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Small genus knots in lens spaces have small bridge number

KENNETH L BAKER

In a lens space X of order r a knot K representing an element of the fundamental
group �1X Š Z=rZ of order s � r contains a connected orientable surface S

properly embedded in its exterior X �N.K/ such that @S intersects the meridian of
K minimally s times. Assume S has just one boundary component. Let g be the
minimal genus of such surfaces for K , and assume s � 4g� 1 . Then with respect to
the genus one Heegaard splitting of X , K has bridge number at most 1 .

57M27; 57M25

1 Statement of results

Any knot K in a lens space X D L.r; q/, r > 0, is rationally nullhomologous, ie
ŒK� D 0 2 H1.X IQ/ Š 0. We say r is the order of the lens space X , and we say
the smallest positive integer s such that sŒK�D 0 2 H1.X IZ/Š Z=rZ is the order
of the knot K . Note s � r . The exterior X �N.K/ of K thus contains a connected
properly embedded orientable surface S such that when S is oriented @S is coherently
oriented on @ xN .K/ and intersects the meridian �� @ xN .K/ of K minimally s times,
ie j� � @S j D s . Such a surface S is an analogue of a Seifert surface for a knot in S3 .
We refer to the genus of a knot K in X as the minimal genus of these “rational” Seifert
surfaces for K . For this article we will restrict our attention to knots with rational
Seifert surfaces that have just one boundary component.

In this paper we prove the following theorem.

Theorem 1.1 Let K be a genus g knot of order s in a lens space X whose Seifert
surfaces have one boundary component. If s� 4g�1 then, with respect to the Heegaard
torus of X , K has bridge number at most 1.

Theorem 1.1 may be curiously rephrased as saying small genus knots in lens spaces
have small bridge number.

In [1] Berge shows that double-primitive knots (ie simple closed curves that lie on a
genus 2 Heegaard surface in S3 and represent a generator of �1 for each handlebody)
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admit lens space surgeries. We refer to these knots as Berge knots. Berge further shows
that the corresponding knot in the resulting lens space is 1–bridge.

Theorem 1.1 may be used to show the following theorem which one may care to
compare with Conjecture 1.3.

Theorem 1.2 Let K0 be a genus g knot in S3 . If K0 admits a lens space surgery of
order r � 4g� 1 then K0 is a Berge knot.

Conjecture 1.3 (Berge [1]) If K is a knot in a lens space X with an S3 surgery,
then with respect to the genus one Heegaard splitting of X , K has bridge number at
most 1. In particular, the corresponding knot K0 � S3 is a Berge knot.

1.1 A quick overview of knots with lens space surgeries

For coprime integers p and q , a p=q Dehn surgery on a knot in S3 is the process
of removing a solid torus neighborhood of the knot and attaching a new solid torus
so that on the torus boundary of the knot exterior the new meridian is homologous
to p times the old meridian and q times the old longitude. The rational number p=q

(including 1=0) is called the slope of the surgery. We say a knot in S3 admits a lens
space surgery if some p=q Dehn surgery with q ¤ 0 yields a lens space.

As a consequence of Thurston’s geometrization [19; 20], a knot in S3 is either a torus
knot, a satellite knot, or a hyperbolic knot. For any given torus knot, Moser describes
all p=q Dehn surgeries that produce lens spaces [12]. Satellite knots and the slopes
along which they admit lens space surgeries are classified by Bleiler and Litherland [2].
Hyperbolic knots admitting lens space surgeries have yet to be classified though they
are conjectured to be Berge knots. Because the nonhyperbolic knots that admit lens
space surgeries are also Berge knots, Conjecture 1.3 contains this conjecture, albeit in
another guise. Furthermore, by the Cyclic Surgery Theorem [3], if p=q Dehn surgery
on any nontorus knot produces a lens space, then q D ˙1, ie the surgery slope is
integral.

1.2 Berge’s list of double-primitive knots

Berge also gives a conjecturally complete list of double-primitive knots [1]. Based on
calculations from this list, Goda and Teragaito propose the following conjecture.

Conjecture 1.4 (Goda–Teragaito [5]) If a hyperbolic knot in S3 of genus g admits
a lens space surgery of order r , then 2gC 8� r � 4g� 1.
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If Berge’s list is complete, then Theorem 1.2 not only would confirm this upper bound
but also would reprove the following theorem of Rasmussen.

Theorem 1.5 (Rasmussen [16]) If a nontrivial knot in S3 of genus g admits a lens
space surgery of order r , then r � 4gC 3.

1.3 Towards a conjecture of Bleiler and Litherland

Oszváth and Szabó have shown that the Alexander polynomial �K .T / of a knot K

with a lens space surgery determines 1HFK [15]. This then implies that the degree of
�K .T / equals twice the genus of K [14]. At the end of [13] for each lens space of
order at most 26 they list polynomials among which must be the Alexander polynomial
of any knot that yields the lens space by positive integer surgery. (Indeed they present
an algorithm for listing such polynomials associated to any given lens space.) From the
results of [15] these lists may be refined by removing any polynomial whose nonzero
coefficients do not alternate between C1 and �1. For each polynomial A.T / listed for
a lens space of order r < 18 with the exception of the polynomial listed for L.14; 11/

we have 4.1
2

deg A.T //� 1 � r . Thus by Theorem 1.2 if K0 is a nontrivial knot in
S3 admitting a lens space surgery of order r < 18 other than L.14; 11/, then K0 is
a Berge knot. Computations discussed by Berge [1] confirm that 1–bridge knots in
lens spaces of order less than 1000 with surgery yielding S3 correspond to knots in
Berge’s list. Thus we conclude the following theorem.

Theorem 1.6 If a hyperbolic knot in S3 admits a lens space surgery of order r , then
r D 14 or r � 18.

This nearly obtains the following conjecture.

Conjecture 1.7 (Bleiler–Litherland [2]) If a hyperbolic knot in S3 admits a lens
space surgery of order r , then r � 18.

The .�2; 3; 7/–pretzel knot which is genus 5 and has a lens space surgery of order 18

(and a second of order 19) is hyperbolic and realizes this conjectured bound. Note
that L.14; 11/ is obtained by integral surgery on T.3;5/ , the .3; 5/ torus knot, which
has genus 4. To resolve Conjecture 1.7, one must address whether ˙14 surgery on a
genus 4 hyperbolic knot K in S3 with �K .T /D�T.3;5/

.T / can yield L.14; 11/.

Note that if for every polynomial A.T / that Ozsváth and Szabó’s algorithm lists for
L.r; q/ we have 4.1

2
deg A.T //�1� r , then the above method permits us to determine
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every knot in S3 that has a surgery producing L.r; q/. Since such knots must be Berge
knots, one appeals to the last paragraph of [1] to determine the knots if r < 1000.

If r � 1000 and there exists a nontrivial A.T / in Ozsváth and Szabó’s list for L.r; q/,
then since Berge’s list is not yet known to be complete one must also examine all
1–bridge knots in L.r; q/ for which an integer surgery may yield S3 . This may be
done in the manner in which the list at the end of [1] is produced. Berge shows that
there are finitely many such knots to consider [1, Theorem 3]. Since deciding whether
a genus 2 Heegaard diagram represents S3 is algorithmic [9], this is a finite process.

Further note that Ozsváth and Szabó do not (necessarily) list polynomials for L.r; q/

that may be Alexander polynomials of knots for which nonintegral surgery yields
L.r; q/. As mentioned previously, such knots are known to be only torus knots [3,
Cyclic Surgery Theorem], and Moser’s classification [12] gives a means of checking
for these.

For example, for the lens space L.19; 11/ Ozsváth and Szabó list only the polynomial
T �5�T �4CT �2�T �1C1�T CT 2�T 4CT 5 . Since 4 �5�1D 19, we examine
Berge’s list to see that this corresponds only to the .�2; 3; 7/–pretzel knot. In fact, this
is the only knot in S3 for which positive surgery yields L.19; 11/, and moreover it
is hyperbolic. Indeed, �L.19; 11/DL.19; 8/ may be only obtained by 19=2 surgery
on T.�2;5/ and by 19=3 surgery on T.�2;3/ , a trefoil. Thus L.19; 11/ may also be
obtained by �19=2 surgery on T.2;5/ and by �19=3 surgery on T.2;3/ .

We further examine Ozsváth and Szabó’s list for lens spaces of order 19. Because it
has genus 4 we may conclude that L.19; 5/ is obtained only by 19 surgery on T.�2;9/ .
Although L.19; 16/ may be obtained by 19 surgery on T.�4;5/ , its genus is 6 which is
too large for our methods to determine whether there are other knots for which surgery
may yield this lens space. Aside from reflections of the above mentioned torus knots
with the corresponding sign change for surgery slope, no other torus knots have lens
space surgeries or order 19.

1.4 Proof of Theorem 1.2

Proof If K0 admits a lens space surgery X of order r , then the surgery slope crosses
the 0–slope minimally r times. Thus if K is the corresponding knot in the lens space
X , K has order r .

If r � 4g � 1 then by Theorem 1.1, K is at most a 1–bridge knot in X . If K is a
0–bridge knot, then K0 is a torus knot and hence a Berge knot. If K is not 0–bridge
then Theorem 2 of [1] shows that K0 is a double-primitive knot in S3 and hence a
Berge knot.
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1.5 Further questions

The proof of Theorem 1.1 is dependent upon K having a Seifert surface with just one
boundary component.

Question 1.8 Do similar results hold if the Seifert surfaces for K have more than one
boundary component?

One wonders whether there are other relationships among knot order, genus, and bridge
number (or width) for knots in lens spaces. In a given lens space for any specified
order and bridge number one may construct knots of arbitrarily large genus. Indeed
the collection of torus knots of a given order in a lens space ought to contain knots of
arbitrarily large genus. Thus we ask questions akin to Theorem 1.1. In the remainder
of this section we restrict ourselves to considering knots in lens spaces whose Seifert
surfaces have just one boundary component.

Question 1.9 If K is a genus g knot of order s in a lens space such that s D 4g� 2,
is the bridge number of K bounded?

If we instead ask that s D 4g � 3 then nullhomologous genus 1 knots satisfy the
hypothesis. Assumably Whitehead doubles of knots in lens spaces can be concocted
to have arbitrarily large bridge number. Further alterations to the question are then
required such as restricting attention to knots whose order equals that of the lens space.

In another direction, Theorem 1.1 shows that any genus 1 knot of order at least 3

is 1–bridge, any genus 2 knot of order at least 7 is 1–bridge, etc. Clearly genus 1

knots of order 1 contained in a ball in a lens space correspond to genus 1 knots in S3 .
Indeed there are many other nullhomologous genus 1 knots in a lens space.

Question 1.10 Is there a characterization of genus 1 knots of order 2 in lens spaces?

Problem 1.11 Classify genus 1 knots of order at least 3 in lens spaces.

Question 1.12 If K is a knot of order s in a lens space, then for each integer b � 2

what is the minimal possible genus of K with bridge number b?

1.5.1 Acknowledgements The author would like to thank John Berge and especially
John Luecke for many useful conversations. The author is also indebted to the reviewer
for the many constructive comments and suggestions. This work was partially supported
by a VIGRE postdoc under NSF grant number DMS-0089927 to the University of
Georgia at Athens.
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2 Preliminaries

The notion of thin position for knots in S3 was first introduced by Gabai and employed
in his proof of Property R [4]. The theory of thin position for knots has since been
greatly developed; see Scharlemann’s survey [18]. As one may observe, the idea of
thin position naturally generalizes to knots in three manifolds with a given Heegaard
splitting. We discuss this below in Section 2.2 for genus 1 Heegaard splittings.

The graphs of intersection arising from two intersecting properly embedded surfaces
in the complement of a knot have a history of usefulness in questions about Dehn
surgery. The power of this idea was first demonstrated by Litherland [11] and most
notably used to great success in Gordon and Luecke’s portion of the proof of the Cyclic
Surgery Theorem [3] and their solution to the knot complement problem [8]. If one
of the two intersecting surfaces becomes a Heegaard surface in some Dehn filling of
the knot complement, the theory of thin position may be used to establish some nice
properties of the resulting graphs of intersection. Gabai does this for the standard
Heegaard splitting of S3 [4], which Rieck promotes to Heegaard splittings in general
[17]. See Gordon’s survey [6]. We construct such graphs of intersection from a genus
1 Heegaard splitting of our lens space and a Seifert surface for our knot in Section 2.3.

2.1 A few words about notation

By A�B we denote the usual set difference, the set of points in A that are not in B .
If A and B are two intersecting manifolds then by AnB we denote A “cut along” B ,
the closure of A�B in the path metric on A.

A regular open neighborhood of A is denoted N.A/. Its closure is denoted xN .A/.

2.2 Thin position in lens spaces

Let hW X ! R[ f˙1g be the height function induced by the genus one Heegaard
splitting of the lens space X DL.r; q/ so that yT z D h�1.z/ is a torus for z 2 R and
yT˙1 D h�1.˙1/ are circles. The tori yT z , z 2 R, are level tori, and yT˙1 are the
circles at infinity. Each level torus separates X into two solid torus components; the
component XC above containing yTC1 and the component X� below containing
yT�1 .

Let K be a knot in X . By an isotopy of K we may assume K � X � fyT˙1g and
that hjK is a Morse function so that hjK has finitely many critical points, all of which
are nondegenerate and have distinct critical values.
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Given such a Morse presentation of K , let yT z1
; : : : ; yT zn

be level tori so that exactly
one is between each consecutive pair of critical levels. Define the width of the Morse
presentation to be

Pn
iD1 j
yT zi
\Kj. The width of K is the minimum of all widths of

Morse presentations of K . A Morse presentation of K that realizes the width of K is
said to be a thin presentation of K , and K itself is said to be in a thin position.

If the first critical value of hjK above the level torus yT zi
is a maximum and the first

critical value below is a minimum, then yT zi
is a thick level (torus). Similarly, if the

first critical value of hjK above the level torus yT zi
is a minimum and the first critical

value below is a maximum, then yT zi
is a thin level (torus). Every Morse presentation

of K must have a thick level torus, but not all Morse presentations of K have a thin
level torus.

Over all Morse presentations of K that have no thin level tori, one that minimizes
the width of K is said to be a bridge presentation of K , and K itself is said to be
in a bridge position. If K is in bridge position and yT 0 is the thick level torus, then
the bridge number of K is 1

2
jK \ yT 0j. We say a knot with bridge number n is an

n–bridge knot.

In the event that K may further be isotoped to lie as an embedded curve in a level
torus, then either K is a trivial knot (and hence bounds a disk in X ) or K is a lens
space torus knot. For both of these cases we will say that K has width 0 and bridge
number 0.

Let K be in Morse position, and let yT be a noncritical level torus. Suppose that yT
contains an arc ˛ with interior disjoint from K that together with an arc ˇ of K� yT

bounds an embedded disk � with interior disjoint from K . If ˇ lies above (resp.
below) yT then we say that � is a high (resp. low) disk for yT or for the arc K\�.

Lemma 2.1 Assume K is not 0–bridge. If yT is a noncritical level torus in a thin
presentation of K , then yT cannot have a high disk and a low disk whose boundaries
have empty intersection in the complement of K .

Proof This is standard in the theory of thin position (see eg [4] and [18]). Assume
yT admits a high disk �C and a low disk �� such that @�C \ @�� �K D ∅; see
Figure 1(a). Let ˛C D @�C\ yT and ˛� D @��\ yT . Then j˛C\˛�j � 2.

Use �C and �� to isotop �C \K and �� \K onto ˛C and ˛� respectively. If
j˛C\˛�j D 2 then K is 0–bridge. If j˛C\˛�j � 1 then a further slight isotopy of
K will produce a Morse presentation of K with reduced width; see Figure 1(b). Both
situations contradict our hypothesis.
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Figure 1: (a) A high disk �C and a low disk �� (b) The result of a thinning
isotopy associated to the disks �C and �� (c) A long disk � (d) The
result of a thinning isotopy associated to the long disk �

Let K be in Morse position, and let yT be a noncritical level torus. Suppose that yT
contains an arc ˛ with interior disjoint from K that together with an arc ˇ of K

bounds an embedded disk � with interior disjoint from K . If � is not a high or low
disk (and hence the interior of ˇ intersects yT ) then we say that � is a long disk for yT
or for the arc K\�.

Lemma 2.2 Assume K is not 0–bridge. If yT is a noncritical level torus in a thin
presentation of K , then yT cannot have a long disk.

Note that the existence of a long disk does not necessarily imply the existence of a pair
of high and low disks satisfying the hypotheses of Lemma 2.1.

Proof Let TDfyT z1
; : : : ; yT zm

g be a collection of level tori used to calculate the width
of K .

Assume � is a long disk for yT ; see Figure 1(c). Furthermore, without loss of generality,
assume N.˛/\� is above yT . We may use � to isotop the arc ˇ D �\K onto
˛ D @�� Intˇ � yT . Perform a slight isotopy of the interior of this arc upwards so
that it has just one critical point, a maximum. We may then pull this critical point up
to the height of the lowest critical point above yT of the former arc ˇ ; see Figure 1(d).
Hence K will again be in a Morse position.
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Such an isotopy necessarily reduces the number of critical points of K . Moreover, all
the critical points are at the heights of former critical points. Therefore there exists a
proper subset of T that forms a suitable collection of level tori with which to calculate
the width of K after the isotopy. Furthermore, the isotopy does not increase j yT zi

\Kj

for any i . Therefore the isotopy decreases the width of K , contradicting that K is in
thin position.

2.3 Graphs of intersection

Let K be a knot of genus g and order s in the lens space X of order r whose Seifert
surfaces have just one boundary component. Let S �X �N.K/ be a Seifert surface
for K of genus g . Note that S is incompressible and @–incompressible in the exterior
of K . Let yS be the surface S with its boundary (abstractly) capped off by a disk.

Assume that K is in thin position and that K is not 0–bridge. Let yT be a thick level
for K with j yT \Kj D t , and set T D yT �N.K/. By an isotopy of S we may assume
that S and T intersect transversely and each component of @T intersects @S exactly
s times. Gabai [4] shows that we may assume S has been isotoped so that each arc
component of S \T is essential in S and in T (cf Gordon’s comment in [6] or [7,
Proposition 2.1]). We may further assume that S has been chosen among all such
Seifert surfaces for K to minimize the number of intersections with T .

Note that every closed component of S \T is nontrivial in T . If a component  of
S \T were trivial on T , then since S is incompressible it must also be trivial on S .
Therefore a disk exchange would produce another Seifert surface for K that has fewer
intersections with T .

The arc components of S \ T define fat vertexed graphs GS and GT in yS and yT
respectively. The (fat) vertices, edges, and faces of these graphs are defined as follows.
The fat vertex of GS is the single disk yS � Int S . The fat vertices of GT are the disks
of intersection yT \ xN .K/D yT � Int T . The edges of GS are the arc components of
S \T as they lie on S , and the edges of GT are the arc components of S \T as they
lie on T . The faces of GS are the connected components of S cut along the edges of
GS , ie the path metric closure of the complement of the edges of GS in S . Similarly,
the faces of GT are the connected components of T cut along the edges of GT .

Observe that simple closed curves of S\T are not recorded in the graphs GS and GT .
For example, the interior of a face of GS may intersect T . Therefore each component
of SnT is contained in a face of GS , though often a component of SnT actually is a
face of GS . To make the distinction from faces, we refer to the components of SnT

and T nS as regions.
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Orient K and sequentially label the intersections of K\ yT from 1 to t . We may refer
to the i –th intersection as Ki . This induces a numbering of the components of @T
as 1; 2; : : : ; t in the order in which they appear on @ xN .K/, and hence numbers the
vertices of GT . Denote these vertices U1; : : : ;Ut . As there is only one vertex of GS ,
we leave it unnumbered. Since yT is separating and j@S j D 1, the parity rule implies
that the edges of GT connect vertices of opposite parity. An edge of GT with end
points on Ui and Uj is an arc of S \T with endpoints on the intersection of @S with
the i –th and j –th components of @T and hence it is also an edge of GS with end
points on the single vertex of GS . On the boundary of the fat vertex of GS we label
the end points of this arc with i and j . Around the vertex of GS , the labels 1; 2; : : : ; t

appear sequentially and repeat s times. Since each arc component of S\T is essential
in S and in T , neither graph GS nor GT contains a trivial loop.

Denote by t the set of edge-endpoint labels f1; 2; : : : ; tg of GS for which we have
the associated t–intervals .1; 2/; .2; 3/; : : : ; .t�1; t/; .t; 1/. We may index the arc of
Kn yT running from Ki to KiC1 by the t–interval .i; iC1/ as K.i; iC1/ . Similarly
H.i; iC1/ denotes the 1–handle of xN .K/n yT running from vertex Ui to vertex UiC1 .
Concatenations of consecutive t–intervals such as .i � 1; i C 1/ may be used to index
longer arcs of K and longer 1–handles, eg K.i�1; iC1/ D K.i�1; i/ [K.i; iC1/ and
H.i�1; iC1/ DH.i�1; i/[H.i; iC1/ .

For each label x in t, the subgraph Gx
S

of GS is the graph in yS consisting of the
single vertex of GS and every edge of GS that has an endpoint labeled x . Due to the
parity rule, each graph Gx

S
has exactly s edges. The faces of Gx

S
are the connected

components of S cut along the edges of Gx
S

.

If f is a face of GS (resp. Gx
S

for some x 2 t), then each component of @f consists
of an alternating sequence of edges and corners where the edges are edges of GS

(resp. Gx
S

) and the corners are identified with t–intervals .i; iC1/ (resp. concatenated
t–intervals .i; j /) as they are arcs of @S between the labeled components i and i C 1

(resp. i and j ) of @T . The edges and corners of a region R of SnT contained in
a face f of GS are the edges and corners of f contained in R. If R is a proper
subset of f , then may have edges and corners not contained in R and R may have a
boundary component that is not comprised of edges and corners. We may similarly
define the edges and corners of faces of GT and regions of T nS ; here corners are arcs
of @T between edges of GS .

A disk face of a graph GS , Gx
S

, or GT with n edges in its boundary is an n–gon. We
commonly refer to a 2–gon as a bigon, a 3–gon as a trigon, a 4–gon as a tetragon, and
a 5–gon as a pentagon. Given an n–gon f of Gx

S
, if for every y 2 t and every n–gon

f 0 of G
y
S

such that f 0 � f � S implies f 0 D f , then f is an innermost n–gon.
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To each edge of GS with endpoints labeled i and j , we associate its label pair fi; j g.
A Scharlemann cycle of length n (Sn cycle, for short) is a set of n edges of GS each
with label pair fi; iC1g for some i in t that bounds an n–gon of GS (with corners all
.i; iC1/). An extended Scharlemann cycle of length n is a set of n edges of Gx

S
each

with label pair fx;yg for some x and y in t that bounds an n–gon of Gx
S

with corners
all .x;y/ or all .y;x/ and contains a Scharlemann cycle of length n. Notice that the
Scharlemann cycle of length n contained in the n–gon of an extended Scharlemann
cycle of length n with label pair fx;yg has label pair f.xCy� 1/=2; .xCyC 1/=2g

or f.xCy�1/=2C t=2; .xCyC1/=2C t=2g. If n is 2 or 3 we will often abbreviate
these terms as (extended) S2 cycle and (extended) S3 cycle. By a forked extended S2

cycle we mean a set of three edges of some Gx
S

that bounds a trigon composed of a
bigon B bounded by an (extended) S2 cycle of either GxC1

S
or Gx�1

S
together with

a bigon and a trigon of GS adjoined to the edges of B ; see Figure 16.

2.4 Outline of proof of Theorem 1.1

Proof Throughout the subsequent sections, unless noted otherwise, we assume that
we have the following:

� a lens space X of order r ,

� a height function h on X ,

� a knot K of order s in thin position with respect to h,

� a thick level yT splitting X into the two solid tori XC and X� ,

� the surface S of genus g � 1 with j@S j D 1, yS , and T as defined above,

� the graphs GS , Gx
S

for all x 2 t, and GT and

� s � 4g� 1.

Since g � 1 and s � 4g� 1, s � 3. Since r � s , r � 3 as well. For technical reasons,
we defer the case r D 3 to Section 8 at the end. Accordingly, we will work under the
assumption that r � 4 until then. The main body of work encompasses showing that
t � 6.

In Section 3 we distill the hypothesis of our theorem into the existence of bigons and
trigons in the graphs Gx

S
for each x 2 t. We adapt some fundamental lemmas from

Goda and Teragaito [5] which are then employed to understand what the bigons and
trigons may look like.

In Section 4 we use the existence of bigons and trigons to construct annuli that weave
back and forth through XC and X� crossing yT . Arcs of K lie on these annuli. The
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thinness of K then gives constraints on “how much” of K may lie on such an annulus.
With these constraints, the bigons and trigons imply the existence of a second such
annulus.

In Section 5, to have the requisite bigons and trigons, we reckon with two disjoint annuli
containing most of the knot K . The techniques of Section 4 are then re-employed to
obtain contradictions to the thinness of K . In Theorem 5.9 we conclude that for r � 4,
we have t � 6.

In Section 6 we fix K with t D 6 and isotop the interior of S to gain a better grasp on
the faces of GS . Then we use Euler characteristic estimates and further thin position
arguments to refine our understanding of the faces of GS . From this Proposition 6.20
concludes t ¤ 6 and hence t � 4.

In Section 7 we consider multiple thick levels for K in thin position. Using the result
that K may intersect a thick level at most 4 times, we promote the thin position of
K to a bridge position. Once again using the existence of bigons and trigons, we find
a thinning isotopy of K . Thus we conclude in Theorem 7.3 that for r � 4, we have
t D 2. Lemma 7.4 quickly shows that K is at most 1–bridge.

Finally, in Section 8 we treat the case that r D 3 in which case s D 3 and g D 1.
Theorem 8.2 concludes that K is at most 1–bridge.

3 Bigons and trigons

Our proof of Theorem 1.1 is set in motion by the following lemma.

Lemma 3.1 For each x 2 t, Gx
S

must have a bigon or trigon face.

Proof Recall that Gx
S

has s edges and we are assuming s � 4g� 1.

�.S/D 1� 2g D�sC
X

disk faces of Gx
S

�.disk/C
X

nondisk faces of Gx
S

�.nondisk/

� �sC #.disk faces/

Assume Gx
S

has no bigons or trigons. So each disk face has at least four edges. Thus

s �
1

2
� 4�#.disk faces/:

1� 2g � �sC#.disk faces/� �sC
1

2
s;Hence

and so s=2� 2g� 1 or s � 4g� 2, a contradiction.
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We thus study how bigons and trigons of Gx
S

for each x 2 t arise within GS . Often a
bigon or trigon of one graph Gx

S
will contain a bigon or trigon of another graph G

y
S

.
We say a face f of Gx

S
accounts for the label y if f contains a bigon or trigon of

G
y
S

.

