Volume 6, issue 3 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Bottom tangles and universal invariants

Kazuo Habiro

Algebraic & Geometric Topology 6 (2006) 1113–1214
Bibliography
1 D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423 MR1318886
2 J S Birman, Braids, links, and mapping class groups, Princeton University Press (1974) MR0375281
3 J S Birman, New points of view in knot theory, Bull. Amer. Math. Soc. $($N.S.$)$ 28 (1993) 253 MR1191478
4 J S Birman, X S Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225 MR1198809
5 R D Brandt, W B R Lickorish, K C Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986) 563 MR837528
6 A Bruguières, A Virelizier, Hopf diagrams and quantum invariants, Algebr. Geom. Topol. 5 (2005) 1677 MR2186115
7 B E Clark, Crosscaps and knots, Internat. J. Math. Math. Sci. 1 (1978) 113 MR0478131
8 L Crane, D Yetter, On algebraic structures implicit in topological quantum field theories, J. Knot Theory Ramifications 8 (1999) 125 MR1687553
9 R H Fox, Congruence classes of knots, Osaka Math. J. 10 (1958) 37 MR0131871
10 P J Freyd, D N Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989) 156 MR1020583
11 P Freyd, D Yetter, J Hoste, W B R Lickorish, K Millett, A Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 239 MR776477
12 L Goeritz, Knoten und quadratische Formen, Math. Z. 36 (1933) 647 MR1545364
13 C M Gordon, R A Litherland, On the signature of a link, Invent. Math. 47 (1978) 53 MR0500905
14 M Goussarov, Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517 MR1715131
15 M Goussarov, M Polyak, O Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000) 1045 MR1763963
16 M N Gusarov, A new form of the Conway–Jones polynomial of oriented links, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991) 4, 161 MR1157140
17 M Gusarov, On $n$–equivalence of knots and invariants of finite degree, from: "Topology of manifolds and varieties", Adv. Soviet Math. 18, Amer. Math. Soc. (1994) 173 MR1296895
18 M N Gusarov, Variations of knotted graphs. The geometric technique of $n$–equivalence, Algebra i Analiz 12 (2000) 79 MR1793618
19 N Habegger, Milnor, Johnson, and tree level perturbative invariants, preprint
20 K Habiro, A unified Witten–Reshetikhin–Turaev invariant of integral homology spheres, arXiv:math.GT/0605314
21 K Habiro, Aru karamime no kyokusyo sousa no zoku ni tuite, dissertation, University of Tokyo (1994)
22 K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1 MR1735632
23 K Habiro, On the quantum $\mathrm sl_2$ invariants of knots and integral homology spheres, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4 (2002) 55 MR2002603
24 K Habiro, Cyclotomic completions of polynomial rings, Publ. Res. Inst. Math. Sci. 40 (2004) 1127 MR2105705
25 K Habiro, T T Q Le, (article in preparation)
26 M Hennings, Invariants of links and $3$–manifolds obtained from Hopf algebras, J. London Math. Soc. $(2)$ 54 (1996) 594 MR1413901
27 J A Hillman, Spanning links by nonorientable surfaces, Quart. J. Math. Oxford Ser. $(2)$ 31 (1980) 169 MR576335
28 C F Ho, A polynomial invariant for knots and links – preliminary report, Abstracts Amer. Math. Soc. 6 (1985)
29 V F R Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 103 MR766964
30 N Kamada, S Kamada, Abstract link diagrams and virtual knots, J. Knot Theory Ramifications 9 (2000) 93 MR1749502
31 C Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer (1995) MR1321145
32 C Kassel, V Turaev, Chord diagram invariants of tangles and graphs, Duke Math. J. 92 (1998) 497 MR1620522
33 L H Kauffman, Formal knot theory, Mathematical Notes 30, Princeton University Press (1983) MR712133
34 L H Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990) 417 MR958895
35 L H Kauffman, Gauss codes, quantum groups and ribbon Hopf algebras, Rev. Math. Phys. 5 (1993) 735 MR1253734
36 L H Kauffman, Virtual knot theory, European J. Combin. 20 (1999) 663 MR1721925
37 L H Kauffman, D E Radford, Invariants of $3$–manifolds derived from finite-dimensional Hopf algebras, J. Knot Theory Ramifications 4 (1995) 131 MR1321293
38 L Kauffman, D E Radford, Oriented quantum algebras, categories and invariants of knots and links, J. Knot Theory Ramifications 10 (2001) 1047 MR1867109
39 T Kerler, Genealogy of non-perturbative quantum-invariants of $3$–manifolds: the surgical family, from: "Geometry and physics (Aarhus, 1995)", Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 503 MR1423190
40 T Kerler, Bridged links and tangle presentations of cobordism categories, Adv. Math. 141 (1999) 207 MR1671770
41 T Kerler, Homology TQFT's and the Alexander–Reidemeister invariant of 3–manifolds via Hopf algebras and skein theory, Canad. J. Math. 55 (2003) 766 MR1994073
42 T Kerler, Towards an algebraic characterization of 3–dimensional cobordisms, from: "Diagrammatic morphisms and applications (San Francisco, CA, 2000)", Contemp. Math. 318, Amer. Math. Soc. (2003) 141 MR1973515
43 T Kerler, V V Lyubashenko, Non-semisimple topological quantum field theories for 3–manifolds with corners, Lecture Notes in Mathematics 1765, Springer (2001) MR1862634
44 R Kirby, A calculus for framed links in $S^3$, Invent. Math. 45 (1978) 35 MR0467753
