Volume 6, issue 1 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Completed representation ring spectra of nilpotent groups

Tyler Lawson

Algebraic & Geometric Topology 6 (2006) 253–285

arXiv: 0902.4867

Abstract

In this paper, we examine the “derived completion” of the representation ring of a pro-p group Gp with respect to an augmentation ideal. This completion is no longer a ring: it is a spectrum with the structure of a module spectrum over the Eilenberg–MacLane spectrum , and can have higher homotopy information. In order to explain the origin of some of these higher homotopy classes, we define a deformation representation ring functor R[] from groups to ring spectra, and show that the map R[Gp] R[G] becomes an equivalence after completion when G is finitely generated nilpotent. As an application, we compute the derived completion of the representation ring of the simplest nontrivial case, the p–adic Heisenberg group.

Keywords
S-algebra, R-module, completion, Bousfield localization, representation ring
Mathematical Subject Classification 2000
Primary: 55P60
Secondary: 55P43, 19A22
References
Forward citations
Publication
Received: 11 April 2005
Revised: 31 October 2005
Accepted: 5 January 2006
Published: 26 February 2006
Authors
Tyler Lawson
Department of Mathematics
Massachusetts Institute of Technology
Cambridge MA 02139
USA