3.1 Fundamental lemmas about GS

We adapt and build on some useful lemmas about order 2 and order 3 Scharlemann
cycles and the faces of GS they bound from the work of Goda and Teragaito in [5].
They work with the case that s D r , but our generalization of this presents no problem
here. The main difficulty to overcome in our work that is not present in [5] is the
potential presence of simple closed curves  2 S \T that are essential in T and yet
trivial in both yT and S . Goda and Teragaito avoid such occurrences by choosing yT
among all Heegaard tori. In our situation, we require yT to be a level Heegaard torus.
Nevertheless Lemma 3.1 will permit us to conclude in Lemma 3.20 that no such curve
 exists.

We begin with some lemmas about how edges of Scharlemann cycles and extended
Scharlemann cycles may lie on yT .

Let � be a set of edges of GS . Let � be the subgraph of GT consisting of the edges
of � and the vertices of GT to which the edges are incident. If � is contained in a disk
in yT , then we say the edges of � lie in a disk in yT . If � is contained in an annulus in
yT but do not lie in a disk, then we say the edges of � lie in an essential annulus in yT .

Let f be a face of GS or Gx
S

, and let � be the edges of @f . Let Q be a two-sided
surface in X with product neighborhood Q � Œ��; �� for small � > 0 so that Q is
identified with Q�f0g. If @f \QD � and N.�/\f is contained in either Q� Œ0; ��

or Q� Œ��; 0� then we say f lies on one side of Q even if Intf does not.

Lemma 3.2 (cf [5, Lemma 2.3]) Let � be a Scharlemann cycle in GS of length p

with label pair fx;xC1g and let f be the face of GS bounded by � . Suppose that
p ¤ r . Then f cannot lie on one side of a disk. In particular, the edges of � cannot lie
in a disk in yT .

Proof Assume the edges of � lie in a disk D and f lies on one side of D . (If
the edges of � lie in disk in yT , then necessarily f lies to one side of that disk.) If
Intf \D ¤∅ then by choosing D smaller, we may assume Intf \D is a collection
of simple closed curves. Let � 2 Intf \D be an innermost simple closed curve on f .
Alter D by a disk exchange with the disk on f that � bounds. In this manner we may
produce a disk D0 �X of which f lies to one side (containing the vertices Ux and
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UxC1 and the edges of � ) such that Intf \D0D∅. Then N.D0[H.x;xC1/[f / is
a punctured lens space of order p . Since a lens space is irreducible, X is a lens space
of order p . This is contrary to the assumption that p ¤ r .

Lemma 3.3 (cf [5, Lemma 2.1]) Let � be an Sp cycle of GS , p D 2 or 3, with
label pair fx;xC1g. Let f be the face of GS bounded by � . Then the edges of � lie
in an essential annulus A in yT . Furthermore, the core of A does not bound a disk in
X . Indeed, the core of A runs p times in the longitudinal direction of the solid torus
on the side of yT to which f lies.

Proof Because we are assuming r � 4, Lemma 3.2 implies the edges of � do not lie
in a disk in yT . The proof of Lemma 2.1 of [5] then applies to show � must lie in an
essential annulus A on yT .

Let W DXC or X� be the solid torus on the side of yT in which f lies. If the core
of A bounds a disk in X , then it must bound a meridional disk of a solid torus on one
side of yT . By Lemma 3.2, the core of A cannot bound a disk in the solid torus XnW .
As we will show, the core of A cannot bound a disk in W since it runs p times in the
longitudinal direction of W .

If Intf \ yT D ∅, then the remainder of this proof follows from Lemma 2.1 of [5].
Because the core of A runs p times in the longitudinal direction of the solid torus
M D xN .A[H.x;xC1/ [ f / � W , the space W nM must be a solid torus whose
meridional disk crosses @M nA once. Thus the core of A must also run p times in the
longitudinal direction on W .

If Intf \ yT ¤∅, then by choosing A smaller we may assume that Intf \ @AD∅.
Let � � Intf \ yT be an innermost simple closed curve on f . Alter yT and A by a disk
exchange with the disk on f that � bounds. (Note that � might be essential in T and
yet contained in A.) Continuing in this manner we may produce a Heegaard torus yT 0

(isotopic to yT in X ) and an essential annulus A0 on yT 0 such that � lies in the essential
annulus A0 , f lies on the same sides of yT 0 and yT , and Intf \ yT 0 D∅. Let W 0 be
the solid torus on the side of yT 0 containing f . As in [5], M D xN .A0[H.x;xC1/[f /

is a solid torus such that A0 runs p times in the longitudinal direction of M . Thus the
core of A0 and each component of @A0 runs p times in the longitudinal direction of
W 0 . Since @A0 D @A and W 0 is isotopic to W , it follows that the core of A runs p

times in the longitudinal direction of W .

Lemma 3.4 Let � 0 be an extended Sp cycle for p D 2 or 3. Assume � is the Sp

cycle contained in the face of S bounded by � 0 . Then the edges of � and � 0 each lie
in essential annuli A and A0 respectively in yT so that A\A0 D∅.
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Proof Assume � has label pair fx;xC1g. Then � 0 has label pair fx�n;xC 1Cng

(taken mod t ) for some positive integer n. We proceed by induction.

By Lemma 3.3, the edges of � lie in an essential annulus ADA0 in yT .

Let �i�1 be the extended Sp cycle with label pair fx � .i � 1/;x C 1C .i � 1/g

contained in the extended Sp cycle �i with label pair fx� i;xC 1C ig. Assume the
edges of �i�1 lie in an essential annulus Ai�1 in yT . There are p bigons of GS whose
edges give a one to one correspondence between the edges of �i�1 and the edges of
�i . Each bigon has the two corners .x� i;x� i C 1/ and .xC i;xC i C 1/.

Of these bigons, take two whose edges in �i�1 lie in the essential annulus Ai�1 (and
not in a disk). Extend their corners radially into H.x�i;x�iC1/ and H.xCi;xCiC1/ ,
and join them together to form an annulus B with @B � yT . Since one component of
@B is an essential curve contained in Ai�1 , the other is either parallel on yT to the core
of Ai�1 or bounds a disk on yT .

If one component of @B bounds a disk D on yT , then the other component bounds the
disk D[B . Since this other component is parallel to the core of Ai�1 and hence to
the core of A, the core of A bounds a disk in X contrary to Lemma 3.3.

Thus the component of @B not in Ai�1 is an essential curve on yT parallel to the core
of A. Hence the edges of �i lie in an essential annulus Ai in yT and Ai�1\Ai D∅.

When i D n we obtain that the edges of � 0 lie in the annulus An DA0 . Furthermore,
since the label pairs of �i and �j for 0� i < j � n are distinct, Ai \Aj D∅.

Lemma 3.5 If �1 and �2 are two S2 cycles with the same label pairs then the edges
of �1[�2 lie in an essential annulus. Furthermore, within the annulus, the edges of �1

separate the edges of �2 .

This lemma implies that each edge of �1 bounds a bigon on yT with an edge of �2 .

Proof Assume the edges of �1[ �2 do not lie in an essential annulus. Nevertheless,
by Lemma 3.2 the edges �i lie in an essential annulus Ai for each i D 1; 2. Let f
be the bigon of GS bounded by �1 . Let g be the bigon of GS bounded by �2 . Let
fx;xC1g be the label pair of �1 and �2 . Note that the corners of f and g are all on
H.x;xC1/ .

If Int.f [g/\ yT ¤∅, then alter yT by disk exchanges to obtain the Heegaard torus
yT 0 so that Int.f [g/\ yT 0 D∅ while @.f [g/\ yT 0 D @.f [g/\ yT . Similarly, we
obtain the essential annuli A0i on yT 0 in which the edges of �i lie. Let V be the solid
torus on the same side of yT 0 as f and g .
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Consider the solid torus Vf D V n.f [H.x;xC1//. Note that the core of the annulus
yT 0nA0

1
is a longitudinal curve on @Vf . Since �2 does not lie in A0

1
, �2 must have

an edge that is not parallel to an edge of �1 . Thus both corners of g lie on the same
rectangle of @H.x;xC1/n.Ux[UxC1[f / which is contained in @Vf . Hence the other
edge of �2 is not parallel to an edge of �2 . Then the simple closed curve @g on @Vf
must intersect the core of yT 0nA0 twice. Therefore @g cannot be nullhomologous in
H1.Vf / contradicting that it bounds a disk in Vf .

Since the corners of g cannot be on the same rectangle of @H.x;xC1/\@Vf , the edges
of g must be incident to Ux and UxC1 on opposite sides of the edges of �1 . Since
the edges of �1 and �2 lie in an essential annulus, the edges of �1 separate the edges
of �2 within this annulus.

Lemma 3.6 (cf [5, Lemma 2.4]) Let �1 and �2 be S2 or S3 cycles of GS with
disjoint label pairs, and let f1 and f2 be the faces of GS bounded by �1 and �2

respectively. Then the faces f1 and f2 lie on opposite sides of yT .

Proof By Lemma 3.4, the edges of �i lie in an annulus Ai for i D 1; 2. Since the
label pairs of �1 and �2 are disjoint, A1\A2 D∅.

We may assume A1 and A2 have been chosen so that .A1[A2/\ .Intf1[ Intf2/ is
only a collection of simple closed curves. By the minimality assumption on jS \T j

and Lemma 3.3, yT \ .Intf1[ Intf2/ may contain only simple closed curves that are
essential on T and yet trivial on yT . Let � 2 yT \ .Intf1 [ Intf2/ be an innermost
simple closed curve on f1[ f2 . Alter yT (and both A1 and A2 ) by a disk exchange
with the disk on f1[f2 bounded by � . In this manner we may produce a Heegaard
torus yT 0 (isotopic to yT in X ) with annuli A0

1
and A2 ’ such that �i �A0i for i D 1; 2,

fi lies on the same side of yT 0 as yT for i D 1; 2, and yT 0\ .Intf1[ Intf2/D∅.

Let fxi ;xiC1g be the label pair of �i . Construct the solid torus

Vi D
xN .A0i [H.xi ;xiC1/[fi/:

The meridian of Vi intersects the core of the annulus Ai algebraically 2 or 3 times
depending on the order of the cycle �i . If f1 and f2 lie on the same side of yT , then
f1 and f2 lie on the same side of yT 0 . Then the solid tori V1 and V2 are both contained
in a single solid torus on the same side of yT 0 . Let A3 be an annulus of yT 0n.A0

1
[A0

2
/.

The manifold V3 D V1 [
xN .A3/[V2 has toroidal boundary which intersects yT 0 in

the annulus A0
1
[A0

2
[A3 . Thus V3 must be a solid torus. Due to neither meridian of

V1 or V2 intersecting a component of @A3 algebraically once, V3 cannot be a solid
torus. Therefore f1 and f2 cannot lie on the same side of yT .
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x

xxC 1

(b)

xC 1

(a)
xC 1

x

xC 1

x

Figure 2: (a) The trigon F (b) The edges of F on yT 0

Lemma 3.7 Let F be a trigon with corners .x;xC1/ and edges as in Figure 2(a) such
that its edges lie in an essential annulus A on yT as in Figure 2(b). Let V be the solid
torus on the same side of yT as F . Then the core of A is a meridional curve for V .

Proof Note that F itself is not a face of GS or any of its subgraphs since it has
edges with both endpoints on the same vertex. Nevertheless we will continue to use
the language of edges and corners when talking about F .

Consider M D xN .A[H.x;xC1/[F / formed by attaching the 2–handle xN .F / to the
genus 2 handlebody xN .A[H.x;xC1//. Let Dz be a meridional disk of xN .A/ whose
boundary intersects the edges of F only twice and misses the vertices. Let DH be the
cocore of the 1–handle H.x;xC1/ . The fundamental group of xN .A[H.x;xC1// is
then generated by curves � and � dual to Dz and DH respectively. Thus we have the
presentation

�1.M /D h�; �j����1��D 1i

D h�; �j.��2/2 D �3
i

D ha; bja2
D b3
i

which is the trefoil group. Therefore �1.M / is not Z, and M is not a solid torus.

We may consider M as contained in V such that @M \ @V DA. Then A0 D @M nA

is properly embedded annulus in V . Assume the core of A is not a meridional curve
for V . Then the components of @A0 D @A are not meridional curves for V . Thus the
two components of V nA0 must be solid tori. This is contrary to M not being a solid
torus.
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3.2 Bigons

Lemma 3.8 If � D fe0; e00g � Gx
S

bounds a bigon f of Gx
S

, then � is either an S2

cycle or an extended S2 cycle.

Proof The edges of GS on f must be mutually parallel. By relabeling if necessary,
we may assume x D 1 and the edges of GS on f are fe0 D e1; e2; : : : ; en D e00g

labeled successively so that, along a chosen corner of f , ei has label i taken mod t .
We claim that n� t .

If n> t C 1, then the edge etC1 is contained in G1
S

and yet is not on the boundary of
f . This contradicts that f is a bigon of G1

S
.

If nD t C 1, then the label 1 for the endpoints of each e0 and e00 occur on the same
corner of f . Since there are t C 1 edges, the label 1 must occur for the end point of
some edge ei on the other corner of f . Hence there is an edge of G1

S
contained in the

interior of f contradicting that f is a bigon of G1
S

.

Since 1 < n � t , � has label pair f1; ng. The label 1 of the edges e0 and e00 occur
on opposite corners of f . If n D 2, then � is an S2 cycle. If n > 2, then � is an
extended S2 cycle.

3.3 Trigons

The structure of trigons of Gx
S

takes a bit more work to determine. We will first classify
innermost trigons of Gx

S
and then determine how trigons of another graph G

y
S

may
contain them. By relabeling, we may assume a given innermost trigon is a trigon of
G1

S
.

If f is a trigon of G1
S

, then GS on f appears as one of the four types shown in Figure
3. The label 1 appears only where shown since otherwise f would not be a face of
G1

S
. Types I 0 and II 0 may be obtained from types I and II respectively by suitable

changes of orientations and labeling. Therefore we may further assume an innermost
trigon is a trigon of G1

S
of type I or type II.

Proposition 3.9 An innermost trigon of G1
S

is bounded by either an S3 cycle or a
forked extended S2 cycle.

Proof To highlight the overall structure of this proof we relegate two of the subcases
to Lemma 3.10 and Lemma 3.11.

Let f be an innermost trigon of G1
S

. Note that we are not concerned with whether or
not f \T contains any circle components.
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I 0

aC 1

a

1

x

c

1

1

b

bC 1

y

cC 1

z

I

aC 1

a

1

c

y

1

b

bC 1

1

cC 1

z

II
x

aC 1

a

z

x

c

y

1

b

bC 1

1

cC 1

1

II 0

aC 1

a

z

1

c

y

x

b

bC 1

1

cC 1

1

Figure 3: The four possible types of trigons

Case I The trigon f is of type I.

To be innermost, we must have a, b , or c be 1. Otherwise there would be a trigon of
G2

S
contained in f . Say c D 1. The trigon appears as in Figure 4.

Since f is a face of G1
S

, we have aC b � t . Notice that a and b are both odd. One
may readily check that both the cases bD c D 1¤ a and aD bD c D 1 are innermost
trigons corresponding to a forked extended S2 cycle and an S3 cycle respectively.
Thus assume a¤ 1¤ b .

Subcase a< b This is ruled out by Lemma 3.10.

Subcase aD b In this situation there is a trigon of GaC1
S

within f contradicting that
f is innermost.

Subcase a> b This is ruled out by Lemma 3.11.

Case II The trigon f is of type II.
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aC 1

aC 1

a

1

aC b

1

1

b

bC 1

2

Figure 4: The trigon of type I with c D 1

For f to be a face of G1
S

, we must have cC b > t , cC a� t , and aC b � t . These
conditions imply a< b and a< c . The trigon appears as in Figure 5. We have three
main cases.

cC b� t

1

cC 1

cC a

bC 1

c

1

aC 1

b

aC b

1

a

b

aC 1

Figure 5: The trigon of type II

Subcase c > b With some relabeling, part of the trigon appears as in Case I, a< b .
This gives a contradiction to Lemma 3.10.
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Subcase c D b In this situation there is a trigon of GbC1
S

inside f .

Subcase c < b Here, a < c < b . With some relabeling, the arguments of Case I,
a> b apply.

Thus there are no innermost trigons of type II.

a¤ 1

1

a

aC 1

aC 1

2

a

1

a

aC 1

2

2

1

1

1

2

2

Figure 6: The two forms of innermost trigons of G1
S

Hence, up to relabeling and changes in orientation, any innermost trigon of G1
S

appears
as in Figure 6. Such trigons are bounded by either an S3 cycle or a forked extended
S2 cycle.

Remark 3.1 Note that with Proposition 3.9 in hand, it follows from the definitions of
S3 cycles and forked extended S2 cycles that all innermost trigons have one or two
sets of label pairs for their edges. None have three distinct label pairs.

Lemma 3.10 There cannot exist an innermost trigon of G1
S

of type I with c D 1 and
a< b .

Proof Assume a trigon f of G1
S

of type I with c D 1 and a< b does exist.

On f , GS has a bigonA with edges e1 and e2 having label pairs f2; ag and f1; aC1g

respectively and corners .1; 2/ and .a; aC1/, another bigon B with edges e3 and
e4 having label pairs fa; bC1g and faC1; bg respectively and corners .a; aC1/ and
.b; bC1/, and a trigon C with edges e5 , e6 , and e7 having label pairs f1; bC1g,
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2

aC 1

1

2

a
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b

aC 1

a

1

2

a

aC 1

b

bC 1

aC b

1

e4

e3

e7

e5

B

C

e6

A

e2

e1

(a)

a

bC 1

1

aC 1b

e2

e6 e1

e4 e7 e4

e6

e3

e5

(b)

Figure 7: (a) The trigon of type I with cD 1 and a< b (b) The seven edges
on yT

f2; ag, and faC1; bg respectively and corners .1; 2/, .a; aC1/, .b; bC1/. See Figure
7(a). Note that A , B , and C all lie on the same side of yT .

There are two extended S2 cycles contained in f : �1D fe1; e6g with label pair f2; ag
and �2 D fe3; e7g with label pair faC1; bg.

Since �1 is an extended S2 cycle, by Lemma 3.4 the edges e1 and e6 lie in an essential
annulus A1 . Similarly, since �2 is an extended S2 cycle, the edges e3 and e7 lie in
an essential annulus A2 . The three edges e2 , e3 , and e5 connect the vertices Ua and
UaC1 (via the vertices U1 and UbC1 ) and thus lie in an annulus of yT between the
cores of A1 and A2 . These seven edges must lie on yT as in Figure 7(b).

Choose rectangles �.1;2/ and �.b;bC1/ on H.1;2/ and H.b;bC1/ respectively that
connect the edges of the bigons and trigon on them. Form a larger trigon F by
connecting the two bigons A and B to the trigon C with the rectangles �.1;2/ and
�.b;bC1/ . Let @1F be the edge of F with label pair fa; ag, @2F be the edge with
label pair faC1; aC1g, an @3F be the edge with label pair fa; aC1g. Note that @1F

and @2F each lie in an essential annulus. See Figure 8(a) for the labeling of @F and
Figure 8(b) for the placement of @F on yT .

Algebraic & Geometric Topology, Volume 6 (2006)



Small genus knots in lens spaces have small bridge number 1541

a

e7

e5

C

e6

A
e1 e2

B

e4

e3
aC 1

aC 1

a

aC 1

b

1 2

a
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e6 e1

e4 e7 e4

e6

e3
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2

F

@2F
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@1F

aC 1

a

a aC 1

a

aC 1

@1F

@3F

a

D

D

(b)

(a)

aC 1

�.b;bC1/

�.1;2/

Figure 8: (a) The trigon F (b) @F on yT

Lemma 3.7 implies that the core of the annulus in which the edges of F lie bounds
a meridional disk of the solid torus on the same side of yT as F . Hence the cores of
A1 and A2 each bound meridional disks. Let � 0i be the S2 cycle of GS in the face of
GS bounded by �i for i D 1; 2. By Lemma 3.4, the core of the annuli in which the
edges of � 0i bound meridional disks for i D 1; 2. This contradicts Lemma 3.3.
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Lemma 3.11 There cannot exist a trigon of G1
S

of type I with c D 1 and a> b .

Proof The lower left branch of Figure 4 appears now (rotated upwards) as in Figure 9.

e1

1

b

bC 1

1

2

a

aC 1

aC 1

a

a� bC 2

a� bC 1

2

bbC 1

e3

e2

e4

e5

e6

e0

Figure 9: Part of the trigon of type I with c D 1 and a> b

Also, since there is an extended S2 cycle with label pair f2; ag contained in f , by
Lemma 3.4 the two edges with label pair f2C i; a� ig for each 0� i � .aC 1/=2 lie
in disjoint essential annuli. The S2 cycle has label pair f.aC 1/=2; .aC 3/=2g.

If a� bC 1D b so that the S2 cycle has label pair fb; bC1g then we may view the
edges e0; e1; : : : ; e5 on T as in Figure 10. The endpoints labeled bC 1 of edges e4 ,
e0 , and e3 are immediately preceded by the endpoints labeled b of edges e3 , e1 , and
e4 respectively. Due to orientations, given that the edges e4 , e0 , and e3 appear in that
order clockwise around the vertex UbC1 , the edges e3 , e1 , and e4 must appear in the
order counterclockwise around the vertex Ub as shown. Hence the edges e0 and e1

must emanate from opposite sides of the annulus in which the edges e3 and e4 lie.
This however leaves no possible position for e6 .

If the S2 cycle does not have label pair fb; bC1g, then let e0
3

and e0
4

be the other
edges on f that have the same labels as e3 and e4 respectively. Since each of fe3; e

0
3
g

and fe4; e
0
4
g are extended S2 cycles, they each lie in an essential annulus.
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1

e5 e2 e5
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2

aC 1

a

e4 e3 e4

Figure 10: Edges of the trigon of type I with c D 1 and aD 2b� 1 on T

Furthermore each pair of edges fe3; e4g and fe0
3
; e0

4
g bounds a bigon B and B0

respectively on GS . We may thus form an “annulus”

AD B [H.b;bC1/[B0[H.a�bC1;a�bC2/:

Then the positions of the edges e3 and e0
3

in GT dictate the placement of the edges e4

and e0
4

. If e3 and e0
3

are swapped, then e4 and e0
4

must also be swapped. Otherwise
A would be a properly embedded nonseparating annulus in one of the Heegaard solid
tori which cannot occur. We may thus view the edges e0; e1; e3; e

0
3
; e4; e

0
4

and e6 on
T as in Figure 11.

Since the edges e2 and e5 also form an extended S2 cycle, they lie in an essential
annulus disjoint from the previous edges. These two edges appear either as shown in
Figure 11 or perhaps swapped with one another (depending on whether e3 or e0

3
is

closer to e2 on f ).

Observe that the annulus A separates the vertices U1 and U2 on yT . Since 1 and b

are both odd, H.1;2/ lies on the same side of yT as A. Though the interiors of B and
B0 may intersect yT in simple closed curves, H.1;2/ must intersect A. This cannot
occur.

Lemma 3.12 If an innermost trigon g of G1
S

is bounded by a forked extended S2

cycle with edges as in Figure 12(a), then the edges e1; : : : ; e5 appear on GT as in
Figure 12(b) (up to symmetries).
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Figure 11: Edges of the trigon of type I with c D 1 , a> b , and a¤ 2b� 1 on T
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Figure 12: (a) A trigon bounded by a forked extended S2 cycle of G1
S (b)

Edges of GS on a trigon bounded by a forked extended S2 cycle of G1
S

as
they lie on GT
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Proof To prove, we examine the possible configurations of these five edges on GT

and see what the bigon A and the trigon D bounded by them on g imply.

The edges e2 and e3 form an (extended) S2 cycle � . By Lemma 3.4 they lie in an
essential annulus A. Thus we may begin by assuming these two edges are as shown in
Figure 12(b). The edge e4 connects vertices U1 and U2 , and the edge e1 connects the
vertices U1 and UaC1 . Without loss of generality, we may assume e4 and e1 are also
as shown in Figure 12(b). It remains for us to determine the position of e5 (relative to
the first four edges).

The endpoints labeled 2 of edges e3 , e4 , and e2 are immediately preceded by the
endpoints labeled 1 of edges e4 , e5 , and e1 respectively. Due to orientations, given
that the edges e3 , e4 , and e2 appear in that order clockwise around the vertex U2 , the
edges e4 , e5 , and e1 must appear in that order counterclockwise around the vertex U1 .
Therefore the edge e5 may appear either as in Figure 12(b) or as in Figure 13.

e5
1

2a

aC 1

e3 e2e2

e4

e5e1

Figure 13: Another possible placement of the edge e5

Assume the five edges appear as in Figure 13. Extend the .a; aC1/ corner of A and
D radially inward through H.a;aC1/ to its core K.a;aC1/ . Join A to D along this
common corner to form the trigon F .

By Lemma 3.7, the core of the essential annulus A� yT in which the edges of F lie
bounds a meridional disk of the solid torus on the same side of yT as F . Thus the core
of A bounds a meridional disk. By Lemma 3.4 the annulus in which the edges of the
S2 cycle that lies in between the edges of � lie must also bound a meridional disk.
This however contradicts Lemma 3.3.

Thus the edges of A and D must appear as in Figure 12(b).

Lemma 3.13 Let g be a trigon of G1
S

with edges as in Figure 12(a). If the interior
of the bigon on yT bounded by edges e1 and e5 (and the vertices U1 and UaC1 ) is
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disjoint from K , then there cannot be a bigon of GS attached to e4 , the edge with label
pair f1; 2g.

Proof Note that since g is bounded by a forked extended S2 cycle, t � 4. Assume
there is a bigon of GS attached to e4 . Let g0 be g with this bigon attached. Let � be
the bigon on yT bounded by the edges e1 and e5 . Assume Int�\K D∅. Then, by
the minimality assumption on jS \T j, we have Int�\g0D∅. The corners of � are
arcs u1 of @U1 and uaC1 of @UaC1 . We first consider the case that aC 1� 6 (and
hence t � 6).

