Volume 6, issue 4 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Postnikov extensions of ring spectra

Daniel Dugger and Brooke Shipley

Algebraic & Geometric Topology 6 (2006) 1785–1829

arXiv: math.AT/0604260

Abstract

We give a functorial construction of k–invariants for ring spectra and use these to classify extensions in the Postnikov tower of a ring spectrum.

Keywords
ring spectrum, k-invariant, Postnikov extension
Mathematical Subject Classification 2000
Primary: 55P43
Secondary: 55S45
References
Forward citations
Publication
Received: 26 July 2006
Accepted: 22 August 2006
Published: 1 November 2006
Authors
Daniel Dugger
Department of Mathematics
University of Oregon
Eugene, OR 97403
USA
Brooke Shipley
Department of Mathematics
University of Illinois at Chicago
Chicago, IL 60607
USA