Dehn surgery, homology and hyperbolic volume

IAN AGOL
MARC CULLER
PETER B SHALEN

If a closed, orientable hyperbolic 3–manifold M has volume at most 1.22 then $H_1(M;\mathbb{Z}_p)$ has dimension at most 2 for every prime $p \neq 2, 7$, and $H_1(M;\mathbb{Z}_2)$ and $H_1(M;\mathbb{Z}_7)$ have dimension at most 3. The proof combines several deep results about hyperbolic 3–manifolds. The strategy is to compare the volume of a tube about a shortest closed geodesic $C \subset M$ with the volumes of tubes about short closed geodesics in a sequence of hyperbolic manifolds obtained from M by Dehn surgeries on C.

57M50; 57M27

1 Introduction

We shall prove:

Theorem 1.1 Suppose that M is a closed, orientable hyperbolic 3–manifold with volume at most 1.22. Then $H_1(M;\mathbb{Z}_p)$ has dimension at most 2 for every prime $p \neq 2, 7$, and $H_1(M;\mathbb{Z}_2)$ and $H_1(M;\mathbb{Z}_7)$ have dimension at most 3. Furthermore, if M has volume at most 1.182, then $H_1(M;\mathbb{Z}_7)$ has dimension at most 2.

The bound of 2 for the dimension of $H_1(M;\mathbb{Z}_p)$ is sharp when p is 3 or 5. Indeed, the manifolds $\mathfrak{m}003(-3,1)$, and $\mathfrak{m}007(3,1)$ from the list given in [10] have respective volumes 0.94... and 1.01..., and their integer homology groups are respectively isomorphic to $\mathbb{Z}_5 \oplus \mathbb{Z}_5$ and $\mathbb{Z}_3 \oplus \mathbb{Z}_6$.

Apart from these two examples, the only example known to us of a closed, orientable hyperbolic 3–manifold with volume at most 1.22 is the manifold $\mathfrak{m}003(-2,3)$ from the list given in [10]. These three examples suggest that the bounds for the dimension of $H_1(M;\mathbb{Z}_p)$ given by Theorem 1.1 may not be sharp for $p \neq 3, 5$.

The proof of Theorem 1.1 depends on several deep results, including a strong form of the “log 3 Theorem” of Anderson, Canary, Culler and Shalen [4; 8]; the Embedded Tube Theorem of Gabai, Meyerhoff and N Thurston [9]; the Marden Tameness Conjecture,
recently proved by Agol [1] and by Calegari and Gabai [7]; and an even more recent result due to Agol, Dunfield, Storm and W Thurston [3]. The strategy of our proof is to compare the volume of a tube about a shortest closed geodesic C in M with the volumes of tubes about short closed geodesics in a sequence of hyperbolic manifolds obtained from M by Dehn surgeries on C.

After establishing some basic conventions in Section 2, we carry out the strategy described above in Sections 3–6, for the case of manifolds which are “non-exceptional” in the sense that they contain shortest geodesics with tube radius greater than $(\log 3)/2$. In Section 5, for the case of non-exceptional manifolds with volume at most $1/22$, we establish a bound of 3 for the dimension of $H_1(M;\mathbb{Z}_p)$ for any prime p. In Section 6, again for the case of non-exceptional manifolds with volume at most $1/22$, we establish a bound of 2 for the dimension of $H_1(M;\mathbb{Z}_p)$ for any odd prime p. In Section 7 we use results from [9] to handle the case of exceptional manifolds, and complete the proof of Theorem 1.1.

The research described in this paper was partially supported by NSF grants DMS-0204142 and DMS-0504975.

2 Definitions and conventions

2.1 If g is a loxodromic isometry of hyperbolic 3-space \mathbb{H}^3 we shall let A_g denote the hyperbolic geodesic which is the axis of g. The cylinder about A_g of radius r is the open set $Z_r(g) = \{ x \in \mathbb{H}^3 \mid \text{dist}(x, A_g) < r \}$.

2.2 Suppose that M is a complete, orientable hyperbolic 3–manifold. Let us identify M with \mathbb{H}^3/Γ, where $\Gamma \cong \pi_1(M)$ is a discrete, torsion-free subgroup of Isom$_+ \mathbb{H}^3$. If C is a simple closed geodesic in M then there is a loxodromic isometry $g \in \Gamma$ with $A_g\langle g \rangle = C$. For any $r > 0$ the image $Z_r(g)/\langle g \rangle$ of $Z_r(g)$ under the covering projection is a neighborhood of C in M. For sufficiently small $r > 0$ we have

$$\{ h \in \Gamma \mid h(Z_r(g)) \cap Z_r(g) \neq \emptyset \} = \langle g \rangle.$$

Let R denote the supremum of the set of r for which this condition holds. We define $\text{tube}(C) = Z_R(g)/\langle g \rangle$ to be the maximal tube about C. We shall refer to R as the tube radius of C, and denote it by $\text{tuberad}(C)$.

2.3 If C is a simple closed geodesic in a closed hyperbolic 3–manifold M, it follows from [13], [2] that $M - C$ is homeomorphic to a hyperbolic manifold N of finite volume having one cusp. The manifold N, which by Mostow rigidity is unique up to isometry, will be denoted $\text{drill}_C(M)$.