E

1

a

aC 1

2 1
3

2

1

3

2

a� 13

a

aC 1

a� 1

t

e1

e2

e3

e5e4

e6

e7

e8

B

A

C

D

Figure 14: The bigons and trigon of g0

Label the bigons and the trigon of GS on g0 as A ;B ; : : : ;E as shown in Figure 14.
Let �.1;2/ be the rectangle on @H.1;2/n.U1 [U2/ and u2 be the arc of @U2 so that
�.1;2/ is bounded by u1 , the .1; 2/ corner of A , u2 , and the corner .1; 2/ of D . Let
�.a;aC1/ be the rectangle on @H.a;aC1/n.Ua [UaC1/ and ua be the arc of @Ua so
that �.a;aC1/ is bounded by uaC1 , the .a; aC1/ corner of A , ua , and a .a; aC1/

corner of D . Let �.2;3/ be the rectangle on @H.2;3/n.U2 [U3/ and u3 be the arc
of @U3 so that �.2;3/ is bounded by u2 , the .2; 3/ corner of B , u3 , and the .2; 3/
corner of E . Let �.a�1;a/ be the rectangle on @H.a�1;a/n.Ua�1[Ua/ and ua�1 be
the arc of @Ua�1 so that �.a�1;a/ is bounded by ua , the .a�1; a/ corner ofB , ua�1 ,
and the .a�1; a/ corner of C .
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e2
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a� 1

�

�.1;2/

�.a;aC1/

�.a�1;a/

�.2;3/

Figure 15: The bigons and trigon of g0 assembled to form a long disk D

Assemble A ;B ; : : : ;E , �, �.1;2/ , �.2;3/ , �.a�1;a/ , and �.a;aC1/ to form the em-
bedded disk D as shown in Figure 15. The boundary of D is composed of an arc
˛D e7[ua�1[e6[u3[e8 and an arc ˇD .H.t;1/\E /[.H.1;2/\D /[.H.2;3/\C /.
The arc ˛ lies on yT . The arc ˇ lies on @H.t;3/ (recall H.t;3/DH.t;1/[H.1;2/[H.2;3/ )
and can be radially extended into H.t;3/ to lie on the arc K.t;3/ . Hence we may take
ˇ to lie on K . Therefore D is a long disk. By Lemma 2.2, such a disk cannot exist.

If aC 1 D 4, then B and C are the same bigon of GS on g . The two corners of
B DC however are distinct arcs on H.2;3/ . Also notationally �.a�1;a/ is confused
with �.2;3/ . In this case, let us refer to the former as �0.2;3/ . Further notice that the
interiors of �.2;3/ and �0.2;3/ do not intersect. We may assemble the disk D using two
copies of B . A slight isotopy which fixes ˇ and keeps ˛ on yT makes D embedded.
(Alternatively, in this construction of D , one may regard B and C as slight pushoffs
of the same bigon to opposite sides.) Again, D is a long disk.

Lemma 3.14 Let g be the trigon bounded by a forked extended S2 cycle of G1
S

with
edges as in Figure 12(a). Let f be the trigon bounded by a forked extended S2 cycle
of GaC1

S
. Its edges must be as in Figure 16 (a) or (b). Let �g be the bigon on yT

bounded by the edges e1 and e5 of g , and let �f be the bigon on yT bounded by the
edges e0

1
and e0

5
of f . If the interiors of �g and �f are disjoint from K , then the

edge e0
4

has label pair fa; aC1g.

Proof Assume the interiors of �f and �g are disjoint from K . By the minimality
assumption on jS \T j, we have Int.�f [�g/\ .f [g/D∅.
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Figure 16: The two possible trigons bounded by a forked extended S2 cycle
of GaC1

S

Assume the edge e0
4

of f does not have label pair fa; aC1g. Therefore it must have
label pair faC1; aC2g and f is as in Figure 16(b). Assemble disks Dg and Df in a
manner similar to what is done in the proof of Lemma 3.13. The disk Dg is comprised
of A , D , �g , a rectangle �.a;aC1/ on @H.a;aC1/ , and rectangle �.1;2/ on @H.1;2/ .
The disk Df is comprised of A 0 , D 0 , �f , a rectangle �.aC1;aC2/ on @H.aC1;aC2/ ,
and a rectangle �.b;bC1/ on @H.b;bC1/ . These two disks are shown in Figure 17. Note

1 aC 1

1

e3

e5e4

D

1

aC 1

2

e2

e1

A

a

a

2

2

�g

aC 1 bC 1

e03

e0
5

e0
4

D
0

aC 1

bC 1

aC 2

e0
2

e01

A
0

b

b

aC 2

�f

DfDg

aC 1
aC 2

Figure 17: The construction of a high disk and a low disk

that the arcs K.1;2/ and K.aC1;aC2/ lie on opposite sides of yT . We may extend arcs
of the boundaries of the two disks Dg and Df radially into H.1;2/ and H.aC1;aC2/ so
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that @DgDK.1;2/[.Dg\
yT / and @Df DK.aC1;aC2/[.Df \ yT /. Even if bD 2, one

may check that the arcs @Dg\
yT and @Df \ yT are disjoint. Therefore the pair of disks

Dg and Df are a pair of disjoint high and low disks for K . This is a contradiction to
Lemma 2.1.

Therefore f is as in Figure 16(a), and the edge e0
4

has label pair fa; aC1g.

Lemma 3.15 Assume for i ¤ j that �i �Gi
S

and �j �G
j
S

are two forked extended
S2 cycles such that for each (extended) S2 cycle contained in the face bounded by one
of �i or �j there is an (extended) S2 cycle with the same label pair contained in the
face bounded by the other forked extended S2 cycle. Then the faces bounded by �i

and �j each contain only an S2 cycle and no extended S2 cycles.

Proof Assume G1
S

has a forked extended S2 cycle �1 that bounds a trigon g on
G1

S
as in Figure 12(a). By Lemma 3.12 the five edges e1 , e2 , e3 , e4 , and e5 lie on

yT as in Figure 12(b). For each nD 0; : : : ; .a� 3/=2 there is an (extended) S2 cycle
contained in g with label pair f2C n; a� ng.

Assume there is a forked extended S2 cycle �j of G
j
S

bounding a trigon f such that
for each n D 0; : : : ; .a� 3/=2 there is an (extended) S2 cycle contained in f with
label pair f2Cn; a�ng. By hypothesis j ¤ 1. Hence j D aC1. Therefore f appears
as in Figure 16(a) with b D 1.

We now consider how the edges of A 0 and D 0 lie with respect to the edges of g as
shown in Figure 12(b). Note that since A ¤D 0 and D ¤A 0 the edges e0

1
; : : : ; e0

5

each must be distinct from the edges e1; : : : ; e5 . Also, by Lemma 3.5 and Lemma 3.4,
the edges e2 , e3 , e0

2
, and e0

3
together lie in an essential annulus.

The edges e1 and e0
1

have the same label pair f1; aC1g. Either they lie in a disk or
they lie in an essential annulus in yT .

Case 1 If e1 and e0
1

lie in an essential annulus, then either (a) e0
1

is incident to U1 in
the arc of @U1 between e4 and e5 that does not intersect e1 or (b) e0

1
is incident to

U1 in the arc of @U1 between e4 and e1 that does not intersect e5 .

For (a), the corners ofA 0 force e0
2

to be incident to the vertices U2 and Ua on opposite
sides of e2 [ e3 [U2 [Ua . Thus e0

2
cannot not lie in the essential annulus which

contains e2 and e3 contrary to Lemma 3.5.

For (b), the corners of A 0 force e0
2

to be incident to the vertices U2 and Ua on the
side of e2 [ e3 [U2 [Ua to which e4 is not incident. By Lemma 3.5 the edge e0

3

must lie on the other side of e2[ e3[U2[Ua . Following the .a; aC1/ corner of D 0
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from e0
3

to e0
4

implies that e0
4

lies in the disk of yT between e1 and e5 . This however
contradicts that e0

4
has label pair fa; aC1g.

Therefore the edges e1 and e0
1

cannot lie in an essential annulus.

Case 2 The edges e1 and e0
1

lie in a disk. There are three possibilities for the
placement of e0

1
with respect to the edges of g . Either (a) e5 lies in the disk between

e1 and e0
1

, (b) e1 lies in the disk between e0
1

and e5 or (c) e0
1

lies in the disk between
e1 and e5 .

For (a), edge e0
1

is incident to U1 and UaC1 in the same arcs as in Case 1(a). Thus
again edge e0

2
cannot lie in the essential annulus which contains e2 and e3 contrary to

Lemma 3.5.

For (b), edge e0
1

is incident to U1 and UaC1 in the same arcs as in case 2(a). Thus
again edge e0

4
is forced to have the wrong label pair.

For (c), the corners of A 0 force e0
2

to be incident to the vertices U2 and Ua on the
side of e2[ e3[U2[Ua to which e4 is incident.

The edges e2 and e0
2

must lie in a disk. Otherwise e2 and e0
2

lie in an essential
annulus with core parallel to the core of the essential annulus in which the edges e2

and e3 lie. Then on yT , e1 and e0
1

bound a bigon �. With the appropriate rectangles
�.1;2/ and �.a;aC1/ on @H.1;2/ and @H.a;aC1/ respectively we may form the disk
D DA [A 0 [ �.1;2/ [ �.a;aC1/ [� whose boundary is parallel to the core of the
essential annulus in which the edges e2 and e0

2
lie. Then by Lemma 3.4 @D is parallel

to the core of the annulus in which an S2 cycle lies. This contradicts Lemma 3.3.

Since the edges e2 and e0
2

lie in a disk, e0
2

is incident to U2 in the arc of @U2 between
e2 and e4 that does not contain e3 . Therefore e0

3
is incident to U2 and Ua in the arcs

of @U2 and @Ua between e2 and e3 in which e0
2

is not incident. Following the corners
of D 0 puts edge e0

4
incident to Ua on the same side of e2 and e3 as e0

3
and edge e0

5

so that e1 lies in the disk between e0
1

and e0
5

. This configuration is shown in Figure
18. Let � be this subgraph of GT consisting of the edges e1; : : : ; e5 and e1; : : : ; e5

and the vertices U1 , U2 , Ua , and UaC1 .

If a> 3 then there is an (extended) S2 cycle with label pair f3; a�1g which by Lemma
3.4 lies in an essential annulus. Thus � must lie in an essential annulus. This is a
contradiction. Thus aD 3. This proves the lemma.

Proposition 3.16 If a trigon f of Gx
S

is not innermost, then there exists two edges of
f that have the same label pair. These edges either lie in an essential annulus on yT or
bound a bigon on yT whose interior intersects K . Moreover, if the edges of f are not
an extended S3 cycle, then f contains a forked extended S2 cycle whose edge with
label pair distinct from the other two is not an edge of f .
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Figure 18: (a) The trigons g and f (b) The subgraph � consisting of the
edges e1; : : : ; e5; e

0
1; : : : ; e

0
5 and the vertices U1 , U2 , Ua , and UaC1 on yT

Proof Assume f is a trigon of Gx
S

that is not an innermost trigon. Let g be the trigon
innermost on f . Therefore f is obtained from g by attaching bigon faces of GS . By
Proposition 3.9, the edges of g are an S3 cycle or a forked extended S2 cycle.

If the edges of g are an S3 cycle, then to obtain f an equal number of bigons of GS

must be attached to all three edges of g . Hence the edges of f are an extended S3

cycle and lie in an essential annulus on yT .

If the edges of g are a forked extended S2 cycle, then relabel so that g is a trigon
of G1

S
as in Figure 12(a) with one edge e4 having label pair f1; 2g and the other two

edges e1 and e5 having label pair f1; aC1g. Note a ¤ 1. Then f is obtained by
attaching bigon faces of GS to one, two, or three edges of g . Let �g be the bigon on
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yT bounded by e1 and e5 (and the vertices U1 and Ua ). Lemma 3.13 implies that the
interior of �g must intersect K if a bigon of GS is incident to e4 .

Case I If f is obtained by attaching bigon faces of GS to just one edge of g , then
the bigons are attached to e4 . Otherwise edges with label pairs f1; 2g and f1; aC1g

must be on the boundary of f . Since a ¤ 1, this implies that f is a trigon of G1
S

,
contradicting that f properly contains the trigon g of G1

S
.

Attaching bigons to the edge e4 of g with label pair f1; 2g implies that f must be
a trigon of GaC1

S
. Furthermore, e1 and e5 are still edges of f . These edges bound

�g . According to Lemma 3.13 the interior of �g must intersect K . This satisfies the
conclusion of the proposition.

Case II If f is obtained from g by attaching bigons of GS to the two edges with
label pair f1; aC1g, then f must be a trigon of either G1

S
or G2

S
. This cannot occur

since g is a trigon of G1
S

and its interior contains edges of G2
S

.

Thus f must be obtained from g by attaching bigons of GS to the edge with label
pair f1; 2g and one of the edges with label pair f1; aC1g. Because the third edge has
label pair f1; aC1g, f must be a trigon of either G1

S
or GaC1

S
. It can be neither as

the interior of f will contain an edge of g with label pair f1; aC1g. Thus this case
cannot occur.

Case III Assume f is obtained from g by attaching bigons of GS to all three edges
of g . The number of bigons attached to each edge is not necessarily uniform.

If b bigons are attached to each edge of g , then f is a trigon of Gt�bC1
S

. Then f
has two edges with label pair faC b C 1; t � b C 1g and one edge with label pair
ft�bC1; bC2g. The trigon f appears as in Figure 19(a). Note that bC2< aCbC1

since a > 1, and aC bC 1 < t � bC 1 since otherwise there would be an edge of
Gt�bC1

S
in the interior of f .

Either the two edges of f with label pair faC bC 1; t � bC 1g lie in an essential
annulus (satisfying the proposition) or they bound a bigon �f on yT . If Int�f \KD∅
then we may construct a long disk in a manner similar to the constructions for aC1� 6

and aC 1D 4 in Lemma 3.13. See Figure 19(b). Thus Int�f \K ¤∅ satisfying the
proposition.

If a different number of bigons is attached to each edge of g to form f , then assume
b is the minimum number of bigons attached to an edge of g . Hence all edges of g
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Figure 19: (a) A forked extended S2 cycle with b bigons attached to each
edge of the face g it bounds (b) The construction of a long disk
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have b bigons attached, and either one or two edges have more than b edges attached.
Let g0 be the trigon formed by attaching b bigons to each of the edges of g . The
trigon g0 appears as in Figure 19(a).

If f is obtained from g0 by attaching bigons to two of the edges of g0 , then one may
check that the arguments of Case II apply. If f is obtained from g0 by attaching
bigons to just one of the edges, then one may check that the initial arguments of Case
I also apply to imply that extra bigons are attached to the edge of g0 with label pair
fbC 2; t � bC 1g. Thus f is a trigon of GaCbC1

S
.

Either the two edges of f with label pair faC bC 1; t � bC 1g lie in an essential
annulus (satisfying the proposition) or they bound a bigon �f on yT . If Int�f \KD∅
then we may construct a long disk in a manner similar to the construction in Lemma
3.13. Again, see Figure 19(b). Thus Int�f \K ¤∅ satisfying the proposition.

Lemma 3.17 If two edges of a trigon of some Gx
S

bound a bigon B on yT , then
Int B \K D∅.

Proof Assume otherwise. Then for some x there is a trigon F of Gx
S

with two edges
that bound a bigon B in yT with Int B \K ¤ ∅ such that (*) any other bigon in yT
bounded by two edges of a trigon of some G

y
S

and contained in B has interior disjoint
from K .

Let U1 be a vertex of GT in Int B . By Lemma 3.1 the graph G1
S

must have a bigon or
trigon face g . Because U1 is contained in the interior of B , no pair of edges bounding
g may lie in an essential annulus on yT . By Lemma 3.3 and Lemma 3.4, g must be
a trigon that is not bounded by an S3 cycle or an extended S3 cycle. If g is not an
innermost trigon then by Proposition 3.16 a pair of its edges must bound a bigon B0

on yT whose interior intersects K . This bigon B0 however must be contained in B ,
contradicting (*). Therefore g must be an innermost trigon. Since it cannot be bounded
by an S3 cycle, Proposition 3.9 implies that it must be bounded by a forked extended
S2 cycle. We may assume g has edges as in Figure 12(a) which appear on GT as in
Figure 12(b) as described by Lemma 3.12.

Because U1 is in the interior of B and the edges e2 and e3 lie in an essential annulus
on yT , the edges of GT bounding B must both be incident to U2 . Because edges of
GT connect vertices of opposite parity, the edges of GT bounding B cannot also be
incident to UaC1 . Therefore they must be incident to some other vertex, say Uz , which
may be Ua . (Note that this means x D 2 or x D z .) One such configuration with
z ¤ a is depicted in Figure 20. If z D a then it may be the case that either e2 or e3

bounds a bigon on yT with an edge of B .
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2a
e3 e2e2

1

aC 1

z

e1 e5

e4

Figure 20: For z ¤ a the bigon B is shown in grey with the edges of g on yT .

Observe that the vertex UaC1 must be contained in the interior of B . Therefore the
bigon �g on yT bounded by the two edges e1 and e5 of g is contained in B . By (*)
the interior of �g must be disjoint from K .

Furthermore the graph GaC1
S

must have a trigon face f bounded by a forked extended
S2 cycle by the same arguments used above for the trigon g . The edges of f then
appear as in Figure 16(a) or (b). Because the bigon �f on yT bounded by the two
edges e0

1
and e0

5
of f is contained in B , (*) implies its interior must be disjoint from

K . Since the interiors of both �g and �f are disjoint from K , Lemma 3.14 implies
that the edges of GS on f must appear as in Figure 16(a). Moreover, since the edge
e0

4
has label pair fa; aC1g, it must be the case that z D a. Note that the two edges e0

2

and e0
3

both have label pairs fa; bC1g and lie in an essential annulus on yT .

Claim b D 1

Observe that the vertex Ub is contained in B . Note that b ¤ 2; aC 1 since edges of
GT connect vertices of opposite parity, and b ¤ a since the edges of f would not
form a forked extended S2 cycle otherwise. If b ¤ 1 then the above arguments apply
once again to show that Gb

S
contains a trigon h bounded by a forked extended S2

cycle. As with the trigons g and f , two edges of h bound a bigon �h on yT which is
contained in B and thus has interior disjoint from K . With f playing the role of g , h

playing the role of f , and adjusting the labeling accordingly, Lemma 3.14 implies that
h has an edge, say e00

4
, with label pair fb; bC1g. Since b ¤ 1, bC 1¤ 2. Therefore

in order for e0
2

and e0
3

to lie in an essential annulus on yT , the vertex UbC1 must be
disjoint from B . Yet this contradicts that the edge e00

4
connects the vertices Ub and

UbC1 . Hence b D 1.
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Since b D 1 the two forked extended S2 cycles bounding g and f fit the hypotheses
of Lemma 3.15. Indeed the notation that we are currently using agrees with the notation
used in the proof of Lemma 3.15. As a consequence, we have that a D 3 and the
subgraph � of GT consisting of the edges e1; : : : ; e5 and e0

1
; : : : ; e0

5
and the vertices

U1 : : :U4 does not lie in an essential annulus on yT .

Since z D aD 3, the edges of B have label pair f2; 3g. Therefore F is a trigon of
either G2

S
or G3

S
. The subgraph � and the two edges of B are shown in Figure 21.

Because of the symmetry between the edges of f and g , we may assume F is a trigon
of G2

S
.

e03

e0
4

e0
5

e4

e0
3

1

1

2 3

4 1

2 3

4

3

e5

2 4

e3

1

23

4

e2

e1 e0
1 1

3

4

2
e02

g f

23

4 1

e3

e2e2

e0
4

e5

e05

e1

e0
1

e0
2

e0
2

e4

e0
4

(a)

(b)

Figure 21: (a) The two forked extended S2 cycles g and f (b) The bigon
B in grey and the edges of g and f on yT
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If F is not an innermost trigon, then by Proposition 3.16 either F is bounded by an
extended S3 cycle or contains a forked extended S2 cycle. In either case, F must
contain an (extended) S3 cycle or an (extended) S2 cycle � for which neither 2 nor 3

belong to its label pair. By Lemma 3.4, the edges of � must lie in an essential annulus
on yT . But this essential annulus must be disjoint from � which contradicts that �
does not itself lie in an essential annulus.

Since F must be an innermost trigon, by Proposition 3.9 it is bounded by an S3 cycle
or a forked extended S2 cycle.

If F is bounded by an S3 cycle, then it has label pair f2; 3g. By Lemma 3.3 its third
edge must lie in an essential annulus A with the two edges that bound B . Beginning
with the two edges of B , by following the endpoints of the edges along the corners of
F (along @H2;3 ), we find that all three edges of F must encounter the vertex U2 from
the same side of the essential annulus A0 in which edges e2 and e3 lie. Following
along the corners of F to the vertex U3 , we find that the edges of F must encounter
the vertex U3 from the other side of the annulus A0 . Therefore the core curves of each
A and A0 are isotopic. But since e2 and e3 bound an S2 cycle in the solid torus on
the same side of yT as F , Lemma 3.3 implies that the cores of A and A0 run 3 and 2

times respectively in the longitudinal direction of this solid torus. Because these cores
are isotopic on yT , this is a contradiction.

If F is bounded by a forked extended S2 cycle of G2
S

, then by Lemma 3.12 the edge
with label pair distinct from the other two has label pair f2; 1g or label pair f2; 3g. But
since the two of its edges that bound B have the label pair f2; 3g, the third edge must
have label pair f2; 1g. Therefore there must be an (extended) S2 cycle with label pair
f1; 4g on F . By Lemma 3.4 the two edges of this S2 cycle must lie in an essential
annulus on yT . Yet since the vertices U1 and U4 are both contained in the interior of
the bigon B , this cannot occur.

Proposition 3.18 A trigon of Gx
S

is bounded by either an S3 cycle, an extended S3

cycle, or a forked extended S2 cycle.

Proof Let f be a trigon of Gx
S

. By Proposition 3.9, f is innermost if and only if it is
bounded by either an S3 cycle or a forked extended S2 cycle. If f is not innermost,
then by Proposition 3.16 either it is bounded by an extended S3 cycle or f contains a
forked extended S2 cycle whose edge with label pair distinct from the other two is not
an edge of f .

Let us assume f is as in this last situation since it is the only one we must rule out. Let
g be the forked extended S2 cycle in f and assume it is labeled as in Figure 12(a).
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By Lemma 3.17 the bigon on yT bounded by edges e1 and e5 of g has interior disjoint
from K . Since edge e4 is not an edge on the boundary of f , within f there must be
a bigon of GS with e4 as an edge. This contradicts Lemma 3.13.

Lemma 3.19 Each graph Gx
S

contains at least one of the following: an S2 cycle, an
extended S2 cycle, an S3 cycle, an extended S3 cycle, a forked extended S2 cycle.

Proof Since Lemma 3.1 implies that each graph Gx
S

must contain a bigon or a trigon,
this lemma follows from Lemma 3.8 and Proposition 3.18.

Lemma 3.20 S \T contains no simple closed curves that bound disks in X .

Proof A simple closed curve of S \T is either essential on yT or bounds a disk on
yT .

Assume there is a simple closed curve  2 S \T that is an essential curve on yT and
bounds a disk in X . Via Lemma 3.19 GS must have an S2 or S3 cycle � . By Lemma
3.3, the edges of � lie in an essential annulus A on yT . Since  must be disjoint from
A, it must be parallel to the core of A. Thus the core of A bounds a disk in X . This
contradicts Lemma 3.3.

Assume there is a simple closed curve  2 S \T that bounds a disk D � yT .

Assume there is a vertex, say Ux , of GT in D . By Lemma 3.19, Gx
S

contains either
an S2 cycle, an extended S2 cycle, an S3 cycle, an extended S3 cycle, or a forked
extended S2 cycle. By Lemma 3.3 and Lemma 3.4 only the edges of a forked extended
S2 cycle may not lie in an essential annulus. Hence Gx

S
must contain a forked extended

S2 cycle � that bounds a face of Gx
S

with edges as in Figure 12. Since an edge of
� must be incident to a vertex that has an (extended) S2 cycle also incident to it, �
cannot lie in D by Lemma 3.4. Thus there are no vertices of GT in D .

Hence D\KD∅. Since lens spaces are irreducible,  must also bound a disk D0�S

that is isotopic rel–@ in X �N.K/ to D . This contradicts the minimality assumption
on jS \T j.

3.4 Similar forked extended S2 cycles

With Lemma 3.19 in hand, we may refine our understanding of Lemma 3.15. In
particular, as we shall soon see, the hypotheses of Lemma 3.15 hold true only if t D 4.
The following proposition will be relevant in Section 5 for the proof of Lemma 5.1.
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Proposition 3.21 Assume �i �Gi
S

and �j �G
j
S

are two forked extended S2 cycles
such that for each (extended) S2 cycle contained in the face bounded by one of �i

or �j there is an (extended) S2 cycle with the same label pair contained in the face
bounded by the other forked extended S2 cycle. If t � 6 then i D j .

Proof Let us return to the notation set up in Lemma 3.15. Specifically, note that for
f , g , and � we set aD 3. One may care to refer to Figure 21 (disregarding the bigon
B ) instead of Figure 18 for a depiction of the arrangement of their edges.

Lemma 3.19 implies that for each x 2 t Gx
S

contains a face F bounded by an (extended)
S2 cycle, an (extended) S3 cycle, or a forked extended S2 cycle. In any of these cases,
there exists an S2 cycle or an S3 cycle � of GS on F . By Lemma 3.3 the edges of
an S2 or S3 cycle lie in an essential annulus. Since the subgraph � does not lie in an
essential annulus (see the proof of Lemma 3.15), the edges of � must be incident to
at least one vertex in � . Therefore � must have label pair ft; 1g; f1; 2g; f2; 3g; f3; 4g,
or f4; 5g. By Lemma 3.6 the faces of GS bounded by Scharlemann cycles of order
2 or 3 with disjoint label pairs must lie on opposite sides of yT . Since each f and g

contain an S2 cycle with label pair f2; 3g, � may only have label pair f1; 2g, f2; 3g,
or f3; 4g.

Claim: � cannot have label pair f1; 2g or f3; 4g.

Assume � has label pair f1; 2g. Note that e4 cannot belong to � . Let c be a corner of
the face of GS bounded by � . Let E1 and E2 be the edges incident to c at the vertices
U1 and U2 respectively. E1 is incident to U1 on the arc of @U1 either between e4

and e0
5

or e4 and e5 in which no other edge of � is incident.

In the former case the edge E2 is incident to U2 in the arc of @U2 between e3 and e0
3

in which no other edge of � is incident. Thus the other end is incident to U3 . This
contradicts that the label pair of E2 is f1; 2g.

In the latter case the edge E2 is incident to U2 in the arc of @U2 between e3 and e4

in which no other edge of � is incident. Thus E1 and E2 lie in the same disk of yTn� .
Therefore every edge of � lies in a disk. This contradicts Lemma 3.3.

Hence � cannot have label pair f1; 2g. Due to the symmetry of f , g , and � , the same
argument prohibits � from having label pair f3; 4g. This proves the claim.

Due to the above claim, the S2 or S3 cycle of GS in any bigon or trigon of Gx
S

for
any x 2 t must have label pair f2; 3g. If for 5� x � t the graph Gx

S
has an extended

S2 cycle or extended S3 cycle � 0 , then the label pair of � 0 cannot include any of
the labels 1, 2, 3, or 4. Thus � 0 must lie in a disk in the complement of � . This
contradicts Lemma 3.4.
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Thus G5 and Gt both have forked extended S2 cycles which bound trigons containing
extended S2 cycles with label pair f1; 4g. This contradicts Lemma 3.15.

