elongating the entire deformation in the direction
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where the spheres have only two extrema until we arrive at a sphere immersion which
is the boundary of a convex body. The latter can then be connected to a standard sphere
through boundaries of convex bodies.

3 General properties of local minima

In this section we discuss local minima of the total curvature functional in general
dimensions using some tools from contact geometry.

3.1 Basic contact notions

A contact structure on an orientable .2n C 1/–manifold N is a completely non-
integrable field of tangent hyperplanes � � TN . That is, a field of hyperplanes given
as � D ker˛ , where the non-vanishing 1–form ˛ (the contact form) is such that the
.2nC1/–form ˛^.d˛/n is a volume form on N . Note that if ˛ is a contact form then
d˛j� is a symplectic form. A diffeomorphism of contact manifolds .N; �/! .N 0; � 0/

is called a contactomorphism if it maps � to � 0 . An immersion of an n–manifold
f W L!N is called Legendrian if dfp.TpM /� �f .p/ for all p 2L.

3.2 The Legendrian lift of an immersion

Let M be an n–manifold, let T �M be its cotangent bundle, and let � W T �M !M

be the projection. Define the 1–form �M on T �M

�M .p/V D p.d�V /; p 2 T �M; V 2 Tp.T
�M /:

The unit cotangent bundle U T �RnC1 of RnC1 carries a natural contact structure.
Consider U T �RnC1 as a subset of T �RnC1 , then the restriction ˛ of the 1–form
�RnC1 to U T �RnC1 is a contact form. Also the 1–jet space J 1.Sn;R/D T �Sn �R

of Sn carries a natural contact structure with contact 1–form

ˇ D dz� �Sn ;

where z is a linear coordinate on the R–factor.

If v 2 RnC1 then let v� be the linear form on RnC1 given by hv; �i, and if p is a
linear form let p� be the vector such that p D hp�; �i. We write elements in T �RnC1

as .x;p/, where x 2 RnC1 and where p is a linear functional on RnC1 . Likewise,
elements in T �v Sn will be written as .v;p/ where v 2 Sn � RnC1 and where p
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is a linear functional on RnC1 such that p.v/ D 0. Note that the diffeomorphism
ˆW U T �RnC1! J 1.Sn/

ˆ.x;p/D
�
p�; x��p.x/p; p.x/

�
is a contactomorphism.

If f W M !RnC1 is an immersion of an oriented n–manifold we define its Legendrian
lift Lf W M ! U T �RnC1 by

(3–1) Lf .p/D
�
f .p/; �.p/�

�
;

where �.p/ is the positive normal of f . Using ˆ we may regard Lf as a map into
J 1.Sn/ as well. Note that Lf is a Legendrian immersion.

Let �1W U T �RnC1! RnC1 and �2W U T �RnC1! Sn be the natural projections. If
�W M !U T �RnC1 is a Legendrian immersion such that �1 ı� is an immersion then
there exists an orientation on M such that �2 ı�

� is the Gauss map of �1 ı� .

Finally, let �W Sn! Sn be a diffeomorphism then � has a natural lift to a contacto-
morphism ˆW J 1.Sn/! J 1.Sn/,

(3–2) ˆ.x;p; z/D .�.x/;p ı Œd��1�; z/:

Note that ˆ depends continuously on � .

3.3 Shrinking volumes of maps and of Gauss maps

Let M be a closed n–manifold and let f W M ! Sn be any smooth map. By Sard’s
theorem the critical values of f form a subset of Sn of measure zero. Assume that
there exists a point p 2M such that rank.dfp/D n. Then the volume vol.f / of the
map f satisfies vol.f / > 0. If p 2 Sn is a regular value we say that the absolute
multiplicity of f at p is the (finite by compactness) number of points in f �1.p/. We
prove two lemmas about decreasing volumes of maps.

