Volume 6, issue 2 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
A family of pseudo-Anosov braids with small dilatation

Eriko Hironaka and Eiko Kin

Algebraic & Geometric Topology 6 (2006) 699–738
Bibliography
1 M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361 MR1094556
2 M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109 MR1308491
3 J S Birman, Braids, links, and mapping class groups, Princeton University Press (1974) MR0375281
4 D W Boyd, Small Salem numbers, Duke Math. J. 44 (1977) 315 MR0453692
5 D W Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981) 453 MR644535
6 P Boyland, Rotation sets and monotone periodic orbits for annulus homeomorphisms, Comment. Math. Helv. 67 (1992) 203 MR1161281
7 P Brinkmann, A note on pseudo-Anosov maps with small growth rate, Experiment. Math. 13 (2004) 49 MR2065567
8 A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge University Press (1988) MR964685
9 A de Carvalho, T Hall, Braid forcing and star-shaped train tracks, Topology 43 (2004) 247 MR2052964
10 A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, 66, Société Mathématique de France (1979) 284 MR568308
11 T Hall, The creation of horseshoes, Nonlinearity 7 (1994) 861 MR1275533
12 J Y Ham, W Song, The minimum dilatation of pseudo-Anosov 5–braids, preprint (2005)
13 E Hironaka, Salem–Boyd sequences and Hopf plumbing, Osaka J. Math. 43 (2006)
14 T Kanenobu, Module d’Alexander des nœuds fibrés et polynôme de Hosokawa des lacements fibrés, Math. Sem. Notes Kobe Univ. 9 (1981) 75 MR633997
15 A Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. (1980) 137 MR573822
16 A Kawauchi, A survey of knot theory, Birkhäuser Verlag (1996) MR1417494
17 E Kin, The forcing partial order on a family of braids forced by pseudo-Anosov 3–braids, in preparation
18 K H Ko, J E Los, W T Song, Entropies of braids, J. Knot Theory Ramifications 11 (2002) 647 MR1915500
19 D H Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933) 461 MR1503118
20 C J Leininger, On groups generated by two positive multi-twists : Teichmüller curves and Lehmer’s number, Geom. Topol. 8 (2004) 1301 MR2119298
21 J Los, On the forcing relation for surface homeomorphisms, Inst. Hautes Études Sci. Publ. Math. (1997) 5 MR1471865
22 T Matsuoka, Braids of periodic points and 2–dimensional analogue of Shorkovskii’s ordering, from: "Dynamical systems and Nonlinear Oscillations" (editor G Ikegami), World Scientific Press (1986) 58
23 C T McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. (4) 33 (2000) 519 MR1832823
24 H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, preprint
25 R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 MR1068128
26 D Rolfsen, Knots and links, Publish or Perish (1976) MR0515288
27 E Rykken, Expanding factors for pseudo-Anosov homeomorphisms, Michigan Math. J. 46 (1999) 281 MR1704217
28 R Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944) 103 MR0010149
29 P Walters, An introduction to ergodic theory, 79, Springer (1982) MR648108
30 A Y Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197 MR1331364