4 Annuli and trees

4.1 Construction of annuli, related complexes, and trees

Assume the labeling of the vertices of GT has been chosen so that K.t;1/ is contained
in X� . Recall that by Lemma 3.20 the interior of each face of GS is disjoint from yT .

Assume 1 < k � t=2 and Gk
S

contains an extended Sp cycle � for p D 2 or 3 to
which the innermost Scharlemann cycle has label pair f1; tg. The edges of � thus have
label pair fk; t � kC 1g.

Let B denote the face of Gk
S

bounded by � . The edges of GS divide B into p.k�1/

bigons plus the p–gon bounded by the Scharlemann cycle. Let B1 be the p–gon
bounded by the Scharlemann cycle. If p D 2, for i � 2 let B0i and B00i be the bigons
bounded by the edges with label pairs fi � 1; t � i C 2g and fi; t � i C 1g. If p D 3,
for i � 2 let B0i , B00i , and B000i be the bigons bounded by the edges with label pairs
fi � 1; t � i C 2g and fi; t � i C 1g chosen so that

� @B0i \ @B
0
iC1
¤∅, @B00i \ @B

00
iC1
¤∅, @B000i \ @B

000
iC1
¤∅ and

� the edges @B0i \ @B
0
iC1

and @B00i \ @B
00
iC1

do not lie in a disk; see Lemma 3.4.

For each 2� i � k , form the annulus Ai from B0i [B00i [H.i�1; i/[H.t�iC1; t�iC2/

by shrinking each H.i�1; i/ and H.t�iC1; t�iC2/ radially to their cores K.i�1; i/ and
K.t�iC1; t�iC2/ . The annulus Ai is contained in XC if and only if i is even. Let ai

be the curve of @Ai that contains the point Ki , and set a1 to be the curve of @A2 that
contains K1 .

If p D 2, let A1 be the Möbius band formed from B1[H.t;1/ by shrinking H.t;1/ to
its core radially. Figure 22 shows (a) the solid torus X� with H.t;1/ and (b) how B1

sits in X� . Such a construction of a Möbius band is done in the proof of Lemma 2.5
of [5].

If p D 3, let A1 be the complex formed from B1[H.t;1/ by first isotoping the edge
B1\B000

2
across the disk component of yTn.B1[H.t;1// (which has interior disjoint

from K by Lemma 3.17) keeping the corners of B1 on H.t;1/ . See Figure 23(a) for an
example of the placement of B1 in X� ; see also Figure 22(a). Next identify a small
collar neighborhood in B1 of the two edges that have been isotoped together. Then
after shrinking H.t;1/ to its core radially, the resulting complex A1 intersects yT as

Algebraic & Geometric Topology, Volume 6 (2006)



Small genus knots in lens spaces have small bridge number 1561

yT H.t;1/

X�

1

t

B1

p D 2

(a) (b)

Figure 22: (a) The solid torus X� with H.t;1/ D
xN .K.t;1// (b) The bigon

B1 for p D 2

B1

p D 3

A1

(a) (b)

Figure 23: (a) The trigon B1 for p D 3 (b) The complex A1 for p D 3

the curve a1 . See Figure 23(b). Note that after chopping along a suitable meridional
disk D , .X�nD; xN .A1/nD/ is homeomorphic to .I �D2; I � xN .Y // where Y is
the complex in the standard disk D2 formed by three radii; see Lemma 3.3. For both of
these cases, @ xN .A1/\X� is an annulus that double covers A1 (except along K.t;1/

if p D 3 where it is triple covered by the annulus).
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Define the annulus A D
Sk

iD2 Ai . By Lemma 3.4
Sk

iD2 @Ai D fa1; : : : ; akg is a
collection of k essential simple closed curves on yT that are mutually disjoint and
parallel. Furthermore, by Lemma 3.3 these curves are not meridional in either XC or
X� . These curves then divide yT into k annuli Tj so that yT �AD

Sk
jD1 Int Tj .

Recall that two 3–manifolds with toroidal boundaries attached together along an annulus
that is incompressible in each is a solid torus if and only if each of the manifolds is itself
a solid torus and one of their meridians crosses the annulus exactly once. Each annulus
Ai (for i ¤ 1) thus separates X˙ (where ˙DC or � depending on the parity of i )
into two solid tori where at least one of the meridians of the solid tori crosses the core
curve of Ai just once. This implies that Ai is isotopic in X˙ rel–@ onto yT . Let Vi

be the solid torus of X˙nAi through which this isotopy occurs. In the event that both
solid tori of X˙nAi would work, choose the Vi so that if Int Vi \ Int Vj is nonempty,
then it is either all of Int Vi or all of Int Vj . Note that none of the Vi contain A1 .

(b)
x�x1

T

(a)

A1

A

ak

a1

ak

a1

p D 2

X1

X�
ak

a1

yT

XC

X�

A1

A

ak

a1

ak

p D 3

Figure 24: (a) A schematic of the annulus A (b) The corresponding graph T

Consider the collection of solid tori X D XnAn yT formed by chopping X along both
A and yT . The boundaries of all but at most two Xl 2 X are alternately comprised of
the annuli Ai and the annuli Tj . Let X1 �X� be the solid torus of X that contains
A1 . The boundary of X1 intersects the curve a1 but not Int A2 . Let X� 2 X be the
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solid torus whose boundary intersects ak but not Int Ak . Since k > 1, each of @X� and
@X1 contains more than one of the annuli Tj . The meridian of each Xl 2 X intersects
the core curve of an annulus Tj on its boundary exactly once except for at most two,
one of which is necessarily X1 �X� and the other we shall denote X0 �XC . Note
that X0 \ Int Vi D ∅. It may be the case that X� D X0 or X� D X1 . See Figure
24(a) for a schematic example of the annulus A, the complex A1 , X1 , and X� for
both p D 2 and 3. We will continue draw schematics of the annulus A et al. in the
quotiented manner indicated in Figure 24(a).

Form a graph T with vertices xl corresponding to solid tori Xl 2 X and edges tj
corresponding to annuli Tj so that an edge tj connects vertices xl and xm if the
annulus Tj is contained in the boundary of each Xl and Xm . Figure 24(b) shows the
graph T corresponding to the annulus A in Figure 24(a). The vertices xl may be
marked as C or � according to whether the corresponding Xl is contained in XC or
X� . Adjacent vertices must have opposite signs.

Lemma 4.1 The graph T is a tree.

Proof If T is not a tree, then there is a cycle of distinct edges tj1
; tj2

; : : : ; tjw
such

that @tji
\ @tjiC1

D xli
(unless s D w in which case @tj1

D @tj2
) and ji D ji0 only if

i D i 0 .

Let Rli
be an annulus properly contained in the solid torus Xli

corresponding to the
vertex xli

whose boundary components are the core curves of the annuli Tji
and TjiC1

.
Since the annuli are connected in a cycle, R D

Sw
iD1 Rli

is a torus that is disjoint
from A. Since R is contained in the lens space X , it must be separating. On the
boundary of Xli

the annuli Tji
and TjiC1

are necessarily separated by at least two of
the curves fa1; : : : ; akg since each @Tji

and @TjiC1
are pairs of curves in fa1; : : : ; akg

and Int Tji
\ Int TjiC1

D∅. Specifically, Xli
�Rli

has two components each of which
has nontrivial intersection with A. This however contradicts that A is connected and
R is separating.

Since T is a tree and there are k annuli Tj , T has k C 1 vertices. Hence there
are k C 1 solid tori Xl . Furthermore, since T divides K into t arcs (the arcs
K.1;2/;K.2;3/; : : : ;K.t;1/ ) of which 2.k�1/ (the arcs K.t�kC1; t�kC2/; : : : ;K.t�1; t/

and K.1;2/; : : : ;K.k�1;k/ ) are contained in A, the remaining t � 2.k � 1/ arcs (the
arcs K.k;kC1/; : : : ;K.t�k; t�kC1/ and K.t;1/ ) are disjoint from A (except at the four
points K1 , Kt , Kk , and Kt�kC1 ).

Aside from K.t;1/ , these remaining arcs together form the arc K.k; t�kC1/ which runs
from @A inside X� through the interior of the solid tori Xl crossing between them
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by passing through the Tj eventually returning to @A in X� . Due to T being a tree,
K.k; t�kC1/ eventually returns through the same Tj from which it entered an Xl .
Therefore jK.k; t�kC1/\ Int Tj j is even for every j .

Consider the subtree T� � T consisting of the vertices and edges corresponding to
the Xl and Tj with which K.k; t�kC1/ has nonempty intersection. Since K.k; t�kC1/

intersects the union
Sk

jD1 Int Tj a total of .t � k C 1/� k � 1 D t � 2k times and
K.k; t�kC1/ intersects each Int Tj an even number of times, T� has at most t=2� k

edges. Root both trees T and T� at the vertex x� .

Remark 4.1 Indeed, for each edge tj of T� there is a positive even number of
intersections of the interior of K.k; t�kC1/ with the corresponding annulus Tj �

yTnA.
Notice that if t=2� k < k (ie t=4 < k ) then there exists at least one Xl (and hence
some Tj ) which K.k; t�kC1/ does not intersect. To rephrase, if K.k; t�kC1/ intersects
every Xl 2 X , then t=4� k and the face B contains (extended) S2 or S3 cycles for
the 2k.� t=2/ graphs Gi

S
with t � kC 1� i � t or 1� i � k .

For either T or T� we say a vertex other than x� of valency 1 is a leaf and a (nonleaf)
vertex other than x� all of whose adjacent vertices except at most one are leaves is a
penultimate leaf .

4.2 Initial constraints on the trees due to thinness

Lemma 4.2 Let xm be a leaf of T not in T� which is not x0 and corresponds to the
solid torus Xm . If Xm �XC (resp. X� ), then there is a high disk (resp. low disk) in
Xm for each of the two arcs of K\ @Xm .

Proof We first remark that x1 cannot be a leaf unless k D 1. Nevertheless, we are
assuming k > 1. Since xm 62 T� , xm 62X� . Therefore the boundary of Xm is formed
by two annuli, say Tm and Am . Since Xm ¤ X0 , the meridian of Xm crosses the
core curves of Tm and Am each once. In particular, there are two disjoint meridional
disks each with boundary consisting of one of the transverse arcs K.m�1;m/ and
K.t�mC1; t�mC2/ on Am and an arc on Tm . Since K \ Int Xm D ∅, these are high
(or low) disks.

Lemma 4.3 Any two leaves of T not in T� neither of which is x0 must have the
same sign.

Proof Assume otherwise. Let xp and xn be two leaves of T of signs C and �
respectively that are not in T� . Assume neither is x0 . The two vertices cannot be
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joined by an edge since T is a tree containing the vertex x0 . Therefore the edges tp
and tn incident to xp and xn respectively are distinct. Let Xp;Xn;Tp; and Tn be
the corresponding solid tori and annuli. Hence the annuli Tn �Xn and Tp �Xp are
distinct. By Lemma 4.2, there is a high disk Dp such that Dp\

yT � Tp and a low disk
Dn such that Dn\

yT � Tn . For example, see Figure 25. Since K is in thin position
this contradicts Lemma 2.1.

xp

xn

Dn

Dp

(a)

yT

(b)

Figure 25: (a) Parts of T with xn and xp (b) The corresponding schematic
of A in X illustrating Dn and Dp

Lemma 4.4 If T has a penultimate leaf not in T� , then the vertex x0 must be among
the penultimate leaf and leaves to which it is adjacent.

Proof Let xp be a penultimate leaf of T not in T� and let xl1
; : : : ;xln

be the leaves
adjacent to it. Assume x0 is none of these. Also recall that x1 cannot be a leaf unless
k D 1.

Let Tli
, for i D 1; : : : ; n, be the annulus on yT corresponding to the edge of T which

connects xli
to xp . Let Tp be the remaining annulus of yT \ Xp . Note that Tp

corresponds to the edge tp which separates fxp;xl1
; : : : ;xln

g from the rest of the
vertices of T and from T� in particular. Since meridional disks of the Xli

may be
isotoped to intersect the cores of the Tli

once, the manifold X 0p obtained by joining
each Xli

to Xp along Tli
is itself a solid torus.
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Case 1 Assume xp ¤ x1 .

In this case @X 0p is composed of the annulus Tp and a subannulus A0 D
SmC2n

iDm Ai

of A for some m � 2. This annulus contains the arc K.m�1;mC2n/ and the arc
K.t�m�2nC1; t�mC2/ . See Figure 26.

xp

xl1
xl2

xl3

tptl1 tl2 tl3

Tl1
Tp Tl2

Tl3

Xl1
Xl2

Xl3

Xp(b)

(a)

Figure 26: (a) Part of T where xp is a penultimate leaf not in T� (b) The
corresponding schematic of A in X illustrating X 0p and its meridional long
disk

Since Xp ¤ X0 or X1 , meridional disks may be isotoped to intersect the cores of
each annulus of yT \ Xp exactly once. Thus a meridional disk of X 0p may be iso-
toped to intersect the core of Tp once and intersect A0 in the arc K.m�1;mC2n/ or
K.t�m�2nC1; t�mC2/ . This meridional disk is a long disk. Its existence contradicts
Lemma 2.2.

Case 2 Assume xp D x1 .

A meridional disk of Xp may be isotoped to intersect the core of each annulus of
yT \Xp two or three times depending on the order of the Scharlemann cycle at hand,
so the method of Case 1 does not apply. See Figure 27(a) and (b).

Nevertheless, in this case the boundary @X 0p is composed of the annulus Tp and a
subannulus A0 D

S2nC1
iD2 Ai � A. This annulus contains the arcs K.1;2nC1/ and

K.t�2n; t/ . Because x1D xp 2 T nT� , the only arc of K in the interior of X 0p is K.t;1/ .
Recall that K.t;1/ �A1 .

Algebraic & Geometric Topology, Volume 6 (2006)



Small genus knots in lens spaces have small bridge number 1567

Let D0 be a meridional disk of X 0p . See Figure 27(b) and (c) for illustrations. Isotop
K.t�2n;2nC1/ within A0[A1 to lie on D0 . This puts K.t�2n; t/[K.1;2nC1/ � @D

0

and K.t;1/ as a properly embedded arc on D0 . Let D be one of the two components
of D0nK.t;1/ so that @D is the union of one arc on yT and an arc of K . See Figure
27(d). The disk D is a long disk. Since K is in thin position, its existence contradicts
Lemma 2.2.
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Figure 27: (a) Part of T where x1 is a penultimate leaf not in T� (b) The
corresponding schematic of A in X illustrating X 0p and D0 . (c) “Unquo-
tiented” pictures of the meridional disk D0 of X 0p when A1 is constructed
from an order 2 or 3 Scharlemann cycle. (d) The long disk D as a subdisk
of D0 with K.t;1/ as an arc of A1\D0
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4.3 The unfurling isotopy and further constraints on the trees

Let R be a torus in a 3–manifold Y that bounds a solid torus V . Because R bounds
the solid torus V , any Dehn twist along R is isotopic to the identity.

Assume R is divided into two annuli TR and AR by the two parallel curves aout and
ain . Let K be a knot in Y so that K\R is a collection of spanning arcs of AR with
K\N.aout/� V and K\N.ain/� Y � Int V .

Lemma 4.5 There is an ambient isotopy ‚uW Y � Œ0; 2��! Y so that

(1) ‚0 is the identity,

(2) ‚2�.K�R/D‚0.K�R/ and

(3) ‚2�.K\R/ is a collection of transverse arcs of TR .

We refer to an ambient isotopy of K via such a Dehn twist as an unfurling. This
unfurling isotopy is shown schematically in Figure 28. Note that aout and ain need not
be longitudinal curves on RD @V .

Proof Let A be an arc of AR \K , T be an arc of TR connecting the endpoints of
A , and  D A[T be the simple closed curve oriented so that A runs from aout to
ain . Take ‚u to be the Dehn twist along R in the direction of  . We may view Figure
28 as a “cross section” of V along  . The conclusions of the lemma are immediate
following the definition of the Dehn twist.

Let TR be an annulus of yTnA. Then we have @TR D am [ an where m < n. Let
AR D

Sn
iDmC1 Ai .

Lemma 4.6 The torus RDAR [TR bounds a solid torus in X that does not contain
X0 .

Proof Since R is a torus in a lens space, it separates X into two pieces, say V and
W . Deleting the edge tR corresponding to the annulus TR from T yields two trees
TV and TW each consisting of vertices xi corresponding to solid tori Xi 2 X in V

and W respectively.

Since only one of V and W may contain X0 , only one of TV and TW may contain
x0 . Without loss of generality, assume the tree TV does not contain the vertex x0 .
Though TV may contain x1 , all other vertices of TV then correspond to solid tori
Xi ¤X0 or X1 whose meridians traverse each annulus of Xi \

yT (and each annulus
of Xi \A) exactly once. Therefore the union XV of the Xi corresponding to xi 2 TV

along their common annuli Xi \
yT is a solid torus. Note that @XV DR, and the solid

torus XV is indeed V .
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Figure 28: (a) A (not necessarily meridional) “cross section” of the solid
torus V (b) The cross section shown with K at uD 0 (c) The isotopy at
uD �=2 (d) The isotopy at uD � (e) The isotopy at uD 3�=2 (f) The
finished isotopy at uD 2�

Lemma 4.7 x1 2 T�

Proof Assume x1 62 T� . We may assume k � 3 since if k � 2 then either x1 2 T� or
t D 2.

Put a transverse direction on A respecting the ordering of the Ai . For odd (resp. even)
i , the transverse direction at ai points above (resp. below) yT . Consider the collection
A of curves ai on the boundary of X1 . If k is even, then ak 62 A since otherwise
x1 2 T� . For each ai 2A with i even, the annulus AiC1 must be contained in @X1 .
Since a1 2 A, there are more odd indexed curves than even indexed curves in A.
Hence there are two curves am and an in A cobounding an annulus TR �

yTnA in
@X1 with m< n and both m and n odd.

Consider the annulus AR D
Sn

iDmC1 Ai and the torus R D AR [ TR . See Figure
29(a). By Lemma 4.6, R bounds a solid torus, say V , that does not contain X0 .
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The assumption that x1 62 T� is equivalent to the statement that the solid torus X1 is
disjoint from the arc K.k; t�kC1/ of K . Hence TR and moreover R are disjoint from
this arc. Therefore K only intersects R as two transverse arcs of AR . At one of the
curves am and an , K continues into V ; at the other curve, K continues away from
V . We may apply Lemma 4.5 to obtain an isotopy of K . See Figure 29(b).
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Figure 29: (a) The construction of the unfurling torus (b) After the unfurling isotopy

After this unfurling isotopy, the arcs once of K\AR are now arcs of K\TR and may
be nudged to be transverse to the height function. The new set of critical levels is a
strict subset of the former set of critical levels. Furthermore the intersection number of
K with any of the remaining critical levels has not increased. Therefore the unfurling
isotopy has decreased the width of K , contradicting the thinness of K .

Lemma 4.8 The vertices of T not in T� are leaves of T of the same sign.

Proof By Lemma 4.7, x1 2 T� . If x0 2 T� , then Lemma 4.3 and Lemma 4.4 imply
the conclusion. Thus we may assume x0 62 T� .

Let t0 be the edge of T incident to x0 that separates x0 from x� , T0 be the annulus
of yTnA corresponding to t0 , and @T0 D am[ an with m < n. Form the two annuli
A1;m D

Sm
iD2Ai and Am;n D

Sn
iDmC1Ai . See Figure 30(a). Let A0

1;m
be a slight

push off of A1;m with boundaries a0
1

and a0m so that a0m � T0 . Also let A0
1

be
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Figure 30: (a) The annuli A.1;m/ , A.m;n/ and T0 with the solid torus X0

(b) The annulus A0
.1;m/

and the annulus T 00 (c) The annuli AR and TR and
the solid torus V (d) The result of unfurling along RDAR [TR

.@ xN .A1/\X1/n yT where one component of @A0
1

is a0
1

and the other, say a00
1

, is a
slight push off of a1 to its other side. Let T 0

1
be the annulus between a1 and a0

1
and

T 00
1

be the annulus between a1 and a00
1

so that T 0
1
\T 00

1
D a1 . Let T 0

0
be the annulus

in T0 bounded by a0m and an . See Figure 30(b). We now form the torus

RDA1;m[Am;n[T 00[A01;m[A01[T 001

as shown in Figure 30(c). By construction A1 and X0 both lie on the same side of R.
It follows (as in Lemma 4.6) that R bounds a solid torus, say V , on its other side.
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Divide R into the two annuli AR D A1;m [ Am;n (which is a subannulus of A)
and TR D T 0

0
[A0

1;m
[A0

1
[ T 00

1
. Notice that K \R D K.1;n/ [K.t�nC1; t/ are

two transverse arcs of AR , K \ Int TR D ∅, and KnV DK.t;1/ with @K.t;1/ � an .
Lemma 4.5 applies. The result of this unfurling isotopy is depicted in Figure 30(d).

Form the annuli AQ DA0
.1;m/

[A0
1
[T 00

1
and TQ DA.1;m/[ .T0nT

0
0
/. See Figure

31(a). The torus QD AQ [TQ bounds a solid torus that contains A1 . Notice that
QA D TR . Hence after unfurling along R, QA is a subannulus of the isotoped AR ,
K\TQ D∅, and Lemma 4.5 applies again.

(a)

(c)

(b)

QA

QT

Figure 31: (a) The annuli QA and QT together bound a solid torus (b) The
result of unfurling along Q D QA [QT (c) The result of a further final
isotopy

After unfurling along R and then along Q, the annulus A.m;n/ has been repositioned
as T0 , and the arcs K.m;n/ and K.t�nC1; t�mC1/ now lie as transverse arcs of T0 . See
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Figure 31(b). The rest of K is as it was (up to perhaps height-preserving isotopies near
a1 , am , and an ). By a slight further isotopy of the arcs K.m;n/ and K.t�nC1; t�mC1/

into X0 , we obtain another Morse presentation of K of width not greater than previously.
See Figure 31(c). Since K was in thin position before these isotopies, it must be in
another thin position now. Hence nDmC 1 and x0 is now a leaf of T� . Furthermore
this implies that x0 must have been a leaf of T connected to x1 2 T� before the
isotopies.

If T had a leaf not in T� of opposite sign from x0 , then after these isotopies there
would be a high disk and low disk pair contradicting Lemma 2.1. If T had a nonleaf
vertex that was not in T� , then T has a penultimate leaf not in T� . Since x0 was a leaf
of T connected to T� by an edge, it could not be a leaf adjoined to this penultimate
leaf. Thus there would have been a long disk contradicting Lemma 2.2. The conclusion
of this lemma follows.

Lemma 4.9 If x0 62 T� , then there is an isotopy of K into another thin position which
takes each annulus Ai to itself for i < k and Ak to another annulus such that the
resulting trees have x0 2 T� .

Proof The proof of this lemma is basically contained within the proof of Lemma 4.8.

Assume x0 62 T� . By Lemma 4.8, @X0 consists of the annulus Ak and the annulus,
say, Tk 2

yTnA bounded by the curves ak and ak�1 . Let X2 2 X be the other solid
torus that contains Ak in its boundary. Since k � 3, X2 cannot correspond to a leaf of
T . Lemma 4.8 implies that the interior of X2 must intersect K .

The isotopy employed in the proof of Lemma 4.8 has the effect of rearranging S in
N.
Sk

iD1 Ai [Tk/ so that Ak is moved from one side of X0 to a slight push off Tk

on the other side and each Ai for 1� i < k is taken to itself. For T , this is tantamount
to moving the label x0 to the vertex in T� that previously corresponded to X2 .

4.4 The least extreme critical points

Recall that in the beginning of this Section 4 we let fA2; : : : ;Akg be the annuli and
A1 be the Möbius band or complex associated to the face of an extended Scharlemann
cycle of order 2 or 3. Let AkC1 be the complex formed from identifying the common
corners of the bigon and trigon at the “ends” of the face bounded by a forked extended
Scharlemann cycle that contains the extended Scharlemann cycle of order 2 provided
such a forked extended Scharlemann cycle exists. Otherwise, set AkC1 D∅.
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Lemma 4.10 After perhaps a width-preserving isotopy, the highest minimum (resp.
lowest maximum) below (resp. above) yT lies on an arc of K that together with an arc
on yT bounds a low disk (resp. high disk) with interior disjoint from

SkC1
iD1 Ai and

from K . Furthermore, if the boundary of this low disk (resp. high disk) intersectsSkC1
iD1 @Ai then either it intersects only @AkC1� ak if AkC1 ¤∅ or it intersects only

ak if AkC1 D∅.

Proof We work with the highest minimum below yT . The other case follows in the
same manner.

Let m be the first critical value of h.K/ below 0, and let pm be the corresponding
critical point. Since yT D h�1.0/ is a thick level, pm is a minimum. For a suitably
small � > 0, K\ h�1Œm� �; 0� is a collection of arcs of K transverse to the induced
product structure on h�1Œm��; 0� together with the arc � containing pm that has both
endpoints on yT . Thus there exists a low disk for � .

Let D be a low disk for � so that its interior is disjoint from K and @D consists
of � and an arc on yT . If � is contained in Ai for some i , we may assume that
N.@�/\ .D� �/\Ai D∅ at the expense of perhaps increasing j.@D� �/\Ai j. Let
us further assume D is transverse to

SkC1
iD1 Ai and that D has been chosen among all

such disks (with N.@�/\ .D� �/\Ai D∅) so that jD\
SkC1

iD1 Ai j is minimized.

Assume .D��/\Int Ai ¤∅ for some i 2 f1; : : : ; kC1g. Since D is disjoint from K

except along � , .D��/\Ai DD\ .AinK/. If the intersection contained any simple
closed curves (that do not intersect yT in the case of A1 ), then standard innermost disk
arguments would imply a contradiction either to the minimality of j Int D\

SkC1
iD1 Ai j

or to the incompressibility of S . Therefore D \Ai is a collection of arcs for each
i . Since each component of AinK is a bigon or trigon of GS , each arc of D \Ai

either bounds a subdisk of AinK with an arc of yT or bounds a rectangle of Ai with
two arcs of yT and an arc of K . Standard outermost arc arguments show that we may
assume that only arcs of the second type occur.

Let ˛ be an arc of D\ .AinK/, outermost on D . Thus ˛ cuts off a subdisk D˛ �D

disjoint from � . Since ˛ must be an arc of the second type, let R�Ai be a rectangle
with boundary composed of ˛ , two arcs of @Ai �

yT , and an arc, say �0 , of K\Ai .
Since the interior of D˛ is disjoint from Ai , D˛ intersects R only along ˛ . Thus
by a slight isotopy of the disk R[D˛ , we may form a low disk D0 with boundary
composed of �0 and an arc on yT such that j Int D0\

SkC1
iD1 Ai j D 0.