Lemma 3.1 Assume that f W M !Sn has two regular values (a non-value is a regular
value of absolute multiplicity 0) of different absolute multiplicities. Then there exists a
1–parameter family of diffeomorphisms �t W Sn! Sn , 0 � t � 1, with �0 D id and
such that

vol.�t ıf / < vol.f /; for 0< t � 1:

Proof Consider first the 1–dimensional case. Let p and q be points in S1 of absolute
multiplicity m and n respectively with m< n. Let A� S1 be the positively oriented
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arc connecting p to q . Since the subspace of regular values in S1 is open and since
the absolute multiplicity is locally constant on this subspace, there exists ı > 0 such
that in a ı–neighborhood of @A in A the multiplicity is constant. Let B.x; r/ denote
the r –ball around x and choose a smooth function �W S1! Œ0; 1� with the following
properties

� � D 0 on a 1
8
ı–neighborhood of S1�A,

� � D 1 on A�
�
B.p; 1

2
ı/[B.q; 1

2
ı/
�

,

�
d�
ds
� 0 on B.p; ı/ and d�

ds
� 0 on B.q; ı/.

For small � > 0 consider the 1–parameter family of diffeomorphisms �t W S1! S1

�t .x/D ei��.x/tx:

If � > 0 is sufficiently small then, for t > 0, �t strictly decreases the length of the
region where the multiplicity equals n and strictly increases the length of the region
where the multiplicity equals m. The lengths of all regions of other multiplicities are
left unchanged. The lemma follows in the 1–dimensional case.

In the higher dimensional case. Let p; q 2 Sn be regular values of multiplicities m

and n, respectively with m < n. Connect p to q by an oriented great circle arc
A� S1 � Sn . Again, for sufficiently small ı > 0, the absolute multiplicity is constant
on a ı–neighborhood of @A. Consider a tubular neighborhood T � S1 �D.�/, with
fiber disks D.�/ of radii 0<�< ı , of the great circle S1 . Let s be a coordinate on S1

and let �.s/ be a function as above. Let gW Œ0; ��! Œ0; 1� be a non-increasing smooth
function with g.0/D 1 and g D 0 on Œ1

2
�; ��. Let  W D.�/! Œ0; 1� be the function

 .�/D g.j�j/. Let .s; �/ 2 S1 �D.�/ be coordinates on T . For small � > 0 define
the 1–parameter family of diffeomorphism �t W Sn! Sn as �t D id on Sn�T and

�t .s; �/D
�
ei��.s/ .�/ts; �

�
;

on T . Since the metric of Sn has the form

ds2
Cf .j�j/d�2

in T , it follows that, for t > 0, �t strictly decreases the volume of the set of regular
values of absolute multiplicity n, strictly increases the volume of the set of regular
values of absolute multiplicity m, and leaves the volumes of all regions of other
multiplicities invariant. The lemma follows.
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Lemma 3.2 Assume that f W M ! Sn is a smooth map and that there are local
coordinates x D .x0;x00/ 2 R�Rn�1 around p 2M and coordinates y D .y0;y00/ 2

R�Rn�1 around f .p/ 2 Sn such that

f .x0;x00/D
�
.x0/2k ;x00

�
; for some k > 0:

Then there is a 1–parameter family of diffeomorphisms �t W Sn ! Sn , 0 � t � 1,
supported in a small neighborhood of f .p/, and a cut-off function  .x/ supported in
a neighborhood of x such that

vol.�t ıf / < vol.f /; for 0< t � 1:

Proof The lemma can be proved by an obvious modification of the proof of Lemma
3.1.

Proposition 3.3 Let f W M ! RnC1 be an immersion which is a local minimum of �
of normal degree d . Then �.f /D vol.Sn/.jd jC 2k/, for some integer k � 0.

