Volume 6, issue 2 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20, 1 issue

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
A family of pseudo-Anosov braids with small dilatation

Eriko Hironaka and Eiko Kin

Algebraic & Geometric Topology 6 (2006) 699–738
Bibliography
1 M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361 MR1094556
2 M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109 MR1308491
3 J S Birman, Braids, links, and mapping class groups, Princeton University Press (1974) MR0375281
4 D W Boyd, Small Salem numbers, Duke Math. J. 44 (1977) 315 MR0453692
5 D W Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981) 453 MR644535
6 P Boyland, Rotation sets and monotone periodic orbits for annulus homeomorphisms, Comment. Math. Helv. 67 (1992) 203 MR1161281
7 P Brinkmann, A note on pseudo-Anosov maps with small growth rate, Experiment. Math. 13 (2004) 49 MR2065567
8 A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge University Press (1988) MR964685
9 A de Carvalho, T Hall, Braid forcing and star-shaped train tracks, Topology 43 (2004) 247 MR2052964
10 A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284 MR568308
11 T Hall, The creation of horseshoes, Nonlinearity 7 (1994) 861 MR1275533
12 J Y Ham, W Song, The minimum dilatation of pseudo-Anosov 5–braids, preprint (2005)
13 E Hironaka, Salem–Boyd sequences and Hopf plumbing, Osaka J. Math. 43 (2006)
14 T Kanenobu, Module d’Alexander des nœuds fibrés et polynôme de Hosokawa des lacements fibrés, Math. Sem. Notes Kobe Univ. 9 (1981) 75 MR633997
15 A Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. (1980) 137 MR573822
16 A Kawauchi, A survey of knot theory, Birkhäuser Verlag (1996) MR1417494
17 E Kin, The forcing partial order on a family of braids forced by pseudo-Anosov 3–braids, in preparation
18 K H Ko, J E Los, W T Song, Entropies of braids, J. Knot Theory Ramifications 11 (2002) 647 MR1915500
19 D H Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933) 461 MR1503118
20 C J Leininger, On groups generated by two positive multi-twists : Teichmüller curves and Lehmer’s number, Geom. Topol. 8 (2004) 1301 MR2119298
21 J Los, On the forcing relation for surface homeomorphisms, Inst. Hautes Études Sci. Publ. Math. (1997) 5 MR1471865
22 T Matsuoka, Braids of periodic points and 2–dimensional analogue of Shorkovskii’s ordering, from: "Dynamical systems and Nonlinear Oscillations" (editor G Ikegami), World Scientific Press (1986) 58
23 C T McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. (4) 33 (2000) 519 MR1832823
24 H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, preprint
25 R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 MR1068128
26 D Rolfsen, Knots and links, Publish or Perish (1976) MR0515288
27 E Rykken, Expanding factors for pseudo-Anosov homeomorphisms, Michigan Math. J. 46 (1999) 281 MR1704217
28 R Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944) 103 MR0010149
29 P Walters, An introduction to ergodic theory, 79, Springer (1982) MR648108
30 A Y Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197 MR1331364