If �0 D � then the existence of D0 contradicts the minimality of j Int D\
SkC1

iD1 Ai j.
Thus either j Int D\

SkC1
iD1 Ai j D 0 satisfying the lemma or �0 ¤ � .
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If �0 ¤ � then D0 guides a width-preserving isotopy of K so that the minimum of �0

is higher than the minimum of � .

Given the disk D with j Int D\
SkC1

iD1 Ai j D 0, the final conclusion of the lemma is
immediate.

If AkC1¤∅, then each arc of AkC1\K bounds a disk with an arc of yT contained in
N.@AkC1/ whose interior is disjoint from K and ak . These disks may be constructed
similarly to the construction of the disk Dg in Lemma 3.14.

Lemma 4.11 If a leaf of T is not in T� , then it is the only such leaf. Furthermore Ak

is contained in the boundary of the solid torus corresponding to this leaf.

Proof Assume k D 2. If there are two leaves of T not in T� , then x� D x1 D T� .
Hence t D 4 contradicting that t � 6. Thus we assume k � 3.

Let xm be a leaf of T not in T� . Without loss of generality we may assume its sign is
positive. By Lemma 4.7, x1 2 T� . Lemma 4.9 implies that we may assume x0 2 T� .
Thus xm is neither x0 nor x1 .

Let Am be the annulus of An yT which together with an annulus Tm 2
yTnA cuts

off the solid torus Xm 2 X corresponding to the leaf xm . The arcs of K \Am D

K.m�1;m/[K.t�mC1; t�mC2/ each with an arc �.m�1;m/ or �.t�mC1; t�mC2/ of Tm

bound a meridional disk of Xm . These two meridional disks are high disks and may
be assumed to be disjoint.

By Lemma 4.10 the arc � of Kn yT containing the highest minimum below yT together
with an arc �� of yT bounds a low disk D with interior disjoint from

Sk
iD1 Ai . If

the interior of �� is disjoint from the interior of either �.m�1;m/ or �.t�mC1; t�mC2/ ,
then by Lemma 2.1 K is not in thin position. Hence �� must intersect the interior of
both. Thus �� \ Int Tm ¤∅. For this to occur, either @� \ Int Tm ¤∅, @� � @Tm , or
Int �� \ @Tm ¤∅.

Since the interior of Xm is disjoint from K , @� \ Int Tm D ∅. If @� � @Tm then �
must join the two arcs of K\Am . Hence ak � @Tm . If Int �� \ @Tm ¤∅ then, as in
Lemma 4.10, Int �� may only intersect ak . Hence ak � @Tm . Thus Ak � @Xm .

Assume xn is another leaf of T not in T� . Lemma 4.8 implies that xm and xn have
the same sign. We may also assume xn is neither x0 nor x1 . The same argument
above thus applies for the leaf xn . Hence if Xn 2 X is the solid torus corresponding
to xn , then Ak � @Xn . Therefore Ak separates XC into the solid tori Xm and Xn of
X . In other words, XC DXm[Ak [Xn .
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Since k � 3, Ak�2 exists. Furthermore Ak�2 must be contained in XC since Ak

is. Yet since Ak is the only subannulus of AD
Sk

iD2 Ai contained in XC , it must
be the case that k D 3 and A1 � XC . But because neither xm D x1 nor xn D x1 ,
A1 6�XC . This is a contradiction.

Lemma 4.12 There may be at most one vertex of T not in T� .

Proof This follows from Lemma 4.8 and Lemma 4.11.

4.5 Bounds on extended Scharlemann cycles

We may now get good estimates on how many labels are accounted for by the face of
an extended S2 or S3 cycle. Recall that we are assuming t � 6.

Lemma 4.13 For any x 2 t the face bounded by an extended S2 or S3 cycle on Gx
S

may account for at most t=2C 1 of the labels if 4−t and at most t=2 of the labels if
4jt .

Proof Let � 0 be an extended S2 or S3 cycle of Gx
S

for some x 2 t bounding the disk
face f 0 . Let � be the Scharlemann cycle contained in f 0 . Assume we have relabeled
so that � has label pair ft; 1g and � 0 has label pair ft � kC 1; kg. Thus f 0 accounts
for 2k labels. If k D 1 then � D � 0 and the lemma holds. Therefore we may assume
k � 2.

From f 0 form the complex A1 , the annuli Ai for i D 2; : : : ; k , the annulus A DSk
iD2Ai , and the corresponding trees. Lemma 4.12 implies that there can be at most

one vertex of T not contained in T� .

Since T has k edges, T� has at least k � 1 edges. By Remark 4.1, the interior of the
arc K.k; t�kC1/ intersects yT at least 2.k � 1/ times. Hence at least 2.k � 1/ labels
are not accounted for by f 0 . Therefore t � 2kC 2.k � 1/D 4k � 2, ie t=2C 1� 2k .
Since k must be an integer, if t is divisible by 4 then t=2� 2k .

Lemma 4.14 For any x 2 t the trigon bounded by a forked extended S2 cycle on Gx
S

may account for at most t=2 of the labels if 4−t and at most t=2�1 of the labels if 4jt .

Proof Let � 00 be a forked extended S2 cycle bounding the disk face f 00 . Let � 0

be the outermost extended S2 cycle contained in f 00 , and let f 0 be the disk face it
bounds. As in the above proof of Lemma 4.13, let � be the S2 cycle contained in
f 0 . Assume we have relabeled so that � has label pair ft; 1g and � 0 has label pair
ft � k C 1; kg. Since f 0 accounts for 2k labels, f 00 accounts for 2k C 1 labels. If
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k D 1 then � D � 0 , f 00 accounts for 3 labels, and the lemma holds. Therefore we may
assume k � 2.

Again form the complex A1 , the annuli Ai for i D 2; : : : ; k , the annulus A, and
the corresponding trees; and again note that T can have at most one vertex not in
T� . Also form the complex AkC1 from the bigon and trigon of f 00nf 0 . Note that
AkC1\AD ak .

Let Tk and T 0
k

be the two annuli of yTnA with ak as a boundary component. Since
AkC1\KDK.k;kC1/[K.t�k; t�kC1/ , either Tk or T 0

k
contains both the end points

KkC1 and Kt�k (because ak contains the end points Kk and Kt�kC1 ). Say Tk

contains these end points. Since by Lemma 4.12 at most one vertex of T is not in T� ,
either (a) T 0

k
corresponds to the edge t 0

k
of T incident to the leaf of T not in T� or

(b) the interior of K.kC1; t�k/ intersects T 0
k

nontrivially.

Case (a) Assume T 0
k

corresponds to an edge t 0
k

of T incident to the leaf of T not
in T� . It must be the annulus Ak that together with T 0

k
cuts off the solid torus corre-

sponding to this leaf. By Lemma 4.9 we may assume this leaf is not x0 . Furthermore,
by paying attention to the isotopy of Lemma 4.9 (described in the proof of Lemma
4.8) one may note that AkC1 is preserved. Since we may assume this leaf is not x0 so
that Ak and T 0

k
are parallel, the arcs of K\Ak together with arcs contained in T 0

k

then bound high (or low) disks. Furthermore, as in the construction of the high disks
of Lemma 3.14 shown in Figure 17, the arcs of K\AkC1 together with arcs of Tk

bound low (or high) disks. By Lemma 2.1, this contradicts the thinness of K .

Case (b) Assume the interior of K.kC1; t�k/ intersects T 0
k

nontrivially.

If T ¤ T� , then there is a leaf of T not in T� . By Lemma 4.11 the solid torus
corresponding to this leaf contains Ak and hence ak in its boundary. Thus it must
contain Tk or T 0

k
. This contradicts our assumption that neither Tk nor T 0

k
has interior

disjoint from K . Thus T D T� .

Since T has k edges, T� has k edges. By Remark 4.1, each edge of T� corresponds
to at least two intersections of the interior of the arc K.k; t�kC1/ with each of the
k annuli yTnA. Since T is a tree and the points KkC1 and Kt�k are contained in
Tk , the interior of the arc K.kC1; t�k/ must intersect Tk twice more so that K may
intersect the interior of T 0

k
. Hence K intersects the interior of Tk at least 4 times.

It follows that the interior of the arc K.k; t�kC1/ intersects yT at least 2kC 2 times.
Therefore t � 2k C 2k C 2, ie t=2 � 1 � 2k . Since k must be an integer, if t is
divisible by 4 then t=2� 2 � 2k . Since f 00 accounts for one more label than f 0 , it
may account for at most t=2 labels if 4−t and at most t=2� 1 labels if 4jt .
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5 Two Scharlemann cycles

5.1 Accounting for labels

Let Ffx;xC1g be the collection of bigons and trigons of G
y
S

for every y 2 t that contain
a Scharlemann cycle (of order 2 or 3) of GS with label pair fx;xC1g. Let ƒfx;xC1g

be the subset of labels in t accounted by the faces of Ffx;xC1g .

Lemma 5.1 There exists an F 2 Ffx;xC1g such that F accounts for every label in
ƒfx;xC1g .

Proof For F1;F2 2Ffx;xC1g , say F1�F2 if the set of labels for which F1 accounts
is a subset of the set of labels for which F2 accounts. It is clear that � is a partial
ordering. We claim that � indeed totally orders the finite set Ffx;xC1g . A maximal
element of Ffx;xC1g then accounts for every label in ƒfx;xC1g .

Assume neither F1 nor F2 2 Ffx;xC1g are bounded by forked extended S2 cycles.
Now Fi accounts for the labels fx�ki ;x�kiC1; : : : ;x;xC1; : : : ;xCki ;xCkiC1g

for some integer ki � 0 for each i D 1; 2, since Fi is an extended S2 or S3 cycle.
Thus either F1 � F2 or F2 � F1 since either k1 � k2 or k2 � k1 respectively.

By Proposition 3.21, if F1;F2 2Ffx;xC1g are two trigons bounded by forked extended
S2 cycles containing outermost extended S2 cycles with the same label pair, then they
must account for the same set of labels. Thus F1 D F2 with respect to the ordering �.

Since a trigon bounded by a forked extended S2 cycle accounts for an odd number of
labels whereas an extended S2 or S3 cycle accounts for an even number of labels,
it follows that for any F1;F2 2 Ffx;xC1g , either F1 � F2 or F2 � F1 . Thus � is a
total ordering on Ffx;xC1g .

Proposition 5.2 There exist two Scharlemann cycles on GS each of order 2 or 3 with
disjoint label pairs. Furthermore, there cannot be a third Scharlemann cycle of order 2

or 3 with label pair distinct from the other two.

Proof Assume any Scharlemann cycle of GS of order 2 or 3 has label pair fx;xC1g.
By Lemma 5.1 there exists an F 2 Ffx;xC1g that accounts for the labels ƒfx;xC1g .
Then by Lemma 4.13 and Lemma 4.14, jƒfx;xC1gj � t=2C 1. Since t � 6, we have
ƒfx;xC1g ¤ t. Therefore there must be a second S2 or S3 cycle with label pair
distinct from fx;xC1g.

Assume there are two Scharlemann cycles � and � 0 of GS of order 2 or 3 with
label pairs fx � 1;xg and fx;xC1g respectively. Again, by Lemma 5.1 there exists
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F 2Ffx�1;xg that accounts for the labels ƒfx�1;xg and F 0 2Ffx;xC1g that accounts
for the labels ƒfx;xC1g . Also, by Lemma 4.13 and Lemma 4.14, jƒ�j � t=2C 1

for each � D fx�1;xg; fx;xC1g. Because for each fx�1;xg and fx;xC1g the
sequence of labels � contains the middle of the set ƒ� (when ordered sequentially),
jƒfx�1;xg [ ƒfx;xC1gj � t=2 C 1 C 1. Since t � 6, ƒfx�1;xg [ ƒfx;xC1g ¤ t.
Therefore there must be a third S2 or S3 cycle � 00 in GS with label pair distinct from
the label pair of each � and � 0 .

Assume there are three Scharlemann cycles of order 2 or 3 with mutually distinct label
pairs. Then two of them have disjoint label pairs and must bound faces on the same
side of yT . This contradicts Lemma 3.6.

Pulling Lemma 5.1 and the proof of Proposition 5.2 together, there exists two bigons or
trigons, say F� and FC of the subgraphs Gx

S
and G

y
S

respectively for some x;y 2 t,
that account for all the labels t. Interior to F� and FC are order 2 or 3 Scharlemann
cycles �� and �C respectively with disjoint label pairs. These Scharlemann cycles
bound faces f � and f C respectively of GS . Let us assume we have labeled the
intersections of K \ yT so that the Scharlemann cycle �� within F� has label pair
ft; 1g.

Lemma 5.3 4−t

Proof Assume 4jt . Then by Lemma 4.13 and Lemma 4.14 the maximum number
of labels for which each F� and FC may account is t=2. In order for F� and FC

to account for all t labels together, their label sets must each realize this maximum
and must be disjoint from one another. Since �� has label pair ft; 1g, F� accounts
for the labels ft � t=4C 1; : : : ; t; 1; : : : ; t=4g. Therefore FC accounts for the labels
ft=4C 1; : : : ; t=2; t=2C 1; : : : ; t � t=4g. This however implies that �C has label pair
ft=2; t=2C 1g. Thus f�� and f�C lie on the same side of yT contradicting Lemma
3.6.

Lemma 5.4 FC and F� are each bounded by extended Scharlemann cycles of order
2 or 3.

Proof Given that t � 6 by assumption and 4−t by Lemma 5.3, then it is direct to
check that the bounds of Lemma 4.13 and Lemma 4.14 give us only two cases that
we must consider. For both cases it turns out that �C has label pair ft=2; t=2C 1g.
Without loss of generality, these two cases are:

(1) � F� is bounded by an extended Scharlemann cycle of order 2 or 3 that
accounts for the labels ft � .t C 2/=4C 1 : : : ; t; 1; : : : ; .t C 2/=4g, and
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� FC is bounded by an extended Scharlemann cycle of order 2 or 3 that
accounts for the labels f.t C 2/=4C 1; : : : ; t=2; t=2C 1; : : : ; t � .t C 2/=4g.

(2) � F� is bounded by a forked extended S2 cycle that accounts for the labels
ft � .t C 2/=4C 2; : : : ; t; 1; : : : ; .t C 2/=4� 1; .t C 2/=4g, and

� FC is bounded by a forked extended S2 cycle that accounts for the labels
f.t C 2/=4C 1; : : : ; t=2; t=2C 1; : : : ; t � .t C 2/=4; t � .t C 2/=4C 1g.

Case (1) satisfies the lemma. Note also that since FC only accounts for t=2� 1 labels
it could be interior to the face of another extended Scharlemann cycle or a forked
extended S2 cycle.

In Case (2), notice that F� is a trigon of G.tC2/=4
S bounded by a forked extended

S2 cycle with the arc K..tC2/=4�1;.tC2/=4/ on its boundary. Similarly, FC is a
trigon of Gt�.tC2/=4C1

S
which is bounded by a forked extended S2 cycle with the

arc K.t�.tC2/=4;t�.tC2/=4C1/ on its boundary. Furthermore, since .t C 2/=4� 1 and
t � .t C 2/=4 have opposite parity, these two arcs of K lie on opposite sides of yT . A
high disk and a low disk may then be constructed from FC and F� as in Lemma 3.14.
By construction these disks may be isotoped to be disjoint. This contradicts Lemma
2.1.

We will henceforth assume FC and F� are as in Case (1) in the proof of Lemma 5.4.

5.2 Two trees

As in Section 4, from each F� and FC we may construct corresponding complexes

A� D
S.tC2/=4�1

iD1
A�i and AC D

S.tC2/=4�1
iD1

ACi

respectively where A˙i are annuli for i D 2; : : : ; .t C 2/=4� 1 and A˙
1

are Möbius
bands or complexes. Notice that A� and AC are disjoint. Define the curves a˙i D

@ACi � @A
˙
i�1

for 2 � i � .t C 2/=4 � 1 and a˙
1
D @A˙

1
. We may further define

the annulus A�
.tC2/=4

and the curve a�
.tC2/=4

D @A�
.tC2/=4

� a�
.tC2/=4�1

. Note that
A�
.tC2/=4

is disjoint from AC too.

We may also define trees T C , T C� , T � , and T �� associated to AC and A� , as well
as the corresponding labelings of vertices xC

1
, xC� , xC

0
, x�

1
, x�� , and x�

0
. Since the

solid torus corresponding to xC
0

must contain A�
1

and the solid torus corresponding to
x�

0
must contain AC

1
, x�

0
2 T �� and xC

0
2 T C� .

Lemma 5.5 After perhaps a width-preserving isotopy, the highest minimum (resp.
lowest maximum) below (resp. above) yT lies on an arc of K that together with an arc
on yT bounds a low (resp. high) disk with interior disjoint from A�[A�

.tC2/=4
[AC .

Algebraic & Geometric Topology, Volume 6 (2006)



Small genus knots in lens spaces have small bridge number 1581

Proof Because A�[A�
.tC2/=4

and AC are disjoint, this lemma quickly follows from
the proof of Lemma 4.10.

Lemma 5.6 The interiors of the arcs of Kn.A�[AC/ intersect yT in a single annulus
of yTn.A�[AC/.

Proof The interior of the arcs of Kn.A� [ AC/ intersect yT in only two points,
K.tC2/=4 and Kt�.tC2/=4C1 . Since A�

.tC2/=4
is disjoint from AC , a�

.tC2/=4
is con-

tained in a component of yTn.A�[AC/. The points K.tC2/=4 and Kt�.tC2/=4C1 are
contained in a�

.tC2/=4
.

Define T.tC2/=4 to be this annulus of yTn.A�[AC/ containing a�
.tC2/=4

.

Lemma 5.7 Assume t � 10 and 4−t . For any annulus R 2 yTn.A�[AC/, we have
@RD a�i [ aCj for some i; j 2 f1; : : : ; .t C 2/=4� 1g.

Proof Assume otherwise. Since jA� \ yT j D jAC \ yT j D .t C 2/=4� 2 � 2, there
must be two annuli, say RC and R� , of yTn.A�[AC/ such that @RCD aCi [aCj and
@R� D a�

k
[a�

l
for integers 1� i < j � .tC2/=4�1 and 1� k < l � .tC2/=4�1.

By Lemma 5.6, at least one of these two annuli has its interior disjoint from K and is
thus not T.tC2/=4 .

Consider the annulus
Sk

iD2 A�i where kD .tC2/=4 and its associated trees T and T� .
As noted in Remark 4.1 since k > t=4, there exists a vertex of T not in T� . By Lemma
4.11 there is a single leaf of T not contained in T� . Furthermore, A�

k
D A�

.tC2/=4

is contained in the boundary of the solid torus X.tC2/=4 corresponding to this leaf.
Thus @X.tC2/=4nA

�
.tC2/=4

is one component of T.tC2/=4na.tC2/=4 . Therefore one
component of @T.tC2/=4 is a�

.tC2/=4�1
.

Since the other component of T.tC2/=4na.tC2/=4 has interior disjoint from K , the
other component of @T.tC2/=4 cannot be aCn for any 1 � n � .t C 2/=4� 2 without
contradicting Lemma 4.11. Thus neither RC nor R� is T.tC2/=4 .

Now consider the annuli AC and A� and their corresponding trees.

If i and j have the same parity, then the torus RC[
Sj

sDiC1
ACs separates AC

1
from

KnAC . Thus the vertex xC
1
2 T C is not contained in T C� . Lemma 4.7 then applies

contradicting the thinness of K . Similarly k and l cannot have the same parity.

Since i and j have opposite parity, then RC corresponds to an edge of T C that
separates vertices of T C from T C� . By Lemma 4.11 RC separates a single leaf of

Algebraic & Geometric Topology, Volume 6 (2006)



1582 Kenneth L Baker

T C from T C� . Thus i C 1D j D .t C 2/=4� 1. This leaf corresponds to a solid torus
V C with interior disjoint from K that contains AC

.tC2/=4�1
in its boundary. Since V C

contains neither AC
1

nor A�
1

, the core of RC is a longitudinal curve of V C . It follows
that there are meridional disks of V C which form low (or high) disks for the arcs of
AC
.tC2/=4�1

\K . Let DC be one of these disks.

Similarly since k and l have different parity, then kC1D lD .tC2/=4 and there exists
a solid torus V � such that @V � DR�[A�

.tC2/=4
. Furthermore there are meridional

disks of V � which form high (or low) disks for the arcs of A�
.tC2/=4�1

\K . Let D�

be one of these disks.

Note that the annuli AC
.tC2/=4�1

and A�
.tC2/=4�1

lie on opposite sides of yT . Thus V C

and V � lie on opposite sides of yT . Therefore DC and D� form a pair of disjoint
high and low disks for K . By Lemma 2.1 this contradicts the thinness of K .

Lemma 5.8 We have @T.tC2/=4 D aC
.tC2/=4�1

[ a�
.tC2/=4�1

. Furthermore, except for
T.tC2/=4 and the annulus (other than T.tC2/=4 if t D 6) bounded by aC

1
[ a�

1
, all of

the other annuli of yTn.AC[A�/ are bounded by either aC
i�1
[ a�i or a�

i�1
[ aCi for

i 2 f2; : : : ; .t C 2/=4� 1g.

Proof Lemma 5.3 implies that 4−t . Recall that we are assuming t � 6.

The lemma follows immediately for t D 6 since in this case .t C 2/=4� 1D 1. We
have the complexes A� D A�

1
and AC D AC

1
and the annulus A�

2
which give the

three curves a�
1

, aC
1

, and a�
2

on yT . There are only two annuli of yTn.A�[AC/—one
of which is T.tC2/=4 D T2 —and both have boundary aC

1
[ a�

1
.

Lemma 5.7 which applies for t � 10 implies that each annulus of yTn.AC[A�/ has
boundary aCi [ a�j for some i and some j 2 f1; : : : ; .t C 2/=4� 1g.

Consider the edges of the trees T C and T � . Since each edge of T C (resp. T � )
corresponds to an annulus of yTnAC (resp. yTnA� ), such an annulus must intersect
A� (resp. AC ) exactly once. Therefore the annulus corresponding to an edge incident
to a leaf of T C (resp. T � ) must intersect A� (resp. AC ) either in a�

1
or a�

.tC2/=4�1

(resp. aC
1

or aC
.tC2/=4�1

). Thus each tree T C and T � may only have two leaves and
is thus homeomorphic to a line segment.

The lemma now follows for t D 10; see Figure 32(a) for the case t D 10. Hence we
may assume t � 14.

Since each tree is homeomorphic to a line segment, the two annuli of yTnA� (resp.
yTnAC ) with boundary containing the curve a�

.tC2/=4�1
(resp. a.tC2/=4�1 ) also contain
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a�tC2
4
�3

(a)

AC
2

A�
2

AC
1

a�
1

aC
2

aC
1

a�
2

T tC2
4

A�
1

T tC2
4

ACtC2
4
�2

(b)

A�tC2
4
�1

aCtC2
4
�2

aCtC2
4
�3

ACtC2
4
�1

A�tC2
4
�2

a�tC2
4
�1

aCtC2
4
�1

a�tC2
4
�2

Figure 32: (a) AC and A� for t D 10 (b) The ends of AC and A� for t > 10

either a�
.tC2/=4�2

or a�
.tC2/=4�3

(resp. aC
.tC2/=4�2

or aC
.tC2/=4�3

). Note that one of
these two annuli must contain T.tC2/=4 .

By Lemma 5.7 each of these two annuli must intersect AC (resp. A� ) in exactly
one curve. Indeed, since the annulus with boundary a�

.tC2/=4�2
[ a�

.tC2/=4�1
(resp.

aC
.tC2/=4�2

[ aC
.tC2/=4�1

) corresponds to an edge of T C which is incident to a leaf, it
must intersect either aC

1
or aC

.tC2/=4�1
(resp. a�

1
or a�

.tC2/=4�1
).

If it intersects aC
1

(resp. a�
1

), then the other annulus must contain T.tC2/=4 . In this
case,

@T.tC2/=4 D a�.tC2/=4�1[ aC
2

(resp. aC
.tC2/=4�1

[ a�2 /:

Moreover, T.tC2/=4 must thus be contained in the annulus of yTnAC (resp. yTnA� )
with boundary a�

1
[ a�

2
(resp. aC

1
[ aC

2
). This however forces a�

2
D a�

.tC2/=4�1
(resp.

aC
2
D aC

.tC2/=4�1
.) Hence t D 10 contrary to our assumption. This implies

@T.tC2/=4 D aC
.tC2/=4�1

[ a�.tC2/=4�1:

Because each T C and T � is homeomorphic to a line segment, AC and A� spiral
around one another as in Figure 32(b). The remainder of the lemma then follows.

Theorem 5.9 t � 6

Proof This proof is phrased and its figures drawn so that A�
.tC2/=4�1

is above yT .
Lemma 5.3 implies that 4−t . Hence we assume t � 10. If t � 2 mod 8, this coincides

Algebraic & Geometric Topology, Volume 6 (2006)



1584 Kenneth L Baker

with our convention that K.t;1/ is below yT . If t � 6 mod 8, then one ought to flip
the figures and make the appropriate corresponding changes to the language.

a
C

tC2
4
�2

A
C

tC2
4
�2

A�
tC2

4
�2

(b)

a
C

tC2
4
�2

A
C

tC2
4
�2

A�
tC2

4
�2

A
C

tC2
4

A
C

tC2
4
C1

A
C

tC2
4
�1

(d)

a
C

tC2
4
�2

a�
tC2

4
�2 RT

V

a
C

tC2
4
�2

A�
tC2

4
�1

TQ

Q

A
C

tC2
4
�1

RA

N.RT /

T tC2
4

a
C

tC2
4
�1

a�
tC2

4

a�
tC2

4
�1

A
C

tC2
4
�2

A
C

tC2
4
�2

A�
tC2

4
�2

A�
tC2

4
�2

A�
tC2

4

(c)

(a)

Figure 33: (a) The “ends” of AC and A� , A�
.tC2/=4

, AR , TR , and V (b)
The result of an unfurling isotopy along RDAR [TR (c) The subannulus
Q�‚2�.A

C/ and the subannulus TQ �
yT (d) An isotopy of Q towards

TQ and a further slight isotopy in N.TR/

By Lemma 5.8, the “ends” of AC and A� are as in Figure 32. Let TR be the annulus
on yT bounded by a�

.tC2/=4
and a�

.tC2/=4�2
that contains aC

.tC2/=4�1
. Let AR be the

union A�
.tC2/=4�1

[A�
.tC2/=4

. By Lemma 4.6, the torus R D TR [ AR bounds a
solid torus V . Note that V contains the two arcs K � .AC [A� [A�

.tC2/=4
/ in its

interior, the arcs K\ .A�
.tC2/=4�1

[A�
.tC2/=4

/ on its boundary, as well as the points
K\ aC

.tC2/=4�1
on its boundary. See Figure 33(a).