Proof Note that the Gauss map � of f is smooth and that any regular value has
algebraic multiplicity d , and therefore absolute multiplicity jd jC2k for some k�0. If
the volume of the Gauss map is different from vol.Sn/.jd jC2m/ for all integers m then
it follows that there are regular values of � of different multiplicities. Let �t W Sn!Sn ,
0� t � 1, be a family of diffeomorphisms as in Lemma 3.1 which shrinks vol.�/. This
family induces a family of contactomorphisms ˆt W J

1.Sn/! J 1.Sn/, see (3–2), and
hence of U T �RnC1 . Since the set of Legendrian immersions �W M ! U T �RnC1

such that �1 ı� is an immersion is open, it follows that for � > 0, sufficiently small,
�1 ıˆt ıf , 0� t � � , is a regular homotopy of f shrinking the total curvature. The
proposition follows.

Proposition 3.4 If the Gauss map of f W M ! RnC1 has the form of the map in
Lemma 3.2 then there exists a regular homotopy ft , 0� t � 1, with f0 D f and such
that

d

dt
�.ft /jtD0 < 0:

Proof Similar to the proof of Proposition 3.3.

4 RIT immersions and curvature generic local minima

In this section we discuss relatively isotopy tight (RIT) immersions. These are closely
related to local minima of the total curvature functional. We prove a non-injectivity
result for RIT immersions and apply it to demonstrate Theorem 1.2.
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4.1 Relatively isotopy tight immersions

Let M be a closed surface and recall that if f W M ! R3 and v 2 S2 then fv denotes
the height function in direction v composed with f .

Definition 4.1 An immersion f W M ! R3 is relatively isotopy tight (RIT) if

�.f /D 2� max
v2S2

�.fv/D 2� min
v2S2

�.fv/:

and

min
v2S2

�.gv/�
�.f /

2�
;

for every immersion g in some neighborhood of f .

This is Definition A, in Kuiper and Meeks [6], where the following structure theorem
appears as Fundamental Lemma 2. (For simplicity of formulation we state it for
embeddings, the obvious analog for immersions holds as well.)

Theorem (Kuiper and Meeks) If f W M ! R3 is an RIT C 2 –embedding (immer-
sion) then there exists an integer k and convex surfaces @B0; : : : ; @Bk in R3 such that
the set MK>0 DK�1.0;1/ satisfies

MK>0 D

k[
jD0

.@Bj /K>0:

The unique principal component MC
j of @Bj \M contains .@Bj /K>0 and is obtained

from @Bj by deleting disjoint plane convex disks in @Bj . The boundary of such a disk
is called a top-circle. The plane ….
/ of a top-circle 
 supports some neighborhood
U �M of ….
/\MC

j . Moreover,

�.f /D 4�.1Cg.M /C 2k/:

All these properties together are sufficient for an embedding (immersion) to be RIT.

4.2 Non-injectivity

In [6], the following question concerning RIT immersions of 2–spheres is posed as
Problem 5: Is there an RIT embedding of the 2–sphere with � D 4�C 8�k for some
k > 0?, and it is shown that there are no such embeddings for k D 1. In this subsection
we prove the following result which give some partial information about this question
(and which, as we shall see in Section 4.3, also leads to a proof of Theorem 1.2).
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Theorem 4.2 Let f W S2! R3 be an RIT immersion with the following properties.

(a) At least one component of K�1..�1; 0�/ which intersects K�1..�1; 0// is
an annulus with one boundary component bounding a disk D � S2 such that
K � 0 on D .

(b) If � is a non-vanishing normal vector field of f and if p; q 2 S2 are any two
points with K.p/ > 0 and K.q/ > 0 then h�.p/;H.p/i � h�.q/;H.q/i > 0,
where H.p/ is the mean curvature vector of f at p . (In other words the signs
of h�.p/;H.p/i agree for all p 2 S2 with K.p/ > 0.)

Then f is non-injective. It follows in particular that every RIT immersion such that all
components of K�1..�1; 0�/ are annuli is non-injective.

