Volume 6, issue 4 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Gromov's macroscopic dimension conjecture

Dmitry V Bolotov

Algebraic & Geometric Topology 6 (2006) 1669–1676

arXiv: 0904.4886

Abstract

In this note we construct a closed 4–manifold having torsion-free fundamental group and whose universal covering is of macroscopic dimension 3. This yields a counterexample to Gromov’s conjecture about the falling of macroscopic dimension.

Keywords
closed manifold, universal covering, macroscopic dimension
Mathematical Subject Classification 2000
Primary: 57R19
Secondary: 57R20
References
Forward citations
Publication
Received: 2 March 2006
Accepted: 1 September 2006
Published: 14 October 2006
Authors
Dmitry V Bolotov
B Verkin Institute for Low Temperature Physics
Lenina ave 47
Kharkov 61103
Ukraine