45 R J Lawrence, A universal link invariant using quantum groups, from: "Differential geometric methods in theoretical physics (Chester, 1988)", World Sci. Publishing (1989) 55 MR1124415
46 R J Lawrence, A universal link invariant, from: "The interface of mathematics and particle physics (Oxford, 1988)", Inst. Math. Appl. Conf. Ser. New Ser. 24, Oxford Univ. Press (1990) 151 MR1103138
47 T Q T Le, J Murakami, The universal Vassiliev–Kontsevich invariant for framed oriented links, Compositio Math. 102 (1996) 41 MR1394520
48 H C Lee, Tangles, links and twisted quantum groups, from: "Physics, geometry, and topology (Banff, AB, 1989)", NATO Adv. Sci. Inst. Ser. B Phys. 238, Plenum (1990) 623 MR1153694
49 H C Lee, On Seifert circles and functors for tangles, from: "Infinite analysis, Part A, B (Kyoto, 1991)", Adv. Ser. Math. Phys. 16, World Sci. Publ. (1992) 581 MR1187565
50 H C Lee, Tangle invariants and centre of the quantum group, from: "Knots 90 (Osaka, 1990)", de Gruyter (1992) 341 MR1177432
51 H C Lee, Universal tangle invariant and commutants of quantum algebras, J. Phys. A 29 (1996) 393 MR1381569
52 J Levine, Homology cylinders: an enlargement of the mapping class group, Algebr. Geom. Topol. 1 (2001) 243 MR1823501
53 V V Lyubashenko, Invariants of $3$–manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995) 467 MR1354257
54 S Macnbsp;Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1998) MR1712872
55 S Majid, Algebras and Hopf algebras in braided categories, from: "Advances in Hopf algebras (Chicago, IL, 1992)", Lecture Notes in Pure and Appl. Math. 158, Dekker (1994) 55 MR1289422
56 S Majid, Foundations of quantum group theory, Cambridge University Press (1995) MR1381692
57 S V Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268, 345 MR915115
58 H Murakami, Some metrics on classical knots, Math. Ann. 270 (1985) 35 MR769605
59 H Murakami, Y Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989) 75 MR995383
60 H Murakami, A Yasuhara, Crosscap number of a knot, Pacific J. Math. 171 (1995) 261 MR1362987
61 S Naik, T Stanford, A move on diagrams that generates $S$–equivalence of knots, J. Knot Theory Ramifications 12 (2003) 717 MR1999640
62 Y Nakanishi, On Fox's congruence classes of knots. II, Osaka J. Math. 27 (1990) 207 MR1049833
63 Y Nakanishi, From a view of localized link theory, from: "Knots 90 (Osaka, 1990)", de Gruyter (1992) 173 MR1177422
64 Y Nakanishi, S Suzuki, On Fox's congruence classes of knots, Osaka J. Math. 24 (1987) 217 MR881755
65 T Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links, J. Knot Theory Ramifications 2 (1993) 211 MR1227011
66 T Ohtsuki, Invariants of $3$–manifolds derived from universal invariants of framed links, Math. Proc. Cambridge Philos. Soc. 117 (1995) 259 MR1307080
67 T Ohtsuki, Problems on invariants of knots and 3–manifolds, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4 (2002) 377 MR2065029
68 J H Przytycki, $t_k$ moves on links, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 615 MR975099
69 J H Przytycki, Skein modules of $3$–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91 MR1194712
70 J H Przytycki, Skein module deformations of elementary moves on links, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 313 MR2048107
71 J H Przytycki, P Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988) 115 MR945888
72 N Y Reshetikhin, Quasitriangular Hopf algebras and invariants of links, Algebra i Analiz 1 (1989) 169 MR1025161
73 N Y Reshetikhin, M A Semenov-Tian-Shansky, Quantum $R$–matrices and factorization problems, J. Geom. Phys. 5 (1988) MR1075721
74 N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1 MR1036112
75 T Sakai, A condition for a $3$–manifold to be a knot exterior, from: "KNOTS '96 (Tokyo)", World Sci. Publishing (1997) 465 MR1664981
76 T Sakai, Wirtinger presentations and the Kauffman bracket, Kobe J. Math. 17 (2000) 83 MR1801267
77 S F Sawin, Invariants of Spin three-manifolds from Chern–Simons theory and finite-dimensional Hopf algebras, Adv. Math. 165 (2002) 35 MR1880321
78 M C Shum, Tortile tensor categories, J. Pure Appl. Algebra 93 (1994) 57 MR1268782
79 K Taniyama, A Yasuhara, Band description of knots and Vassiliev invariants, Math. Proc. Cambridge Philos. Soc. 133 (2002) 325 MR1912405
80 V G Turaev, Operator invariants of tangles, and $R$–matrices, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 1073, 1135 MR1024455
81 V G Turaev, Quantum invariants of knots and 3–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter & Co. (1994) MR1292673
82 V A Vassiliev, Cohomology of knot spaces, from: "Theory of singularities and its applications", Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23 MR1089670
83 A Virelizier, Kirby elements and quantum invariants, Proc. London Math. Soc. 93 (2006) 474
84 D N Yetter, Markov algebras, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 705 MR975104
85 D Yetter, Portrait of the handle as a Hopf algebra, from: "Geometry and physics (Aarhus, 1995)", Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 481 MR1423189
86 D N Yetter, Functorial knot theory, Series on Knots and Everything 26, World Scientific Publishing Co. (2001) MR1834675