Theorem 4.2 will be proved using two lemmas which we present next. It should be
viewed in the light of the structure theorem for RIT immersions which has the following
consequences. Let f W S2! R3 be an RIT immersion. Then the structure theorem
in Section 4.1 gives a subdivision of S2 into planar surfaces of two kinds. The first
kind is the planar surfaces �Cj which map in a one to one fashion onto the convex
bodies @Bj with planar convex disks removed. We write �C for the union [j�

C
j

over all components. The second kind of planar surface is a component of S2��C .
We denote such components ��

k
and their union �� D[k�

�
k

. Then each ��
k

is a
sphere with r � 2 disks removed. Our first lemma gives a non-embeddedness condition
for such components which are spheres with two disks removed.

Let f W S1 � Œ0; 1�! R3 be an immersion with the following properties.

(i) The map f jS1 � fag is a planar curve bounding a convex region Da in a plane
…a , aD 0; 1,

(ii) for some neighborhood Na of f �1.…a/, f .Na/ is supported by …a , and
adjoining to f a small collar in the plane …a , outside Da , we get a C 1 –
immersion, aD 0; 1, and

(iii) �.f /D 4� .

The Gauss–Bonnet theorem then implies that K � 0 everywhere in S1 � Œ0; 1�. It
follows from this that f .S1 � Œ0; 1�/ is contained in the convex hull of @D0 and @D1

(if not, it is straightforward to find a point p 2 f .S1 � Œ0; 1�/ where K > 0).

Lemma 4.3 If D0 \D1 ¤ ∅, and if @D0 and @D1 are unlinked then f is non-
injective.
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Proof We have D0 \D1 ¤ ∅ and K � 0 in S1 � Œ0; 1�. If @D0 \ @D1 ¤ ∅ then
f is not injective. Thus assume that @D0 \ @D1 D ∅. The linking condition then
implies that the boundary of one of the disks does not intersect the other. Assume for
definiteness that D0\ @D1 D∅.

We claim that f .S1 � Œ0; 1�/\ int.D0/¤∅, where int.X / denotes the interior of X .
Suppose that this is not the case. Then we complete f .S1 � Œ0; 1�/ to an embedding
gW D2! R3 of the 2–disk D2 as follows. Add a small collar C0.�/D @D0 � Œ0; ��

along f .S1�f0g/ in the direction of the normal �0 of the plane …0 which points into
the half space of R3 not containing f .N0/. Also add a copy of D0 , D0.�/ shifted
� units along this normal, and finally add a large annular region A1 in …1 bounded
by @D1 and the boundary of a large disk containing D1 . This is the image of the
piecewise smooth embedding gW D2!R3 . (This is an embedding since f .S1� Œ0; 1�/

lies inside the convex hull of its boundary.)

Let h1 denote the height function in the direction perpendicular to …1 normalized
so that h1 D 0 on …1 . We can further complete the embedding g of the disk to
embeddings of a sphere in two different ways: add the lower hemisphere (h1 � 0)
of the sphere containing @A1 � @D1 as a great circle, or add the upper hemisphere
(h1 � 0) of this sphere. We call the former embedded sphere Gl and the latter Gu .

Then Gu and Gl bound balls in R3 . Noting that the global maximum on Gl of
h1 and the global minimum on Gu of h1 lies in D0.�/ [ C0.�/ we find that the
outward coorientations along D0.�/ of both Gu and of Gl must point along �0 . This
local coorientation however determines the outward coorientations of Gu and Gl

along A1 . In particular, the outward coorientations of Gu and Gl along A1 must
agree. This, however, contradicts the fact that the global minimum of h1 on Gl

and the global maximum of h1 on Gu are attained on the added half-spheres since
their outward coorientations induce opposite coorientations on A1 . We conclude that
f .S1 � I/\ int.D0/¤∅.