Let ı and ı0 be parallel simple closed curves on R that transversely cross TR and AR

just once so that .ı[ı0/\AR DK\AR and .ı[ı0/\aC
.tC2/=4�1

�K\aC
.tC2/=4�1

.
Orient ı so that it crosses from TR into A�

.tC2/=4
. Although K intersects the interior

of TR in two points, we may perform a Dehn twist ‚u along the torus R in the
direction of ı analogous to the unfurling isotopy of Lemma 4.5. We must mind the
effect of the isotopy on the arcs K\N.aC

.tC2/=4�1
/.

The annulus ‚2�.AR/ lies as TR . A slight further isotopy makes this annulus and the
arcs of ‚2�.K/ on it transverse to the height function. These arcs of K now have no
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critical points; at least four fewer than before the isotopy. The critical points of K that
were on A�

.tC2/=4�1
and A�

.tC2/=4
have been removed. See Figure 33(b).

The annulus AC
.tC2/=4�1

(slightly extended through N.R/) near aC
.tC2/=4�1

is spun
once around the meridian of R by ‚u . The resulting annulus may be regarded
as the double-curve sum of AC

.tC2/=4�1
with R (suitably oriented). The arcs of

‚2�.K/ on this annulus may similarly be regarded as resulting from this double-curve
sum of K \N.AC

.tC2/=4�1
/ with the two curves ı and ı0 on R. A further slight

isotopy with support in N.TR/ makes this resulting annulus and arcs of ‚2�.K/ on
it transverse to the height function. We may further assume that after these isotopies
the arcs of ‚2�.K \ N.aC

.tC2/=4�1
// in N.TR/ each have just one critical point.

See again Figure 33(b). Indeed, outside of N.TR/, we have K D ‚2�.K/ and
A�[A�

.tC2/=4
[AC D‚2�.A

�[A�
.tC2/=4

[AC/.

After these isotopies there are four “new” critical points of ‚2�.K/: two minima just
above yT and two maxima just below yT . Due to these critical points, the width of
‚2�.K/ is currently greater than the width of K .

Consider the subannulus Q of ‚2�.A
C/ lying between the curves formerly labeled

a�.tC2/=4�1 and aC
.tC2/=4�2

. Let TQ be the subannulus of yT bounded by @Q with
interior disjoint from ‚2�.K/. Note that Q is parallel to TQ through the solid torus
that they together bound. This solid torus and the annuli Q and TQ are shown in
Figure 33(c). We may isotop Q along with the arcs of ‚2�.K/\Q towards TQ so
that the arcs ‚2�.K/\Q after this isotopy each have only one minimum just below yT .
We may also slightly isotop the other annuli and arcs of the knot in N.TR/ downwards
so that the minima that were just above yT are now just below yT . The result of these
isotopies may be seen in Figure 33(d). Notice the collection of annuli and arcs of K

now above yT is indistinguishable from the collection of annuli and arcs of K above yT
prior to the isotopies. Furthermore, notice that (mainly due to the isotopy of Q) the
width of the resulting position of the knot is at most the width of K . Since K was
originally in thin position, these widths must be equal.

Let us continue to refer to the annuli A˙i that are unaffected by these isotopies by their
former labels. The annulus A�

.tC2/=4�2
has been elongated (in a height-preserving man-

ner) with ‚2�.AR/; we shall also refer to this elongated annulus by A�
.tC2/=4�2

. After
the isotopies, ‚2�.A

C

.tC2/=4�1
/ is cut into three annuli by yT . Let us use AC

.tC2/=4�1

to refer to the isotoped annulus Q and the subsequent two annuli as AC
.tC2/=4

and
AC
.tC2/=4C1

. Note that the post-isotopies annulus AC
.tC2/=4

coincides with the pre-
isotopies annulus A�

.tC2/=4�1
. Again, see Figure 33(d). Note also that yT remains a

thick level.
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Prior to any isotopies in this proof, Lemma 5.5 implies that the lowest maximum of
K above yT lies on an arc � of Kn yT that together with an arc � of yT bounds a high
disk � with interior disjoint from AC[A� . Since the interior of � is disjoint from
A�
.tC2/=4�1

, either � � TR [ T.tC2/=4 or � � yT � Int.TR [ T.tC2/=4/. Because the
annuli and arcs of K above yT before the isotopies are indistinguishable from the annuli
and arcs of K above yT after the isotopies, the high disk � exists after these isotopies
too.

After the isotopies, an arc of K on the annulus AC
.tC2/=4C1

bounds a low disk �C1

with an arc of TRnT.tC2/=4 , and an arc of K on the annulus AC
.tC2/=4�1

bounds a
low disk ��1 with an arc of TQ . Note that the interior of � is disjoint from at least
one of �C1\

yT or ��1\
yT . Since the position of K after the isotopies has width at

most that of K before the isotopies, � together with either �C1 or ��1 forms a pair
of high and low disks that by Lemma 2.1 contradict the thinness of the original thin
position of K .

6 The case t D 6

In this section we show that if K is in thin position, then t ¤ 6. Assuming t D 6,
our approach is to isotop Int S fixing K so that we may gain an understanding of the
resulting pieces of SnT on each side of yT . Then since there are 3s arcs of S \ T

and s � 4g� 1, we obtain conflicting estimates on the Euler characteristic of S .

6.1 Isotopies of S

By Lemma 5.4 we may assume that among the graphs Gx
S

for x 2 t there is a face F

bounded by an extended S2 cycle or an extended S3 cycle accounting for the labels
f1; 2; 5; 6g and a face g bounded by an S2 cycle or an S3 cycle accounting for the
labels f3; 4g. Let f be the face of GS in F bounded by the Scharlemann cycle.

Proposition 6.1 After perhaps reassigning labels of t by x 7! 7�x , one may isotop
the interior of S so that for some integer n� 0 the following holds:

(1) � The resulting arcs of S \T are essential in S and in T , and
� either jS \ T j remains minimized over isotopies of Int S or there exists

annuli in SnT .

(2) � For each label pair � D f1; 6g; f2; 5g; f3; 4g there are s � n edges of GS

with label pair �, and they lie in an essential annulus in yT ,
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� for each label pair � D f1; 4g; f2; 3g; f5; 6g there are n edges of GS with
label pair � and

� for each label pair �D f1; 2g; f3; 6g; f4; 5g there are no edges of GS with
label pair �.

(3) � If f is a bigon, then there are .s�n/=2 faces of S \X� parallel to f , and
� if f is a trigon, then there are either .s�n/=3 or .s�2n/=3 faces of S\X�

parallel to f .

(4) � If g is a bigon then S \XC is a collection of 3.s � n/=2 bigons and n

trigons, and
� if g is a trigon then S \XC is either a collection of s � 2n bigons and
.sC 4n/=3 trigons or a collection of s� n bigons and .sC 2n/=3 trigons.

Let V be the solid torus component of XCn. xN .K/[F /. Let W be the solid torus
XCn.V [ xN .K/[g/. Let TV be the annulus of yT\V so that TV is bounded by edges
of GT with label pairs f1; 6g and f2; 5g. Observe that @V nTV is parallel through V

onto TV . Let TW and T 0
W

be the two annuli of yT \W where TW is bounded by
edges of GT with label pairs f3; 4g and f1; 6g and T 0

W
is bounded by edges of GT

with label pairs f3; 4g and f2; 5g. See Figure 34.

V

W

Fnf

f

g

X�nf

Figure 34: The solid tori V , W , and X�nf schematically

To prove Proposition 6.1 we begin in V and push what we can of S along F through
X� into W and back into X� . When in W we also use g to guide the isotopy. This
puts S \XC into a position that we can understand and count. The unknown parts of
S \X� are dealt with in subsequent subsections.
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6.1.1 Pushing S along bigons and trigons We say two edges e and e0 of GT are
parallel if they bound an embedded bigon on T . We say two faces R and R0 of SnT

are parallel if R and R0 cobound a product region in .X �N.K//nT .

Similarly we say two edges of GT or two faces of SnT are adjacent if they are parallel
and no other edge or face respectively lies between them.

Lemma 6.2 Let R and R0 be two disks of SnT such that @R is parallel to @R0 on
@.X˙ �N.K//. Then R is parallel to R0 . Furthermore, every face of SnT in the
product region between R and R0 is a disk parallel to R and R0 .

Proof Since @R is parallel to @R0 , there is an annulus A on @.X˙�N.K// connecting
them. Thus R[A[R0 Š S2 . Since X˙�N.K/ is irreducible, R[A[R0 is the
boundary of a solid ball. This ball is the requisite product region R� Œ0; 1�.

If P 2 SnT is contained in the ball bounded by R[A[R0 , then each component
of @P is an essential curve in A. Since P must be incompressible, P is a disk. It
follows that P is parallel to both R and R0 .

Lemma 6.3 If B and B0 are two bigons of GS on the same side of yT with edges
e1 �B and e0

1
�B0 that are parallel as edges of GT , then B and B0 are parallel in X .

Proof We have the edges e1 and e0
1

of B and B0 respectively which are parallel on
T . Let e2 and e0

2
be the other edges of B and B0 respectively. Note that e2 and e0

2

have the same label pair.

Assume B and B0 are not parallel. By Lemma 6.2 B and B0 the edges e2 and e0
2

lie
in an essential annulus A. Due to the existence of f and g , Lemma 3.3 implies that
the core of A does not bound a disk in X .

Join B and B0 together along their corners and their parallel edges e1 and e0
1

. This
forms a disk in X whose boundary is an essential curve in A giving a contradiction.

Lemma 6.4 Let R be a region of SnT in XC . Let D be a boundary compressing
disk for R in XC �N.K/. Let D \RD ˛ and D \T D � . Assume that ˛ is not
parallel on R to a corner of R. Then there exists an isotopy of Int S with support in
N.D/ such that after the isotopy

� in XC , R is replaced by the result of boundary compression of R along D ,

� in X� , the regions of S \X� incident to � are joined by surgery (restricted to
X� ) along � ,

� each arc of S \T is essential in both S and T and
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� if � connects distinct components of R\T then such components are arcs and
jS \T j remains minimized.

The same holds with XC and X� interchanged.

Remark 6.1 This is the type A isotopy described by Jaco [10].

Proof Consider the isotopy of S with support in N.D/ that pushes the arc ˛ �R

through D . The lemma follows directly.

In XC , this isotopy is effectively a boundary compression of R along D . Such a
compression could only create a monogon if ˛ were parallel to a corner of R. We
however explicitly avoid this case. In X� , this isotopy is effectively surgery of S

along the arc � restricted to X� . Such a surgery cannot create a monogon. See Figure
35.

yT yT
DR

Figure 35: The isotopy of R through D

Indeed, restricting our view to just S \T on T , this isotopy has the effect of surgering
R\T along � . If � has both end points on the same component of  2R\T , then
there is an arc 0 �  connecting the end points of � . The isotopy will then render
 into the two components 0 [ �

0 and . � 0/[ �
00 where � 0 and � 00 are suitable

pushoffs of � .

If � has its endpoints on distinct arc components of R\ T , then jS \ T j remains
unchanged after the isotopy. However, if a simple closed curve of R\ T contains
just one end point of � , then such an isotopy would reduce jS \T j contradicting the
assumed minimality of jS \T j.

Lemma 6.5 Let B and R be regions of SnT on the same side of yT such that B is a
bigon and there is an edge of B adjacent to an edge of R. Then either

� R is a bigon parallel to B ,

� R is a trigon or
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� there is an isotopy of Int S supported in N.B[R/ such that after the isotopy R

is replaced by a bigon B0 parallel to B and a region R0 with two fewer corners
than R and two edges of regions (or of a single region) of SnT on the opposite
side of yT are joined by surgery along an arc on T .

Furthermore in the last case the isotopy preserves the property that each arc of S \T

is essential in both S and T . If the two edges are distinct, then jS \ T j remains
minimized over all isotopies of Int S . If the two edges are not distinct, then R0 is not a
disk.

Proof We will construct a disk D that gives a boundary compression for R in cut
exterior .X �N.K//nT and then apply Lemma 6.4. The desired disk D is a pushoff
of B with two corners and an edge on R and remaining edge on T .

Let eB and eR be the adjacent edges of B and R. Together they bound a bigon ı of
T nS . Let e0

B
be the other edge of B . Assume eB and eR have label pairs fx;yC1g

so that, by the parity rule, the corners of B are on @H.x;xC1/ and @H.y;yC1/ . It may
be the case that x D y . Note that the corners of R adjacent to eR bound rectangles
�.x;xC1/ � @H.x;xC1/ and �.y;yC1/ � @H.y;yC1/ with the corners of ı , the corners
of B , and arcs on the vertices UxC1 and Uy . Since �.x;xC1/ and �.y;yC1/ have
their interiors disjoint from S , we form a disk D that is a slight pushoff of the disk
B [ ı[ �.x;xC1/[ �.y;yC1/ . Notice that @D is composed of an arc ˛ of R and an
arc � of T nS . The arc ˛ is a slight pushoff of the edge eR and the two corners of R

to which it is incident.

Assume R is neither a bigon nor a trigon. Then ˛ is not parallel on R either to a corner
or into an edge of R. Thus we may apply the isotopy of Lemma 6.4. If the endpoints
of � lie on a single component of R\T then the component of @R containing eR

has just two edges. Since R is not a bigon, it cannot be a disk. Thus after the isotopy
R0 is not a disk.

If R is a bigon, then Lemma 6.3 implies that R is parallel to B .

The above lemma applies directly if B is a face of GS bounded by an S2 cycle. If B

is a face of GS bounded by an S3 cycle, we may obtain a similar statement.

Lemma 6.6 Let B be a face of GS bounded by an S3 cycle. Let R be a region of
SnT on the same side of yT as B such that there is an edge of B adjacent to an edge
of R. Further assume this edge of R is not between the two parallel edges of B . Then
either

� R is a trigon parallel to B ,
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� R is a tetragon or

� there is an isotopy of Int S supported in N.B[R/ such that after the isotopy R

is replaced by a trigon B0 parallel to B and a region R0 with three fewer corners
than R and two edges of regions (or of a single region) of SnT on the opposite
side of yT are joined by surgery along an arc on yT .

Furthermore in the last case the isotopy preserves the property that each arc of S \T

is essential in both S . If the two edges are distinct, then jS \T j remains minimized
over all isotopies of S . If the two edges are not distinct, then R0 is not a disk.

Proof Again, we will construct a disk D that gives a boundary compression for R

in .X �N.K//nT and then apply Lemma 6.4. The desired disk D is a pushoff of B

with three corners and two edges on R and remaining edge on T .

Let eB and eR be the adjacent edges of B and R. Together they bound a bigon
ı of T nS . Assume eB and eR have label pairs fx;xC1g so that the corners of
B are on @H.x;xC1/ . Note that the corners of R adjacent to eR bound rectangles
�; �0 � @H.x;xC1/ with the corners of ı , two corners of B , and arcs on the vertices
Ux and UxC1 .

Two of the three edges of B are parallel on T . These two edges bound a bigon ıB on
T . By assumption, eR 6� ıB . Nevertheless, following around the component of @R
containing eR , one of the edges before or after eR is contained in ıb and is adjacent to
an edge of B other than eB . Let e0

B
and e0

R
be these edges of B and R respectively.

Let ı0 be the bigon of T nS bounded by e0
B

and e0
R

.

We may assume that the rectangle �0 is bounded by the corner of B that connects the
edges eB to e0

B
, the corner of R that connects the edges eR to e0

R
, and a corner of

each ı and ı0 . The next corner of R then bounds a rectangle �00 � @H.x;xC1/ with
the next corner of B , a corner of ı0 and an arc on one of the vertices Ux or UxC1 .

Since � , �0 , and �00 have their interiors disjoint from S , we form a disk D that is a
slight pushoff of the disk B [ ını0[ �[ �0[ �00 . Notice that @D is composed of an
arc ˛ of R and an arc � of T nS . The arc ˛ is a slight pushoff of the edges eR and
e0

R
, the corner between them and the two corners surrounding them.

The remainder of this proof follows completely analogously to the above proof of
Lemma 6.5.

Assume R is neither a trigon nor a tetragon. Then ˛ is not parallel on R either to
a corner or into an edge of R. Thus we may apply the isotopy of Lemma 6.4. If
the endpoints of � lie on a single component of R\ T then the component of @R
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containing eR has just three edges. Since R is not a trigon, it cannot be a disk. Thus
after the isotopy R0 is not a disk.

If R is a trigon, then a proof analogous to that of Lemma 6.3 implies that R is parallel
to B .

6.1.2 Arranging S in the solid torus V Before performing any isotopies of S we
need to see how it may presently be positioned in V .

Lemma 6.7 Each region R 2 S \V is either a bigon parallel to a bigon of Fnf , a
meridional disk of V with an odd number of at least 3 corners, or an annulus with two
corners.

Proof Choose an orientation on S . Such a choice induces an orientation on each
R2S\V which in turn induces an orientation on each boundary component of R. Let
us then consider the collection of oriented simple closed curves C D f@RjR 2 S \V g

as they lie on the torus @V . The collection C may contain both trivial and essential
curves on @V .

Let  be an (arbitrarily oriented) essential circle on @V disjoint from yT intersecting
each corner of each R 2 S \V (ie each arc of C \ @ xN .K/ for each C 2 C ) exactly
once. Since a corner of an R 2 S \V is an arc on either @H.1;2/ or @H.5;6/ ,  may
be divided into two arcs, say C and � , according to the direction in which a curve
C 2 C crosses the arc.

If C 2 C is a trivial curve on @V , then C must be the boundary of a disk of S \V .
If C \  D ∅, then C is a trivial curve on T . Since C bounds a disk in S and a
disk in T , these disks together form a sphere in V which bounds a solid ball in V .
This implies that there exists an isotopy of S that reduces jS \T j contradicting the
assumption that jS \T j is minimized. Thus C \  ¤∅.

Since C bounds a disk on @V ,  must alternately cross in and out of the disk that C

bounds. Therefore the direction in which C crosses  alternates around  . Because
 is divided into the two arcs C and � that dictate the direction in which C may
cross, C must intersect  only twice. Hence C is the boundary of a bigon. Such a
bigon has one corner on K.1;2/ and one corner on K.5;6/ . Since C is a trivial curve
on @V , the bigon it bounds must be parallel to one of the bigons of Fnf .

If C 2 C is a meridional curve, then it intersects  algebraically once. Hence jC \  j
is odd. Furthermore, C must bound a disk region in S since otherwise there would be
a compression of S . Since there are no monogons of SnT , we know that jC \ j> 1.
Thus any meridional disk of S \V has an odd number of at least three corners.
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Assume C 2 C is an essential nonmeridional curve on @V . Since C � @R for some
R 2 S \V , then @R� C is a collection of essential nonmeridional curves on @V that
is nullhomologous in V . Since R is incompressible, R must be an annulus. Let C 0

be the other component of @R.

Let A be an annulus on @V between C and C 0 oriented so that the orientations of C

and C 0 respect the induced boundary orientation. In order for the curves C and C 0 to
intersect each C and � in the prescribed directions either  crosses A transversely
once,  intersects A once but is disjoint from one component of @A, or @A is disjoint
from  . Thus the annulus R has respectively one corner and one edge on each boundary
component, one boundary component in yT and one with two corners and two edges,
or both boundary components in yT . However, if both boundary components of R are
in yT , then R is isotopic onto A within V (since the annulus @V nTV is parallel to
A through V ). Thus there is an isotopy of S that reduces jS \T j contradicting the
assumption that jS \ T j is minimized. Therefore an annulus of S \ V must have
exactly two corners.

Lemma 6.8 Assume P 2 S \V is a trigon and R 2 S \V is a meridional disk of V

distinct from P . Then R has an edge parallel on yT to an edge of a bigon of S \V

such that no edge of P lies between these edges. Furthermore, if R is also a trigon, it
is parallel to P .

Proof We continue with the setup of the proof of Lemma 6.7.

As @P � @V must cross  geometrically three times and algebraically once, cut torus
@V n.@P [  / consists of three components. Two of the components are disks, say D1

and D2 , each with boundary composed of an arc of @P and an arc of  . The third
component is a disk with boundary composed alternately of four arcs of @P and four
arcs of  . Note that each disk D1 and D2 corresponds to a parallelism on T between
an edge of P and an edge of a bigon of S \V .

The two disks D1 and D2 meet at a point p of @P \  where @P crosses  in a
direction opposite that of the other two points. Without loss of generality, we may
assume p 2 C and .@P \  /�p 2 � . Thus C � .D1[D2/\  . Since @R must
intersect C , @R\Di ¤∅ for either i D 1 or 2. An arc of @R\Di then cuts off a
disk disjoint from @P that corresponds to a parallelism between an edge of R and an
edge of a bigon of S \V . This parallelism does not contain an edge of @P .

Furthermore, if R is a trigon then j@R\  j D 3. The end points of an arc of @R\Di

for i D 1 or 2 account for two of these intersections. In the complement of @P , there
is only one way to complete this arc into an essential simple closed curve that crosses
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 just once more. The rectangle on Di between @P \Di and @R\Di extends to an
annulus between @P and @R. This annulus is cut into three rectangles by  . These
rectangles imply each edge of R is parallel to an edge of P and hence @R is parallel
to @P on @.XC�N.K//. Thus by Lemma 6.2 R is parallel to P .

Proposition 6.9 Let B1 and B2 be the two bigons of Fnf on @V . Then one may
isotop Int S so that

� S \V is a collection of bigons parallel to either B1 or B2 and a collection of
mutually parallel trigons,

� each arc of S \T is essential in both S and T and

� jS \T j remains minimized.

Proof By Lemma 6.7, a region R 2 S \ V is either a bigon parallel to either B1

or B2 , a meridional disk of V with an odd number of edges, or an annulus with two
corners.

We first note that S \ V cannot simultaneously contain meridional disks of V and
annuli. If an annulus Q of S \V were to exist with a meridional disk of S \V , then
the curves @Q and its core curve must all be meridional curves. Thus the core curve of
Q must bound a disk in V . This disk implies S is compressible contradicting that it is
incompressible. Hence we consider annuli and meridional disks of S \V separately.

Case 1 S \V contains annuli.

Let Q be the collection of annuli of S \ V . By the proof of Lemma 6.7, all the
annuli in Q either (a) have one boundary component contained in TV or (b) have each
boundary component intersecting the annulus TV in a single spanning arc. We will
refer to such annuli as type (a) or type (b) accordingly.

Since properly embedded annuli in a solid torus are parallel into the boundary torus,
each Q 2 Q is isotopic to an embedded annulus Q0 in @V bounded by @Q. Let
VQ � V be the solid torus through which Q is parallel to Q0 . If Q1 2Q is contained
in VQ , then Q1 is parallel to an annulus Q0

1
�Q0 . If Q2 2Q is not contained in VQ ,

then it is parallel to an annulus Q0
2
� @V such that either Q0

2
\Q0 D∅ or Q0 �Q0

2
.

Let Q0 be a collection of annuli in @V to which the annuli of Q are parallel. We may
assume Q0 has been chosen so that it is partially ordered by nesting.

Choose a meridional curve m � @V for V such that for each Q0 2Q0 m\Q0 � yT

is a collection of spanning arcs of Q0 . Thus there exists a meridional disk D with
@DDm such that D intersects each annulus Q2Q in transverse arcs that are isotopic
through a subdisk of D onto yT . Though there may be several, let us choose such a
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subdisk DQ of D for each Q 2Q (and corresponding Q0 2Q0 ). Since the Q0 2Q0
are nested on @V , the disks DQ are nested on D . Consider a disk DQ outermost on
D and its corresponding annulus Q. Note that Int DQ\S D∅ and @DQ\S �Q

is not parallel to any corner of Q. Thus there is an isotopy of S through DQ with
support in N.DQ/ as in Lemma 6.4.

Assume Q 2 Q is an annulus of type (a). Since one component of @Q before the
isotopy is wholly contained in yT , after the isotopy the components of @Q\ yT that
contained @ı are joined. Thus jS \T j is reduced contradicting the original minimality
assumption on jS \T j. Hence Q contains no annuli of type (a).

Assume Q 2 Q is an annulus of type (b). Since @Q\ yT is composed of two arcs
before the isotopy, the isotopy exchanges them for two new arcs. Moreover, viewing
the isotopy of Q as a boundary compression along DQ , it follows that Q becomes a
bigon parallel to a bigon of Fnf . A similar isotopy may be then performed for each
remaining annulus of Q.

Case 2 S \V contains meridional disks.

A meridional disk R 2 S \V must have an edge parallel to an edge of B1 or B2 . If
not, each edge of @R would necessarily have the same label pair and must lie in the
annulus TV . Thus if R is an n–gon, @R would intersect a longitude of V minimally
n times on @V . Since R cannot be a monogon, this contradicts that R is a meridional
disk.

Recall that by Lemma 6.7 each bigon of S \V is parallel to either B1 or B2 . Let R

be a nonbigon face of S \ V such that R has an edge eR adjacent to an edge of a
bigon B of S \V . If R is not a trigon, then by Lemma 6.5 there exists an isotopy of
Int S in N.B[R/ yielding in V a bigon parallel to either B1 or B2 and a meridional
disk of V with two fewer corners than R. Perform such isotopies until each nonbigon
face of S \V with an edge adjacent to an edge of a bigon of S \V is a trigon.

Now after all the isotopies thus far, assume there exists a nonbigon, nontrigon face
R 2 S \V . Then since by assumption S \V contains no annuli, Lemma 6.7 implies
that R is a meridional disk of V with at least 5 corners. By Lemma 6.8 the trigons
of S \ V are mutually parallel. The same lemma then also implies that R has an
edge eR parallel to an edge eB of B1 or B2 such that no edge of a trigon of S \V

lies between eR and eB . But then in between eR and eB there must be an edge of a
nonbigon, nontrigon face of S \V that is adjacent to an edge of a bigon of S \V .
This contradict that we have isotoped S so that each nonbigon face of S \V with an
edge adjacent to an edge of a bigon of S \V is a trigon.
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6.1.3 Arranging S near f in X� Perform the isotopy of Proposition 6.9. By
relabeling if necessary, we may assume that the edges of the trigons of S \ V that
are not parallel to edges of bigons of S \V connect the vertices U5 and U6 . Thus
because the edges of g (which is an S2 cycle or an S3 cycle with label pair f3; 4g)
obstruct them, there are no edges of GT connecting U1 to U2 in yT . Also, since the
trigons of S \ V are all mutually parallel, there are at most three parallelism edge
classes of GT in TV incident to U6 .

Proposition 6.10 Fixing S \V , one may isotop Int S so that

� if R 2 S \X� has an edge with label pair f1; 6g that does not lie between two
parallel edges of f , then R is parallel to f ,

� if R 2 S \X� is not parallel to f but has an edge with label pair f1; 6g, then
the corners of R incident to this edge are also incident to edges with label pairs
f1; 4g and f5; 6g,

� there are no edges of GT with label pairs f1; 2g or f3; 6g,
� each arc of S \T is essential in both S and T and
� either jS \ T j remains minimized or S \ T contains essential simple closed

curves in the annulus on T between edges with label pairs f1; 6g and f3; 4g.

