Volume 6, issue 4 (2006)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The universal Khovanov link homology theory

Gad Naot

Algebraic & Geometric Topology 6 (2006) 1863–1892

arXiv: math.GT/0603347

Abstract

We determine the algebraic structure underlying the geometric complex associated to a link in Bar-Natan’s geometric formalism of Khovanov’s link homology theory (n = 2). We find an isomorphism of complexes which reduces the complex to one in a simpler category. This reduction enables us to specify exactly the amount of information held within the geometric complex and thus state precisely its universality properties for link homology theories. We also determine its strength as a link invariant relative to the different topological quantum field theories (TQFTs) used to create link homology. We identify the most general (universal) TQFT that can be used to create link homology and find that it is “smaller” than the TQFT previously reported by Khovanov as the universal link homology theory. We give a new method of extracting all other link homology theories (including Khovanov’s universal TQFT) directly from the universal geometric complex, along with new homology theories that hold a controlled amount of information. We achieve these goals by making a classification of surfaces (with boundaries) modulo the 4TU/S/T relations, a process involving the introduction of genus generating operators. These operators enable us to explore the relation between the geometric complex and its algebraic structure.

Keywords
categorification, cobordism, Jones polynomial, Khovanov link homology, quantum knot invariants, TQFT
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 57M27
References
Forward citations
Publication
Received: 19 May 2006
Revised: 14 July 2006
Accepted: 20 July 2006
Published: 1 November 2006
Authors
Gad Naot
University of Toronto
Department of Mathematics
Toronto
Ontario
Canada