After an arbitrarily small translation of D0 along the normal line to D0 we may assume
that f intersects int.D0/ transversely. If some component of this intersection bounds
a disk in S1 � Œ0; 1�, then this disk has an extremum in a direction perpendicular to
D0 and thus has a non-degenerate extremum in some direction arbitrarily close to this
one. Such an extremum contradicts K � 0. On the other hand, if no component of the
intersection bounds a disk in S1 � Œ0; 1� then there exists a component which together
with @D0 bounds a cylinder which must have at least one extremum in the direction
perpendicular to D0 , which again contradicts K � 0. We conclude that f cannot be
an embedding.
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Let f W S1 � Œ0; 1�! R3 be an immersion with the properties (i)–(iii) (stated above
Lemma 4.3) which is also an embedding. Let �0 and �1 be the unit normal vectors of
…0 and …1 which point into the half spaces which do not contain f .N0/ and f .N1/,
respectively. Moreover, assume that @D0 and @D1 are unlinked.

Lemma 4.4 If � is a normal vector field of f then for any p 2 S1 � f0g and any
q 2 S1 � f1g h�0; �.p/i> 0 if and only if h�1; �.q/i> 0.

Proof For small � > 0, let Cj .�/D @Dj � Œ0; �� be the collar on @Dj in direction �j
and let Dj .�/ be Dj shifted � units along �j . It follows from Lemma 4.3 that for
� > 0 small enough

D0.�/[C0.�/[f .S
1
� I/[C1.�/[D1.�/

is an embedded sphere. Considering the height functions in directions perpendicular to
…0 and …1 we find that the outward coorientation of this sphere is �0 along D0.�/

and �1 along D1.�/. The lemma follows from the continuity of the coorientation.

Proof of Theorem 4.2 We argue by contradiction: assume we can find an RIT
embedding f with properties as described. Note first that if any two top-circles in the
decomposition of f are linked then f cannot be an embedding. Assume thus these
circles are pairwise unlinked.

Consider the image f .D/ of the disk D where the curvature is non-negative, D��C .
Let B denote the convex hull of f .D/. Let A��� denote the non-positively curved
cylinder in the decomposition of f such that @B\@A¤∅. Write @AD†1t†2 and
let †1 D @B \ @A. Lemma 4.3 implies that the convex planar disk �2 bounded by
†2 must either lie entirely outside B or entirely inside B .

If �2 lies outside B then A \ int.�1/ ¤ ∅, where �1 is the convex planar disk
bounded by †1 . (To see this, note that points in A near †1 lies inside B .) The
argument used in the proof of Lemma 4.3 then shows there exists a point where K > 0

in A. But K � 0 in A, hence �2 lies inside B .

As in the proof of Lemma 4.4 let, for small � > 0, Cj .�/D @†j � Œ0; ��, j D 1; 2, be a
collar in the direction of the normal of the plane of �j which points away from A and
let �j .�/ be �j shifted � units along this normal. Note that f .D/[A[C2.�/[�2.�/

is an embedded 2–sphere which subdivides R3 into two connected components. One
of these components is a subset of int.B/, we call that component X.�/.

Let …1 and …2 be the planes which contain �1 and �2 , respectively. Consider an
embedding kW D2! R3 with the following properties:
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(i) k.@D2/D†2 ,

(ii) there exists some neighborhood U of k�1.…2/ and some neighborhood V of
…1\A in A such that k.U /[V is a smooth surface supported by …2 , and

(iii) k.int.D2//\ .f .D/[A[C2.�/[�2.�//D∅.

Clearly, such embeddings k satisfies k.D2/�X.�/.

Let E D S2� .D[ f �1.A//. Then f W E! R3 is a disk embedding which satisfies
(i) and (ii). Moreover, for almost all � > 0, f .E/ intersects �2.�/ transversely. We
construct an embedding gW D2! R3 fulfilling also (iii) as follows.