Proof Recall that f is either a bigon or a trigon bounded by an S2 cycle or an S3

cycle respectively. Note that f has two parallel edges only if f is a trigon.

Let E be the collection of edges of GT with label pair f1; 6g that lie in TV , do not lie
between two parallel edges of f , and are not an edge of a face of S \X� parallel to
f . If E ¤∅ then let R be a face of S \X� that has an edge eR 2 E adjacent to an
edge of a face of S \X� that is parallel to f .

Since f is a p–gon bounded by an Sp cycle for p D 2 or 3, we claim that R cannot
be a .pC1/–gon. To the contrary, assume R is a .pC1/–gon. The corners of f divide
@H.6;1/ into p rectangles. These rectangles are joined cyclically by edges of GT with
label pair f1; 6g. Since R is a .pC1/–gon, every edge of R cannot have label pair
f1; 6g. Therefore R must have an edge with label pair f1; 4g, f5; 6g or f3; 6g. Thus it
must have a second edge with one of these three label pairs. Moving in both directions
along @R from eR , counting a second edge if f is a trigon, the final two edges of
R must emanate from U1 and U6 and lie in yT �TV . Thus the final two edges of R

must have label pairs f1; 4g and f3; 6g. Since H.3;4/ �XC , R cannot have a corner
connecting these edges. Thus R is not a .pC1/–gon.

Since R is not a .pC1/–gon, by either Lemma 6.5 or Lemma 6.6, one may isotop
R to produce a new face B0 of S \X� which has eR as an edge that is parallel in
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X �N.K/ to f and a new face R0 of S \X� with two fewer corners than R while
joining faces of S \XC along an arc � � yTnS . By construction, � connects an edge
of R incident to U1 not in TV to an edge of R incident to U6 not in TV . Therefore
any arc of S \T created by this isotopy is not contained in TV . Recall that because
edges of F and f delineate the boundary of TV there may be edges of GT parallel
on T to edges of f which are not contained in TV . Furthermore, since eR is now
an edge of the face B0 which is parallel to f , it is no longer included in E . Thus the
isotopy strictly decreases jE j. Since such an isotopy creates no monogons, each arc of
S \T is essential in each S and T .

The isotopy may only increase jS \T j if the arc � connects an edge of R to itself. In
this case neither R nor R0 is a disk. The region R0 has a boundary component that
lies as an essential simple closed curve in the annulus of yT between the edges of GT

with label pairs f1; 6g and those with label pairs f3; 4g.

Repeatedly perform such isotopies until E D∅. If for some R 2 S \X� not parallel
to f has an edge eR with label pair f1; 6g, then eR must lie between two parallel
edges of f . Otherwise, since eR is not contained in TV , moving in both directions
along @R away from eR , picking up a second edge that lies between two parallel edges
of f if f is a trigon, we arrive at two edges of R that lie in TV . One edge has an
end point on U6 and the other has an end point on U1 . Since the edges of GT in TV

must have label pair f1; 6g or f5; 6g, the latter edge must be in E . This contradicts that
E D∅.

Assume eR is an edge of a face R 2 S \X� not parallel to f such that eR lies
between two parallel edges of f . Then the two corners of R incident to eR are incident
to edges each with an endpoint incident to either U1 or U6 . Since these two edges
cannot lie between two parallel edges of f , they cannot have label pair f1; 6g. Thus
they have the label pairs f1; 4g and f1; 6g.

It similarly follows that there are no edges with label pair f3; 6g due to the fact that
there are no edges with label pair f1; 2g.

6.1.4 Arranging S in XCnV Recall that g is a p–gon of S \XC bounded by an
Sp cycle for p D 2 or 3. Also recall that W is the solid torus XCn.V [ xN .K/[g/.

Proposition 6.11 One may isotop S so that each face of S \W is either

� a bigon parallel to a bigon of Fnf ,

� a p–gon parallel to the p–gon g ,

� a meridional disk of W with 2 or 3 corners or
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� an annulus with a boundary component in each component TW and T 0
W

of
T \W .

Furthermore, this isotopy creates no monogons and preserves the results of the isotopies
of Proposition 6.9 and Proposition 6.10.

Proof Let E be the collection of edges of GT with label pair either f3; 4g or f1; 6g
that lie in TW , do not lie between two parallel edges of g , and are not an edge of a
face of S \W parallel to either g or a bigon of Fnf . Let E 0 be the collection of
edges of GT with label pair either f3; 4g or f2; 5g that lie in T 0

W
, do not lie between

two parallel edges of g , and are not an edge of a face of S \W parallel to either g or
a bigon of Fnf .

If E ¤∅ then let R be a face of S \W that has an edge eR 2 E adjacent to an edge
of a face S \W that is parallel to either g or a bigon of Fnf .

If eR has label pair f1; 6g then R cannot be a trigon. If g is a p–gon and eR has
label pair f3; 4g then R cannot be a .pC1/–gon. This may be seen by attempting to
connect a set of 3 or 4 corners in @W with the edges of R.

Therefore, by either Lemma 6.5 or Lemma 6.6, one may isotop R to produce a new
face B0 of S \W which has eR as an edge that is parallel to either g or a bigon of
Fnf and a new face R0 of S \W with two fewer corners than R while joining faces
of S \X� along an arc � � T 0

W
. Since eR is now an edge of the face B0 which is

parallel to either g or a bigon of F , it is no longer included in E . Thus the isotopy
strictly decreases jE j. Such an isotopy creates no monogons, and hence each arc of
S \T is essential in each S and T . Repeatedly perform such isotopies until E D∅.
Because the only arcs of S \T affected are ones in T 0

W
, the results of these isotopies

do not have any effect upon those of Proposition 6.9 and Proposition 6.10.

By Proposition 6.10 there are no edges with label pair f3; 6g. Thus E D ∅ implies
E 0 D∅. If otherwise, then there exists an edge eR 2 E 0 of a region R 2 S \W that
is not parallel to either g or a bigon of Fnf . If eR has label pair f2; 5g, then it is
incident to a corner of R on @H.5;6/ . Therefore the next edge of R must lie in TW

and have an end point labeled 6. Since there are no edges of GT with label pair f3; 6g,
this edge must have label pair f1; 6g and is thus an edge of E contradicting that E D∅.
If eR has label pair f3; 4g then after the corner of R incident to the end point of eR

labeled 4 the next edge must have label pair f3; 4g. If this edge is between two parallel
edges of g , then the next edge too must have label pair f3; 4g. Regardless, one of these
edges lies in TW and is thus an edge of E contradicting that E D∅.

Similarly, it follows that there can be no edges with label pair f4; 5g. An edge with
label pair f4; 5g must be an edge of a face S \W with a corner on @H.5;6/ followed
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by an edge incident to U6 . This edge must then have label pair f1; 6g and thus be an
edge of E contradicting that E D∅.

Assume a face R of S \W has an edge eR with label pair f1; 4g. Since there are
no edges with label pair f3; 6g, no edge of S \W can transversely cross TW in the
direction opposite from eR . Thus R must be a meridional disk with one edge in TW

and one edge in T 0
W

. If g is a trigon, R may have a third edge between two parallel
edges of g . Thus R is a meridional disk of W with either two or three edges and two
or three corners respectively. Note that because there may be two distinct edges classes
of GT with label pair f1; 4g there may be two parallelism classes of disks of S \W

that are meridional disks of W . Nevertheless, all such disks have the same number of
corners. Furthermore, the number of edges with label pair f1; 4g equals the number of
edges with label pair f2; 5g.

If S \TW or S \T 0
W

contains a simple closed curve component c , then there can be
no edges with label pair f1; 4g or f2; 5g. Thus an edge of GT in TW or T 0

W
must be

an edge of a face of S \W parallel to either g or a bigon of Fnf . Let R 2 S \W

be the face with c 2 @R. Since c is a longitudinal curve of W , R must be an annulus
with its other boundary component contained in whichever of TW or T 0

W
that does

not contain c . Otherwise, if these two boundary components are contained in the same
annulus, then R is parallel into TW or T 0

W
. An isotopy of S will push R (and any

other annuli of S \W between R and yT ) into X� . This will violate the minimality
of jS \T j. Hence we may assume S has been isotoped so that any annulus of S \W

has one boundary component in TW and its other one in T 0
W

.

6.1.5 Proof of Proposition 6.1

Proof Perform the isotopies of Int S first in Proposition 6.9, then in Proposition 6.10,
and finally in Proposition 6.11. This arranges the edges of GT into the edge classes
described in the proposition. The isotopies also maintain that the arcs of S \T are
essential in both S and T .

Recall that on GT there are s edges around each vertex. Since there are n edges with
each label pair f1; 4g, f2; 3g, and f5; 6g and no edges with label pair f1; 2g, f3; 6g,
or f4; 5g, there must be a total of s� n edges with each label pair f1; 6g, f2; 5g, and
f3; 4g. Each collection of s� n edges with label pair f1; 6g, f2; 5g, and f3; 4g lie in
an essential annulus.

The faces of S \XC The proof of Case 2 of Proposition 6.9 implies each edge of
GT with label pair f5; 6g is an edge of a trigon in V whose other two edges have label
pairs f1; 6g and f2; 5g. Since there are n edges with label pair f5; 6g, there must be n

trigons contained in V .
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Together the proofs of Proposition 6.9 and Proposition 6.11 imply that an edge with
label pair f1; 6g or f2; 5g that is not an edge of a trigon in V is an edge of a bigon that
is parallel to a bigon of Fnf . Since there are s� n edges with label pair f1; 6g, n of
which are edges of trigons in V , there are s� 2n edges with label pair f1; 6g that are
edges of bigons parallel to bigons of Fnf . Since a bigon of Fnf has only one edge
with label pair f1; 6g, each edge with label pair f1; 6g that is not an edge of a trigon is
an edge of a distinct bigon. Thus there are s� 2n bigons parallel to a bigon of Fnf .
Furthermore, of the s� n edges with label pair f2; 5g, n belong to a trigon in V and
s� 2n belong to a bigon parallel to a bigon of Fnf .

By Proposition 6.11 an edge with label pair f2; 3g is an edge of a meridional disk of
W with 2 or 3 corners and hence 2 or 3 edges respectively. One corner runs along
@H.1;2/ from the edge with label pair f2; 3g to an edge with label pair f1; 4g. If g is a
bigon, then the meridional disk of W is a bigon itself with its final corner on @H.3;4/ .
If g is a trigon, then two edges of g are parallel. Also, the corners of g divide @H.3;4/

into three rectangles � , �0 , and �00 . The bigon ı on yT between the two parallel edges
of g connects two of these rectangles, say � and �0 . Either the edges with label pair
f2; 3g and f1; 4g are incident to � [ ı [ �0 or they are incident to �00 . If they are
incident to �[ ı[�0 , then a meridional disk of W is a trigon with a corner on each of
� and �0 and an edge that lies in ı . If the edges are incident to �00 , then a meridional
disk of W is a bigon with its final corner on �00 .

Since there are just n edges with label pair f2; 3g, there are n such meridional disks
of W . They are either all bigons or all trigons. In either case, each has one edge with
label pair f2; 3g and one edge with label pair f1; 4g. If the disks are trigons, then their
third edge has label pair f3; 4g. If g is a bigon, then each edge with label pair f3; 4g
is an edge of a bigon parallel to g . Since there are s�n edges with label pair f3; 4g,
there are .s � n/=2 bigons parallel to g . If g is a trigon, then each edge with label
pair f3; 4g that is not an edge of a meridional disk of W is an edge of a trigon parallel
to g . If the meridional disks of W are bigons, then they have no edge with label
pair f3; 4g. Hence there are .s� n/=3 trigons parallel to g . If the meridional disks of
W are trigons, then they each have one edge with label pair f3; 4g. Hence there are
.s� 2n/=3 trigons parallel to g .

If S \XC contains no meridional disks of W , then n D 0. Similarly, if there are
annuli of S \W then nD 0.

Let us now summarize the collection S \ XC . If g is a bigon, then S \ XC is
composed of n trigons contained in V , s� 2n bigons parallel to bigons of Fnf , n

bigons that are meridional disks of W , .s� n/=2 bigons parallel to g , and annuli if
nD0. Thus if g is a bigon, then S\XC contains .s�2n/CnC.s�n/=2D3.s�n/=2

bigons, n trigons, and possibly annuli if nD 0.
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If g is a trigon, then S \XC is composed of n trigons contained in V , s�2n bigons
parallel to bigons of Fnf , either n bigons that are meridional disks of W and .s�n/=3

trigons parallel to g or n trigons that are meridional disks of W and .s�2n/=3 trigons
parallel to g , and annuli if nD 0. Thus if g is a trigon, then S \XC contains either
.s�2n/CnD s�n bigons and nC .s�n/=3D .sC2n/=3 trigons or s�2n bigons
and nC nC .s� 2n/=3D .s� 4n/=3 trigons and possibly annuli if nD 0.

The faces of S \X� By Proposition 6.10, an edge with label pair f1; 6g that does
not lie between two parallel edges of f is an edge of a face parallel to f .

If f is a bigon, then no edges of f are parallel. Hence all s� n edges with label pair
f1; 6g are edges of bigons parallel to f . Thus there are .s�n/=2 bigons parallel to f .

If f is a trigon, then each of the n edges with label pair f5; 6g are incident to a corner
on @H.6;1/ with are in turn either incident to an edge with label pair f1; 4g or incident
to an edge with label pair f1; 6g that lies between the parallel edges of f . In the former
case the s�n edges with label pair f1; 6g are all edges of trigons parallel to f ; hence
there are .s� n/=3 trigons of S \X� parallel to f . In the latter case the remaining
s� 2n edges with label pair f1; 6g are edges of trigons parallel to f ; hence there are
.s� 2n/=3 trigons of S \X� parallel to f .

6.2 Euler characteristic estimates

The arcs and simple closed curves of S \T break S into faces which lie either in XC

or X� . The arcs of S \T form the edges of GS . Because we are assuming t D 6,
GS has a total of 3s edges.

Lemma 6.12 Both
X

R2S\XC

�.R/� 3s=2 and
X

R2S\X�

�.R/� 3s=2.

Proof Since
X

R2S\XC

�.R/� #.disks in S \XC/

2 � #.disks in S \XC/� #.edges of disks in S \XC/and

� #.edges of faces in S \XC/D 3s;X
R2S\XC

�.R/� 3s=2:we have

Replacing XC with X� achieves the other case.

Note that equality is realized in Lemma 6.12 if S \XC (or S \X� ) is a collection
of bigons. Utilizing Proposition 6.1 we can obtain an exact count for

X
R2S\XC

�.R/.
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Lemma 6.13 Assume S has been isotoped in accordance with Proposition 6.1.

If g is a bigon then
X

R2S\XC

�.R/D 3s=2� n=2.

If g is a trigon then
X

R2S\XC

�.R/D

8̂<̂
:

4s=3� 2n=3

or

4s=3� n=3:

Proof If g is a bigon then S\XC is a collection of 3.s�n/=2 bigons and n trigons.

Thus
X

R2S\XC

�.R/D 3.s� n/=2C nD 3s=2� n=2:

If g is a trigon then S \XC is either a collection of s � 2n bigons and .sC 4n/=3

trigons or a collection of s� n bigons and .sC 2n/=3 trigons.

X
R2S\XC

�.R/D

8̂<̂
:

s� 2nC .sC 4n/=3D 4s=3� 2n=3

or

s� nC .sC 2n/=3D 4s=3� n=3:

Lemma 6.14 If g is a bigon then

sC 1=2C n=2�
X

R2S\X�

�.R/:

If g is trigon then either

7s=6C 1=2C 2n=3�
X

R2S\X�

�.R/

7s=6C 1=2C n=3�
X

R2S\X�

�.R/:or

In any case, s <
X

R2S\X�

�.R/.

Proof Since S is a once punctured orientable surface of genus g , we have

�.S/D 1� 2g D�3sC
X

R2S\X�

�.R/C
X

R2S\XC

�.R/:
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Because s � 4g� 1, .sC 1/=2� 2g . Thus

1� .sC 1/=2� �3sC
X

R2S\X�

�.R/C
X

R2S\XC

�.R/

5s=2C 1=2�
X

R2S\XC

�.R/�
X

R2S\X�

�.R/:and so

Due to Lemma 6.13, if g is a bigon

5s=2C 1=2� .3s=2� n=2/D sC 1=2C n=2�
X

R2S\X�

�.R/:

If g is a trigon then one of following occurs:

5s=2C 1=2� .4s=3� 2n=3/D 7s=6C 1=2C 2n=3�
X

R2S\X�

�.R/;

5s=2C 1=2� .4s=3� n=3/D 7s=6C 1=2C n=3�
X

R2S\X�

�.R/:

6.2.1 The disks of S \X� The remainder of this section is devoted to showingX
R2S\X�

�.R/� s:

To do so we must better understand the disks of S \X� .

Lemma 6.15 There are no bigons or trigons of S \X� that have an edge with label
pair f1; 4g or f5; 6g. If there exist edges of GT with label pair f1; 6g that are not edges
of faces of S \X� parallel to f , then there are also no tetragons of S \X� with an
edge having label pair f1; 4g or f5; 6g.

Proof In light of Proposition 6.10, if a face E 2 S \X� has an edge with one of
the label pairs f1; 4g and f5; 6g, then it also has an edge with the other label pair on
the same component of @E connected either (a) by a single .6; 1/ corner or (b) by a
sequence of a .6; 1/ corner, an edge with label pair f1; 6g, and another .6; 1/ corner.
If E 2 S \X� is not parallel to f but has an edge with label pair f1; 6g, then this
edge must appear both on @E as in situation (b) and on yT between two parallel edges
of f as arranged by Proposition 6.10. Note that in either situation, in the other arc
of @E between the two edges with label pairs f1; 4g and f5; 6g there cannot be just
one other edge. This is because such an edge would necessarily have label pair f4; 5g
which is prohibited by Proposition 6.1. Thus in situation (a) E cannot be a trigon, and
in situation (b) E cannot be a tetragon (nor a bigon). Therefore we consider situation
(a) where E is a bigon and situation (b) where E is a trigon.
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If n D 0, then there are no edges with label pair f1; 4g or f5; 6g, and the lemma is
trivial. Therefore assume n> 0. By Proposition 6.9 there exists a trigon D of S \V

that shares an edge with E . The three edges of D have label pairs f1; 6g, f2; 5g, and
f5; 6g.

Let A be a bigon of S \V with an edge parallel and closest to the edge of D with
label pair f2; 5g. The other edge of A has label pair f1; 6g. Let � be the bigon on
T between these edges of A and D with label pair f2; 5g. Let �.1;2/ and �.5;6/ be
the rectangles on @H.1;2/ and @H.5;6/ respectively that contain the corners of A , D ,
and �. We may assemble A , D , �, �.1;2/ , and �.5;6/ into a high disk for K.5;6/ .
See Figure 36.

5 2

5

D

5

2

6

A

1

1

6

6

�

eA

Figure 36: The construction of a high disk for K.5;6/

Situation (a) E is a bigon. In this situation, f may be either a bigon or a trigon.

Let B and C be two bigons or trigons in X� �N.K/ parallel to f and disjoint
from both f andE so thatA \B andC \D are each edges with label pair f1; 6g.
Note that B and C may actually be faces of S \X� .

Let �.6;1/ be the rectangle on @H.6;1/ with boundary containing corners of B , E ,
and �.5;6/ .

If f is a bigon, then let �0
.6;1/

be the rectangle on @H.6;1/ with boundary containing
corners of B , C , and �.1;2/ .

If f is a trigon, then there is an edge of B and an edge of C that lies between the
two parallel edges of f . Let ı be the bigon on yT bounded by these two edges of B
and C . Then let �0

.6;1/
be the rectangle on @H.6;1/ bounded by corners of B , C ,

�.1;2/ , and ı\U6 . Let �00
.6;1/

be the rectangle on @H.6;1/ with boundary containing
corners of B , C , and ı\U1 .
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(a)
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(b)
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5

D

6

A

5

1

4

C

E

B6

5

6

2
1

1

1

6

6

6

6

1

1

1

�0
.6;1/

�00
.6;1/

�0
.6;1/

�.6;1/

�

�.5;6/

�

�.1;2/

�.6;1/

ı

�.5;6/

�.1;2/

Figure 37: The construction of a long disk if f is (a) a bigon and (b) a trigon

Assemble A ;B ;C ;D ;E ; �, �.1;2/ , �.5;6/ , �.6;1/ , and �0
.6;1/

(and ı and �00
.6;1/

if
f is a trigon) to form the embedded disk D as shown in Figure 37(a) and (b). The
boundary of D may be slightly extended into H.4;1/ so that it is composed of the arc
K.4;1/ and an arc on yT . Thus D is a long disk. By Lemma 2.2, such a disk cannot
exist.

Situation (b) E is a trigon. Here f is necessarily a trigon.
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Again, letB andC be two bigons or trigons in X��N.K/ parallel to f and disjoint
from both f andE so thatA \B andC \D are each edges with label pair f1; 6g.
Note that B and C may actually be faces of S \X� .

Let �.6;1/ be the rectangle on @H.6;1/ bounded by corners of B , C , and �.1;2/ .

Since f is a trigon, there is an edge of B and an edge of E that lies between the
two parallel edges of f . Let ı be the bigon on T bounded by these two edges of B
and E . Note that there is an edge of C between the two parallel edges of f , but it is
not contained in ı .

Let �0
.6;1/

be the rectangle on @H.6;1/ bounded by corners of B , E , �.5;6/ , and
ı \U1 . Let �00

.6;1/
be the rectangle on @H.6;1/ with boundary containing corners of

B , E , and ı\U6 .

Assemble A ;B ;C ;D ;E ; �, �.1;2/ , �.5;6/ , �.6;1/ , �0.6;1/ , and �00
.6;1/

to form the
embedded disk D , a “lopsided bigon,” as shown in Figure 38. The boundary of D

may be slightly extended into H.4;1/ so that it is composed of the arc K.4;1/ , the arc
K.6;1/ , and two arcs, say �1 and �2 , on yT .

6

C

E

B6

5

6

2
1

1

1

6

6

6

6

1

1

1

1

2

5

D

6

A

5

1

4

�

ı

Figure 38: The construction of the “lopsided bigon”

Isotop the arc K.4;1/ across D so that the decomposition KDK.1;4/[K.4;1/ becomes
K D K.1;4/ [ �1 [K.6;1/ [ �2 . Since the ends of K.6;1/ are in X� while the ends
of K.1;4/ are in XC , a further slight isotopy of K in N.�1 [ �2/ puts K in Morse

Algebraic & Geometric Topology, Volume 6 (2006)



Small genus knots in lens spaces have small bridge number 1607

position without introducing new critical points. Since the extrema of K are in a
1 � 1 correspondence with a proper subset of the former extrema of K (with the
correspondence taking maxima to maxima and minima to minima), the width of K has
been reduced. In other words, the width of the two arcs K.1;4/ [K.6;1/ is less than
the width of the knot K.1;4/[K.4;1/ . This contradicts that K is in thin position.

Lemma 6.16 A bigon of S \X� that is not parallel to f must have edges with label
pairs f2; 5g and f3; 4g.

Proof Due to Lemma 6.15, a bigon of S \X� cannot have an edge with label pair
f1; 4g or f5; 6g. Thus an edge of a bigon of S \X� not parallel to f may have label
pair f2; 5g, f3; 4g, or f2; 3g.

If an bigon of S \X� has label pair f2; 3g, then both edges must have this label pair.
Such a bigon is thus bounded by an S2 cycle. Since f is in X� too, this contradicts
Lemma 3.6.

Because H.3;4/ �XC , the conclusion of the lemma follows.

Lemma 6.17 There must exist a bigon of S\X� whose edges have label pairs f2; 5g
and f3; 4g.

Proof Assume every bigon of S \X� is parallel to f .

Case 1 f is a bigon.

By Proposition 6.1, .s � n/=2 faces of S \X� are bigons parallel to f . Since by
Lemma 6.15 the edges with label pair f1; 4g and f5; 6g cannot be edges of bigons or
trigons, at worst they are edges of tetragons. Since each edge with label pair f1; 4g is
connected to an edge with label pair f5; 6g by a corner on @H.6;1/ (due to Lemma 6.15
because the edges of the bigon f are not parallel on yT ) and each such edge class has
n edges, together with 2n edges that have label pairs f2; 5g, f3; 4g, or f2; 3g, these
may bound at most n tetragons.

The remaining 3s � 2 � .s � n/=2� 4 � n D 2s � 3n edges all have label pair f2; 5g,
f3; 4g, or f2; 3g. Any trigon with all its edge among these, must have one edge with
each of these three label pairs. Since there are only n edges with label pair f2; 3g,
there may be at most n such trigons. The remaining 2s� 3n� 3 � nD 2s� 6n edges
may at worst bound tetragons. ThusX

R2S\X�

�.R/� .s� n/=2C nC nC .2s� 6n/=4D s:
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Case 2 f is a trigon.

By Proposition 6.1, either .s�n/=3 or .s� 2n/=3 of the faces of S \X� are trigons
parallel to f .

Case 2a If there are .s� n/=3 trigons parallel to f , then each edge with label pair
f1; 6g is an edge of a trigon parallel to f . Then by Lemma 6.15 the edges with label
pair f1; 4g and f5; 6g cannot be edges of bigons or trigons. At worst they are edges of
tetragons. Since each edge with label pair f1; 4g is connected to an edge with label
pair f5; 6g by a corner on @H.6;1/ (because in order to have .s� n/=3 trigons parallel
to f , each edge of GT between the parallel edges of f must belong to one of these
trigons—see the last paragraph of the proof of Proposition 6.1 in Section 6.1.5) and
each such edge class has n edges, then together with 2n of the edges that have label
pairs f2; 5g, f3; 4g, or f2; 3g, these may bound at most n tetragons.

The remaining 3s � 3 � .s � n/=3� 4 � n D 2s � 3n edges all have label pair f2; 5g,
f3; 4g, or f2; 3g. Any trigon with all its edges among these, must have one edge with
each of these three label pairs. Since there are only n edges with label pair f2; 3g,
there may be at most n such trigons. The remaining 2s� 3n� 3 � nD 2s� 6n edges
may at worst bound .2s� 6n/=4 tetragons.

Thus
X

R2S\X�

�.R/� .s� n/=3C nC nC .2s� 6n/=4D 5s=6C n=6:

Case 2b If there are .s� 2n/=3 trigons parallel to f (and n¤ 0), then there exists
an edge with label pair f1; 6g that is not an edge of a trigon parallel to f (indeed in
GT between the parallel edges of f there are n edges that do not belong to faces of
S \X� that are trigons parallel to f —again, see the last paragraph of the proof of
Proposition 6.1 in Section 6.1.5). Then by Lemma 6.15 the edges with label pair f1; 4g
and f5; 6g cannot be edges of bigons, trigons, or tetragons. At worst they are edges of
pentagons. Since each edge with label pair f1; 4g is connected to an edge with label
pair f5; 6g by a two corners on @H.6;1/ and an edge with label pair f1; 6g and each
such edge class has n edges, together with 2n edges that have label pairs f2; 5g, f3; 4g,
or f2; 3g, these may bound at most n pentagons.