By transversality f .E/ \ int.�2.�// is a finite collection of circles. Consider an
innermost circle 
 in this intersection and its preimage � in E . Note that � divides
E into a disk Ed and an annulus Ea . Define the map g0W D2 ! R3 by cutting
f .E/ along 
 and replacing f .Ed / with the disk bounded by 
 in �2.�/ shifted
slightly in the direction of f .Ea/. By induction we remove all intersection circles. Let
gW D2!X.�/ denote the embedding constructed in this way.

Let h2 be the height function in the direction perpendicular to …2 such that h2.…2/D0,
and such that h2 ı g is positive near the boundary of D2 . Then h2 ı g has a global
minimum on D2 . Assume first that the value of h2 ıg at its global minimum equals 0.

Note that �1.�/[C1.�/[A[C2.�/[�2.�/ is an embedded sphere which bounds
a ball. Let ˛.�/ be an arc inside this ball connecting �1.�/ to �2.�/ and meeting the
boundary transversely. Add to ˛.�/ two half-rays perpendicular to �1.�/ and �2.�/,
respectively, to get an embedded curve ˇ.�/. Note that g.@D2/ and ˇ.�/ have linking
number one. Therefore g.D2/ must intersect ˇ.�/. In fact it must intersect ˛.�/ since
the global minimum of h2 ıg equals 0. This however contradicts k.D2/�X.�/ for
all � > 0 since ˛.�/ 2 R3� int.X.�//.

It follows that the value at the global minimum of h2ıg is smaller than 0. This implies
in particular that the global minimum on g.D2/ of a height function h very close to
h2 is attained at some point of q of g.D/ with K.q/ > 0. Since the part of the image
of g which is not in the image of f can be taken arbitrarily close to fh2 D 0g this
non-degenerate global minimum q must be a point in the image of f . Consider the
embedded sphere Y D f .D/[A[g.D2/. Since q is a global minimum in g.D2/

of a height function h arbitrarily close to h2 there exists a path in the closure of the
bounded component of R3 � Y which connects q to a point q0 2 f .D/ such that
h.q0/ < h.q/ and such that K.q0/ > 0. It follows that the outward coorientation � of
Y satisfies

(4–1) h�.q/;H.q/i D �h�.q0/;H.q0/i:
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However, it is clear from the above construction that the coorientation � of Y agrees
(up to an over all sign) with the coorientation of f for points in Y which are in
the image of f . Thus, (4–1) contradicts our coorientation assumption on f and we
conclude that f cannot be an embedding.

The last statement of the theorem is a direct consequence of the above and Lemma
4.4

4.3 Curvature generic local minima

Let f W S2! R3 be an immersion. Let K denote the curvature function of the metric
induced by f . We say that f is curvature generic if 0 is a regular value of f .

Lemma 4.5 Let f W S2! R3 be a curvature generic local minimum of � . Then f is
an RIT immersion such that any component ��j of K�1.�1; 0�, see Section 4.2 for
notation, is a two-holed sphere.

Proof Let 
 � S2 be a component of K�1.0/. Then 
 is an embedded circle. Let s

be a parameter along 
 . We show that

d

ds
�.s/D 0;

where � is the Gauss map of f . Assume not, then there exists an open arc ˛ in 
 where
d
ds
� ¤ 0. Since f is curvature generic there exists coordinates .u; v/ 2 .�ı; ı/2 DW

around some point p 2 ˛ with K�1.0/ D fv D 0g. Since d
ds
�.p/ ¤ 0, the second

fundamental form of f is non-trivial at p and hence has a non-zero eigenvalue. But
since K.p/ D 0 at least one of the eigenvalues of the second fundamental equal
zero. It follows that if W is chosen small enough then the eigenvalues of the second
fundamental form of f are distinct throughout W . Let e1; e2 be the eigenvector fields
of the second fundamental form along W , with corresponding eigenvalues �1; �2 .
Then K D �1�2 D 0 along fv D 0g. Since 0 is a regular value of K we find

@�1�2

@v
j.u;0/ D

@�1

@v
j.u;0/�2.u; 0/C�1.u; 0/

@�2

@v
j.u;0/ ¤ 0:

This implies that at most one of �1; �2 vanishes along fvD 0g. Assume it is �1 . Since
@
@u
�.u; 0/¤ 0 we see that e1 and @u are linearly independent. Moreover @�1

@v
.u; 0/¤ 0.

Using the flow of e1 we construct a coordinate system .u;x/ in a neighborhood of
fv D 0g. We have

�.u;x/D �.u; 0/C
@

@x
�.u; 0/xC

1

2

@2

@x2
�.u; 0/x2

CO.x3/:

Algebraic & Geometric Topology, Volume 6 (2006)



Regular homotopy and total curvature II 511

Since @
@x
�.u;x/D �1e1 and @2

@x2 �.u; 0/D
@�1

@x
e1 ,

�.u;x/D �.u; 0/CC
1

2

@�

@x
e1.u; 0/x

2
CO.x3/:

Thus � has a fold singularity along fv D 0g. By Proposition 3.4, this contradicts f
being a local minimum and we conclude that �.s/D �
 is constant along 
 . Since
h P
 ; �
 i D 0 we find that 
 lies in a plane orthogonal to �
 .

We subdivide the components of K�1.0/ into levels as follows. Any component

 subdivides the sphere into two disks. If one of these disks do not contain other
components of �0 D K�1.0/ we say that 
 is a curve of level 0. In general we
make the following inductive definition. Let �j be the subset of K�1.0/ obtained
by removing from it all components of level smaller than j . Define a component of
K�1.0/ to have level j if one of the two disks into which it divides S2 does not
contain any component in �j .

Let 
 be a 0–level component of K�1.0/. By the above f .
 / is planar curve in a
plane with normal �
 . We claim that f .
 / must be convex. Consider an arc A of 
 .
The union of one piece of the surface near A (the positively curved one) and a planar
region with boundary A must be convex. It is clear that this piece lies in the direction
of the curvature vector of A. Hence, since 
 separates negative curvature from positive
(because 0 is a regular value of K ), it must be locally convex and the plane in which it
lies is a local support plane of f . Moreover, restricted to any curve sufficiently near 

the image of the Gauss map is a curve wrapping around �
 2 S2 n times. Filling this
curve with a disk with singularity in the middle we get a branched cover of the sphere
by a sphere with one singular point of multiplicity n. The Riemann–Hurwitz formula
gives

�.S2/D n�.S2/� .n� 1/D nC 1;

where � denotes the Euler characteristic. Hence nD 1 and f .
 / is convex.

Assume inductively that the images of all curves of level j � 1 are planar and convex.
Consider a level j curve @RC which bounds a region R � S2 and such that all
other boundary components @R� of R are curves of level j � 1. Consider the Gauss
map restricted to R. Our inductive assumption shows that the map �j.R � @RC/
gives an immersion from the disk xR obtained from R by filling each component
of @R� with a disk. Arguing as above we find that f .@RC/ is convex as well and
that �.R/D area.�. xR//D 4� . Thus by the Gauss–Bonnet theorem, if h denotes the
number of holes in the negatively curved sphere with holesZ

R

K dAD�4� D 2�.2� h/� 2�hD 4� � 4�h:

Algebraic & Geometric Topology, Volume 6 (2006)



512 Tobias Ekholm

Hence hD 2 and it follows that each negatively curved component is a cylinder. (One
may see that each component of K�1..�1; 0// is a cylinder also by using K < 0 and
the line fields arising as asymptotic directions.)

Proof of Theorem 1.2 It follows from Lemma 4.5, that any curvature generic local
minimum of � is an RIT immersion which satisfies the conditions of Theorem 4.2.
The theorem then follows from Theorem 4.2.
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