The remaining 3s � 3 � .s � 2n/=3� 5 � nD 2s � 3n edges all have label pair f2; 5g,
f3; 4g, or f2; 3g. Any trigon with all its edges among these, must have one edge with
each of these three label pairs. Since there are only n edges with label pair f2; 3g,
there may be at most n such trigons. The remaining 2s� 3n� 3 � nD 2s� 6n edges
may at worst bound .2s� 6n/=4 tetragons.

Thus
X

R2S\X�

�.R/� .s� 2n/=3C nC nC .2s� 6n/=4D 5s=6� n=6:
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Since necessarily n< s , we have 5s=6� n=6< 5s=6C n=6< s . ThusX
R2S\X�

�.R/� s:

However, by Lemma 6.14
s <

X
R2S\X�

�.R/

regardless of whether g is a bigon or trigon. This, in all cases, is a contradiction. Thus
there must be a bigon of S \X� that is not parallel to f . By Lemma 6.16, the edges
of such a bigon must have label pairs f2; 5g and f3; 4g.

Lemma 6.18 Let B be a bigon of S \X� whose edges b0 and b1 have label pairs
f2; 5g and f3; 4g respectively. Let R be an m–gon of S \X� whose edges have label
pairs among f2; 5g, f3; 4g, and f2; 3g. For each i D 0; 1 let pi be the number of edges
of R in the same edge class of GT as bi , and let xpi be the number of edges of R with
the same label pair as bi but not in the same edge class as bi .

Assume that the edges of B and R together lie in an essential annulus A on yT . If
M D xN .A[H.2;3/ [H.4;5/ [B [R/ is a solid torus such that the core of A is a
longitude, then R has exactly one edge with label pair f2; 3g. Thus for each i D 0; 1

we have pi C xpi D .m� 1/=2. Furthermore either

� xpi D 0 for i D 0; 1, or

� p0 D xp1 and p1 D xp0 .

One may care to compare this lemma in the case that R is a trigon with Lemma 3.7.

Proof Consider the genus 3 handlebody xN .A[H.2;3/[H.4;5// which we view as
the torus A� Œ0; 1� with the 1–handles H.2;3/ and H.4;5/ attached to A� f1g. We
then obtain M by attaching to A� Œ0; 1�[@H.2;3/[@H.4;5/ the 2–handles xN .B/ and
xN .R/. Assume M is a solid torus such that the core of A is a longitude.

Let E be a disk. By attaching the 2–handle xN .E/ to A � Œ0; 1� along the core of
A � f0g we form a 3–ball W D xN .A[E/. Let EC and E� be the two sides of
xN .E/ on @W . Notice that @W � Int.EC[E�/ may be identified with the annulus

A.

To the ball W we attach the “1–handle” H DH.2;3/[
xN .B/[H.4;5/ forming the

solid torus M 0D xN .A[H.2;3/[H.4;5/[B [E/. Note M 0[ xN .R/DM [ xN .E/

and M [ xN .E/ŠB3 . Therefore on @M 0 the curve @R must be isotopic to a curve
that algebraically intersects the cocore of H just once. Because R has no edges with
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label pair f4; 5g, it must have exactly one edge with label pair f2; 3g. It then follows
that pi C xpi D .m� 1/=2 for each i D 0; 1.

Let � be the subgraph of GT consisting of the edges of B and R and the vertices U2 ,
U3 , U4 , and U5 . Since � �A, � � @W . The positions of EC and E� relative to �
define how � is contained in A.

Unless EC and E� are contained in distinct bigons of @W n� whose edges lie in two
distinct edge classes of � on @W , either xp0 D 0 or xp1 D 0. Thus we assume both
xp0 ¤ 0 and xp1 ¤ 0. This forces � to appear on A as in Figure 39. It is then clear (eg
by sliding over B each of the pi edges of R that are parallel to bi ) that in order for
M to be a solid torus, p0 D xp1 and p1 D xp0 .

b1

b0

p0 xp0

p1xp1

b1

52

3 4

Figure 39: The edges of � on A when xp0 ¤ 0 and xp1 ¤ 0

Lemma 6.19 The only disks of S \X� whose edges have label pairs among f2; 5g,
f3; 4g, and f2; 3g are bigons. Furthermore all such bigons are parallel.

Proof Lemma 6.17 implies there exists a bigon B of S\X� whose edges have label
pairs f2; 5g and f3; 4g. By Lemma 6.3 any bigon with edges having label pairs among
f2; 5g, f3; 4g, and f2; 3g is parallel to B .

Assume n D 0. Then there are no edges with label pair f2; 3g. Thus, due to the
existence of B , any boundary component of a face of S \X� with edges having all
its label pairs among f2; 5g and f3; 4g may only have two edges.

To see this, let Af2;5g and Af3;4g be narrow essential annuli in yT which contain all
edges of GT with label pair f2; 5g and f3; 4g respectively and the pairs of fat vertices
fU2;U5g and fU3;U4g respectively. Abstractly cap off the boundary components of
Af2;5g and Af3;4g and delete the interiors of the fat vertices to form annuli yAf2;5g
and yAf3;4g in which the edges of GT they contain run from one boundary component
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to the other. Then joining yAf2;5g and yAf3;4g with the annuli @H.2;3/n.U2[U3/ and
@H.4;5/n.U4[U5/ (with the corners of faces of S \X� on them) forms a torus. The
edges and corners of S \X� on this torus form a 1–manifold in which the closed
components all meet each yAf2;5g , yAf3;4g , @H.2;3/ , and @H.4;5/ the same number of
times. Since @B is one such component, any other such component must meet yAf2;5g
and yAf3;4g each just once as well, ie must have just two edges. Therefore any boundary
component of a face of S \X� with edges having all its label pairs among f2; 5g and
f3; 4g is such a closed component of this torus and hence must have just two edges.

Therefore a disk of S \X� whose edges have label pairs among f2; 5g and f3; 4g
must be a bigon. Since Lemma 6.3 implies this bigon is parallel to B , the lemma at
hand is satisfied.

Assume n> 0. Construct a high disk DC for the arc K.5;6/ as in Lemma 6.15. See
Figure 36. Assume R is an m–gon of S \X� for m > 2 with edges having label
pairs among f2; 3g, f2; 5g, and f3; 4g.

Case 1 The edges of B and R lie in an essential annulus A in yT .

By taking A smaller if necessary we may assume the interior of the arc DC \ yT is
disjoint from A. Let M D xN .A[H.2;3/[H.4;5/[B [R/.

Due to the existence of B , we may assume R has at least one edge with label pair
f2; 3g or else the argument assuming nD 0 applies. Therefore @R is a nonseparating
curve on @ xN .A[H.2;3/[H.4;5/[B/, and @M is a torus. Since M is contained in
the solid torus X��N.f [H.1;6// in which the core of A is longitudinal, M must
also be a solid torus such that the core of A is a longitude in M .

Let bi , pi , and xpi for i D 0; 1 be as in Lemma 6.18. Then by Lemma 6.18 R has
exactly one edge with label pair f2; 3g and either xp0 D 0, xp1 D 0, or both p0 D xp1

and p1 D xp0 . In particular, either p0 ¤ 0 or p1 ¤ 0 and always xp0 � p1 . Note that
the edges of R parallel to b0 lie on the opposite side of B from the edges parallel to
b1 .

Beginning with the edge of R adjacent to b0 label the p0 edges of R parallel to b0

as ej for j D 1; : : : ;p0 . Then beginning with the edge of R adjacent to b1 label the
first xp0 edges that are parallel to b1 as ej for j D p0C 1; : : : ; .m� 1/=2. If either
p0 D 0 or p1 D 0 then all edges ej for j D 1; : : : ; .m� 1/=2 are of the second type
or first type respectively. Also for each j let Bj be a copy of B .

For j D 1; : : : ;p0 , let �j be the bigon on yT bounded by ej and b0 . Let �0j and �00j
be the rectangles on @H.2;3/ and @H.4;5/ respectively bounded by the corners of R

incident to ej , the corners of �j , the corners of Bj , and the appropriate final arcs of
@U3 and @U4 . Name these final arcs  0j and  00j of �0j and �00j respectively.
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For j D p0C 1; : : : ; .m� 1/=2, let �j be the bigon on yT bounded by ej and b1 .
Let �0j and �00j be the rectangles on @H.2;3/ and @H.4;5/ respectively bounded by the
corners of R incident to ej , the corners of �j , the corners of Bj , and the appropriate
final arcs of @U2 and @U5 . Name these final arcs  0j and  00j of �0j and �00j respectively.

Form the disks Dj D�j [Bj [�
0
j [�

00
j for each j D 1; : : : ; .m� 1/=2. Sequentially

attach each disk Dj to R along ej and the corners incident to it and slightly isotop the
current attached disk off of the remaining disks. The resulting complex is a low disk
D� for K.2;3/ . (Alternatively, one may conceive of D� as the result of “sliding” each
edge ej over the bigon B .) By construction, the arcs  00j are disjoint from the edges of
GT with label pair f5; 6g. It follows that DC\ yT and D�\ yT have disjoint interiors.
Thus by Lemma 2.1 the existence of the pair of disks DC and D� contradicts the
thinness of K .

Case 2 The edges of B and R lie in a disk D in yT .

Consider the solid torus M D xN .D[H.2;3/[H.4;5/[B/. If R has more than one
edge with label pair f2; 3g then M [ xN .R/ is a punctured lens space contained in
a solid torus which cannot occur. If R has no edges with label pair f2; 3g then the
argument assuming n D 0 applies. Thus we may assume R has just one edge with
label pair f2; 3g.

The procedure of Case 1 of constructing a low disk D� that is disjoint from DC now
applies with p0 D p1 D .m� 1/=2 and xp0 D xp1 D 0.

Proposition 6.20 t ¤ 6

Proof Assuming t D 6, we shall find contradictions to Lemma 6.14.

If a disk of S \X� is neither a bigon nor parallel to f , then by Lemma 6.19 it must
have an edge with label pair f1; 4g and an edge with label pair f5; 6g. Since there are
only n edges with label pair f1; 4g (and only n edges with label pair f5; 6g), there
may be at most n disks that are neither bigons nor parallel to f .

If a disk of S \X� is a bigon yet not parallel to f , then again by Lemma 6.19 its
edges must have label pairs f2; 5g and f3; 4g, and all such bigons are parallel. Thus
there may be at most as many bigons of S \X� not parallel to f as the number of
edges in an edge (parallelism) class with label pair f3; 4g. As a result of the isotopies
of Proposition 6.1, if g is a bigon then each edge class with label pair f3; 4g contains
.s � n/=2 edges. If g is a trigon then either there are .s � n/=3 trigons parallel to
g whose edges account for all edges with label pair f3; 4g or there are .s � 2n/=3

trigons parallel to g whose edges along with an edge from each of the n trigons that
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are meridional disks of W account for all edges with label pair f3; 4g. In the former
case, there are at most 2.s� n/=3 edges in an edge class with label pair f3; 4g. In the
latter case, there are at most 2.s � 2n/=3C n edges in an edge class with label pair
f3; 4g. Therefore if g is a bigon there are at most .s � n/=2 bigons of S \X� not
parallel to f , and if g is a trigon there are at most 2.s�2n/=3Cn bigons of S \X�

not parallel to f .

Any other disk of S \X� must be parallel to f .

Case 1 g is a bigon. By Lemma 6.14,

sC
1

2
C

n

2
�

X
R2S\X�

�.R/:

Case 1a f is a bigon. Since f is a bigon then by Proposition 6.1 there are .s�n/=2

faces of S \X� parallel to f . Since g is a bigon then there are at most .s � n/=2

bigons of S \X� not parallel to f . Since there are at most n disks of S \X� that
are not bigons (parallel to f or otherwise),X

R2S\X�

�.R/D
X

disks R2S\X�

�.R/C
X

nondisks R2S\X�

�.R/

�

�s� n

2
C

s� n

2
C n

�
C 0

D s:

But sC 1
2
C

n
2
� s is a contradiction.

Case 1b f is a trigon. Since f is a trigon then by Proposition 6.1 there are at most
.s � n/=3 faces of S \X� parallel to f . Since g is a bigon then there are at most
.s � n/=2 bigons of S \X� not parallel to f . Since there are at most n disks of
S \X� that are neither bigons nor trigons parallel to f ,X

R2S\X�

�.R/D
X

disks R2S\X�

�.R/C
X

nondisks R2S\X�

�.R/

�

�s� n

3
C

s� n

2
C n

�
C 0

D
5

6
sC

n

6
n:

But sC 1
2
C

n
2
�

5
6
sC n

6
is a contradiction.

Case 2 g is a trigon. By Lemma 6.14,

7

6
sC

1

2
C

n

3
�

X
R2S\X�

�.R/:
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Case 2a f is a bigon. Since f is a bigon then by Proposition 6.1 there are .s�n/=2

faces of S\X� parallel to f . Since g is a trigon then there are at most 2.s�2n/=3Cn

bigons of S \X� not parallel to f . Since there are at most n disks of S \X� that
are not bigons (parallel to f or otherwise),X

R2S\X�

�.R/D
X

disks R2S\X�

�.R/C
X

nondisks R2S\X�

�.R/

�

�s� n

2
C 2

s� 2n

3
C nC n

�
C 0

D
7

6
sC

n

6
:

But 7
6
sC 1

2
C

n
3
�

7
6
sC n

6
is a contradiction.

Case 2b f is a trigon. Since f is a trigon then by Proposition 6.1 there are at most
.s � n/=3 faces of S \X� parallel to f . Since g is a trigon then there are at most
2.s� 2n/=3C n bigons of S \X� not parallel to f . Since there are at most n disks
of S \X� that are not bigons (parallel to f or otherwise),X

R2S\X�

�.R/D
X

disks R2S\X�

�.R/C
X

nondisks R2S\X�

�.R/

�

�s� n

3
C 2

s� 2n

3
C nC n

�
C 0

D sC
n

3
:

But 7
6
sC 1

2
C

n
3
� sC n

3
is a contradiction.

7 The case t D 4

We continue to assume that K is in thin position and that r � 4. In light of Proposition
6.20, we have that jK \ yT j D t � 4. If t D 4 we will show that K must also be in
bridge position. Then since each graph Gx

S
for x D 1; 2; 3; 4 must have a bigon or a

trigon by Lemma 3.1, we will exhibit a width reducing isotopy of K that contradicts
its supposed thinness.

The following lemma relating bridge position and thin position is an immediate conse-
quence of definitions.

Lemma 7.1 If a knot K in thin position has no thin levels, then it is in bridge position.
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To show that thin position of K is bridge position, we must consider the existence of a
second thick level. If yT 0 is another thick level, let T 0 D yT 0�N.K/. We may assume
that S has been isotoped (with support outside a neighborhood of yT ) so that S and yT 0

intersect transversely and every arc of S \T 0 is essential in both S and T 0 . We then
form the fat vertexed graphs G0

T
and G0

S
. Since yT and yT 0 are disjoint, the edges of

the graphs GS and G0
S

are disjoint. Hence the graphs GS and G0
S

may be considered
simultaneously on yS .

Lemma 7.2 Assume f is the face of an Sp cycle for p D 2 or 3 with label pair
fx;xC1g so that @f \K DK.x;xC1/ . Further assume that f is below (resp. above)
yT . If yT 0 is another thick level below (resp. above) yT then yT 0 \K.x;xC1/ ¤ ∅. In
particular f contains the face of an Sp cycle of G0

S
.

Proof We show the case that f is below yT .

By Lemma 3.3 the edges of f lie in an essential annulus A on yT and the core of A

runs p times longitudinally in X� .

If yT 0 is disjoint from f , then f is disjoint from yT�1 . Thus the curve yT�1 must be
isotopic to a curve on yT that is disjoint from A. This contradicts that yT�1 runs just
once in the longitudinal direction of X� . Therefore f \ yT 0 ¤∅.

If yT 0 is disjoint from K.x;xC1/ , then yT 0 intersects f in simple closed curves. A
simple closed curve of yT 0\f innermost on f bounds a disk. This contradicts Lemma
3.20. Thus yT 0\K.x;xC1/ ¤∅.

Since the each arc of S \T 0 is essential in S , each edge of G0
S

on f must be parallel
on f to one of the edges of @f . Note that yT 0 intersects K.x;xC1/ an even number of
times. Each of these intersections appear on each corner of f . Since p D 2 or 3, it is
clear that f contains an Sp cycle of G0

S
.

Theorem 7.3 t D 2

Proof By Proposition 6.20, t � 4. Assume t D 4.

By Lemma 3.1 for each of the labels y 2 tD f1; 2; 3; 4g the graph G
y
S

must have a
bigon or a trigon.

Due to Lemma 3.6, since t D 4 any two distinct label pairs of S2 and S3 cycles in
GS must intersect. Therefore the set of label pairs of S2 and S3 cycles in GS has
cardinality at most two. Hence the S2 and S3 cycles in GS account for at most three
of the four labels. Thus for some y 2 t the graph G

y
S

contains an extended S2 cycle,
an extended S3 cycle, or a forked extended S2 cycle.
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Let F be the face of this extended S2 cycle, extended S3 cycle, or forked extended
S2 cycle. Let � be the Scharlemann cycle contained in the interior of F and let f
be the face of GS that � bounds. By relabeling we may assume that f lies below yT
and that � has label pair f1; 4g. Since r � 4, by Lemma 3.3 the edges of � lie in an
essential annulus in yT . The arc K.2;3/ is the only arc of K not appearing among the
corners of F .

If F is bounded by an extended S2 cycle or extended S3 cycle, then the arcs K.1;2/

and K.3;4/ lie on an annulus formed from bigons of Fnf . This annulus is necessarily
parallel onto yT through one of the two solid tori it cuts off from XC . Since K is in
thin position, the arcs K.1;2/ and K.3;4/ each have only one critical point (a maximum)
in their interiors.

If F is bounded by a forked extended S2 cycle, then the arcs K.1;2/ and K.3;4/ lie on
the complex formed from the bigon and trigon of Fnf . As in Lemma 3.14, we may
construct a high disk Dg for one of the two arcs of K . Since the two arcs of K\XC

are joined by a bigon of GS , it follows that they each have only one critical point in
their interiors.

Regardless of whether F is bounded by an extended Scharlemann cycle or a forked
extended Scharlemann cycle, the two arcs K.1;2/ and K.3;4/ each have high disks that
intersect yT in an annulus R that contains edges of f in just one of its boundaries.

Lemma 4.10 applies to show that the arc of K containing the highest minimum below
yT bounds a low disk D with an arc of yT such that the interior of D is disjoint from
F and K .

By Lemma 7.2, if K.4;1/ contains the highest minimum then there cannot be another
thick level below yT . Thus K is in bridge position. Therefore the arc K.2;3/ has a
low disk D with interior disjoint from f . Alternately, if we assume the arc K.2;3/

contains the highest minimum, then by Lemma 4.10 K.2;3/ again has a low disk D

with interior disjoint from f .

Since the high disks of the arcs K.1;2/ and K.3;4/ intersect yT in R and the interior of
the low disk D for the arc K.2;3/ is disjoint from f , these three arcs are contained
within a solid torus R0 � Œ��; �� for some annulus R0 � yT that extends R to contain
D \ yT and some � > 0. As R contains edges of f in just one of its boundaries, so
does R0 . Hence R0 � Œ��; �� may be assumed to have its interior disjoint from f .

Via the two high disks, isotop the arcs K.1;2/ and K.3;4/ onto R. Then, along the
component of @R in Int R0 , pivot D in R0 � Œ��; �� 180ı through R0nR so that it is
contained in XC . Finally, a further small isotopy to make K.1;2/ and K.3;4/ transverse
to the height function will reduce the width of K . See Figure 40. This contradicts the
thinness of K . Hence t ¤ 4.
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R R0

K.2;3/

K.1;2/;K.3;4/ � Fnf

yT

K.4;1/ � f

Figure 40: The isotopy of K from a 2–bridge position to a 1–bridge position

Lemma 7.4 If t D 2 then K is at most 1–bridge.

Proof Since the first critical point of K above yT is a maximum, there can be no other
critical points of K above yT . Similarly, the arc of K below yT may have no critical
points other than a minimum. Hence there are no thin levels. By Lemma 7.1 K is in
bridge position. Since t D 2, b.K/� 1.

8 The case r D 3

In this section we assume r D 3. Since r � s � 4g � 1, either g D 0 or r D s and
gD 1. If gD 0 then N.S/[N.K/ is a punctured lens space of order 3 and hence K

is 0–bridge. Thus we assume g D 1. Goda and Teragaito have shown the following.

Theorem 8.1 (Goda–Teragaito [5]) No Dehn surgery on a genus one, hyperbolic
knot in S3 gives a lens space.

We adapt their proof of this theorem for our case that r D 3 and g D 1.

Theorem 8.2 If r D 3 then b.K/� 1.
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To prove this, we follow Section 5 of [5]. First we need to adapt some lemmas from
Section 3 of [5].

Lemma 8.3 (cf [5, Lemma 3.1]) Let fe1; e2; : : : ; etg be mutually parallel edges in
GS numbered successively. If r is odd, then fet=2; et=2C1g is an S2 cycle.

Proof As in the first paragraph of the proof of Lemma 3.1 of [5] we assume ei has the
label i at one endpoint for 1� i � t and that e2j has the label 1 at its other endpoint
for some j < t=2. Thus we obtain two S2 cycles �1 and �2 with disjoint label pairs.
Similarly we let fi be the face of GS bounded by �i for i D 1; 2.

Since r ¤ 2, by Lemma 3.2 the edges of each �1 and �2 do not lie in a disk. Thus
they lie in an essential annulus. The proof of Lemma 3.6 then carries through to show
that f1 and f2 lie on opposite sides of yT . Furthermore, by disk exchanges outside of
N.�1[�2/, we may construct a Heegaard torus yT 0 from yT so that the edges of �i lie
in an essential annulus in yT 0 and Intfi \

yT 0 D∅ for i D 1; 2.

We then construct two disjoint Möbius bands B1 and B2 on either side of yT 0 as in the
proof of Lemma 2.5 of [5] and the beginning of our Section 4. Since @B1 and @B2 are
parallel on yT 0 , they divide yT 0 into two annuli. Let A be one of these annuli. Then
B1[A[B2 is an embedded Klein bottle in our lens space X . Thus the order of X is
even. This contradicts that r is odd.

Therefore the edge et has the label 1 at its other endpoint and fet=2; et=2C1g is an S2

cycle.

Lemma 8.4 (cf [5, Lemma 3.2]) If r is odd, then GS does not contain more than t

mutually parallel edges.

Proof In the proof of Lemma 3.2 of [5], replace each occurrence of Lemma 3.1 with
our Lemma 8.3.

Lemma 8.5 (cf [5, Lemma 5.2]) If r is odd, then GS cannot have more than t=2

mutually parallel edges.

Proof In the proof of Lemma 5.2 of [5], replace Lemma 3.1 with our Lemma 8.3 and
Lemma 3.2 with our Lemma 8.4.

Proof of Theorem 8.2 If t D 2 then Lemma 7.4 implies b.K/� 1. Thus we assume
t � 4. Also assume the interior of S has been isotoped to minimize jS \T j.
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Following the proof of Lemma 5.3 of [5]: The vertex of GS has valency 3t , and there
are a total of 3t=2 edges of GS . By Lemma 8.5, GS consists of three families of
mutually parallel edges each containing exactly t=2 edges. Thus there is no S2 cycle
in GS , but there are two S3 cycles �1 and �2 which we may assume to have label
pairs ft; 1g and ft=2; t=2C 1g respectively by an appropriate choice of relabeling. Let
gi be the face of GS bounded by �i for i D 1; 2.

Note that each graph Gx
S

for x 2 t consists of three edges with label pair fx; t�xC1g.
Each such triple of edges Gx

S
is a “twice” (extended) S3 cycle: to one side it bounds

a trigon containing g1 and to the other side it bounds a trigon containing g1 .

The proof of Claim 5.5 of [5] carries through without alteration to show each of these
extended S3 cycles lie in essential annuli in yT . Thus S \T cannot contain a simple
closed curve that bounds a disk in yT without bounding a disk in T . Because every
face of GS is a disk, every simple closed curve of S \ T must bound a disk on S .
Thus each simple closed curve of S \T that is trivial on yT is also trivial on S .

Let DT be an disk on yT bounded by a simple closed curve of S\T that is both trivial
and innermost on yT . Let DS be the disk in S bounded by @DT . Since DT must
be disjoint from K , DS [DT forms a 2–sphere that is disjoint from K . Since lens
spaces are irreducible, DS [DT bounds a ball B . Because K is not nullhomologous
in our lens space X , K 6� B . Thus there is an isotopy of Int S with support in a
neighborhood of B pushing DS past DT thereby reducing jS \T j. This contradicts
our minimality assumption. Thus any simple closed curve of S \ T is essential on
yT . Furthermore, any simple closed curve of S \ T innermost on S must bound a
meridional disk of the same solid torus on one side of yT .

For each i D 1; 2, let Ai be a narrow annulus in yT in which �i lies that does not
contain any simple closed curves of S \ T . If S \ T does indeed contain simple
closed curves, then let ı be an innermost simple closed curve on S bounding the disk
D . The cores of the Ai are parallel on yT to ı , and ı � yTn.A1 [A2/. For each
i D 1; 2, let A0i be the annulus on yT between Ai and ı , and let D0i D Ai [A0i [D

slightly pushed off D so that D0
1

and D0
2

are disjoint from each other and from D . If
Int.g1[g2/\ .A

0
1
[A0

2
/¤∅ then perform disk exchanges on g1[g2 with D0

1
[D0

2

to produce trigons g0i from gi for each i D 1; 2 so that Int.g0
1
[g0

2
/\ .A0

1
[A0

2
/D∅.

Note that @g0i D @gi . Then xN .D0
1
[H.t;1/ [ g0

1
/ and xN .D0

2
[H.t=2;t=2C1/ [ g0

2
/

gives two disjoint punctured lens spaces in X , which is absurd. Thus S \T contains
no simple closed curves.

The proof of Claim 5.4 of [5] (from which the preceding paragraph takes inspiration)
may now be used to show that g1 and g2 lie on opposite sides. Lemma 3.3 then
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implies that the cores of the Ai are not meridional curves for the solid tori on either
side of yT . Thus t=2 is odd, and so t � 6.

Section 4 now applies to the extended S3 cycle �2 considered as bounding the trigon
F containing g1 . Lemma 4.13 implies that F may account for at most t=2C 1 labels.
This contradicts that F accounts for all t labels.
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