\textit{Algebraic & Geometric Topology, Volume 6 (2006)}
2.4 If C is a shortest closed geodesic in a closed hyperbolic 3–manifold M, i.e., one such that length$(C) \leq$ length(C') for every other closed geodesic C', then in particular C is simple, and the notions of 2.2 and 2.3 apply to C.

2.5 Suppose that \mathbb{H}^3/Γ is a non-compact orientable complete hyperbolic manifold of finite volume. Let $\Pi \cong \mathbb{Z} \times \mathbb{Z}$ be a maximal parabolic subgroup of Γ (so that Π corresponds to a peripheral subgroup under the isomorphism of Γ with $\pi_1(N)$). Let ξ denote the fixed point of Π on the sphere at infinity and let B be an open horoball centered at ξ such that $\{ g \in \Gamma \mid gB \cap B \neq \emptyset \} = \Pi$. Then $\mathcal{H} = B/\Pi$, which we identify with the image of B in N, is called a cusp neighborhood in N.

If \mathcal{H} is a cusp neighborhood in $N = \mathbb{H}^3/\Gamma$ then the inverse image of \mathcal{H} under the covering projection $\mathbb{H}^3 \rightarrow N$ is a union of disjoint open horoballs. The cusp neighborhood \mathcal{H} is maximal if and only there exist two of these disjoint horoballs whose closures have non-empty intersection.

2.6 If N is a complete, orientable hyperbolic manifold of finite volume, \hat{N} will denote a compact core of N. Thus \hat{N} is a compact 3–manifold whose boundary components are all tori, and the number of these tori is equal to the number of cusps of N.

3 Drilling and packing

Lemma 3.1 Suppose that M is a closed, orientable hyperbolic 3–manifold, and that C is a shortest geodesic in M. Set $N = \text{drill}_C(M)$. If $\text{tuberad}(C) \geq (\log 3)/2$ then $\text{vol} \ N < 3.0177 \text{vol} \ M$.

Proof The proof is based on a result due to Agol, Dunfield, Storm and W Thurston [3]. We let L denote the length of the geodesic C in the closed hyperbolic 3–manifold M, and we set $R = \text{tuberad}(C)$ and $T = \text{tube}(C)$. Proposition 10.1 of [3] states that

$$\text{vol} \ N \leq (\coth^3 2R)(\text{vol} \ M + \frac{\pi}{2} L \tanh R \tanh 2R).$$

Note that

$$\text{vol} \ T = \pi L \sinh^2 R = \left(\frac{\pi}{2} L \tanh R \right) \left(2 \sinh R \cosh R \right) = \left(\frac{\pi}{2} L \tanh R \right) \left(\sinh 2R \right).$$

Thus

$$\text{vol} \ N \leq (\coth^3 2R) \left(\text{vol} \ M + \text{vol} \ T \frac{\tanh 2R}{\sinh 2R} \right) = (\coth^3 2R) \left(\text{vol} \ M + \frac{\text{vol} \ T}{\cosh 2R} \right).$$
In the language of [16], the quantity \((\text{vol } T)/(\text{vol } M)\) is the density of a tube packing in \(\mathbb{H}^3\). According to [16, Corollary 4.4], we have \((\text{vol } T)/(\text{vol } M) < 0.91\). Hence \(\text{vol } N < f(x) \text{vol}(M)\), where \(f(x)\) is defined for \(x \geq 0\) by

\[
f(x) = (\coth^3 2x) \left(1 + \frac{0.91}{\cosh 2x} \right).
\]

Since \(f(x)\) is decreasing for \(x \geq 0\), and since a direct computation shows that \(f(0.5495) = 3.01762\ldots\), we have \(\text{vol } N < 3.0177 \text{vol } M\) whenever \(R \geq 0.5495\).

It remains to consider the case in which \(0.5495 > R \geq (\log 3)/2 = 0.5493\ldots\). In this case we use [16, Theorem 4.3], which asserts that the tube-packing density \((\text{vol } T)/(\text{vol } M)\) is bounded above by \((\sinh R)g(R)\), where \(g(x)\) is defined for \(x > 0\) by

\[
g(x) = \frac{\arcsin \frac{1}{2 \cosh x}}{\arcsinh \frac{\tanh x}{\sqrt{3}}}
\]

Since \(g(x)\) is clearly a decreasing function for \(x > 0\), and since \(\sinh R\) is increasing for \(x > 0\), we have

\[
(\text{vol } T)/(\text{vol } M) < (\sinh 0.5495)g((\log 3)/2) = 0.90817\ldots
\]

Hence \(\text{vol } N < f_1(x) \text{vol}(M)\), where \(f_1(x)\) is defined for \(x \geq 0\) by

\[
f_1(x) = (\coth^3 2x) \left(1 + \frac{0.90817}{\cosh 2x} \right).
\]

Again, \(f_1(x)\) is decreasing for \(x \geq 0\), and we see by direct computation that \(f_1((\log 3)/2) = 3.017392\ldots\). Hence we have \(\text{vol } N < 3.0174 \text{vol } M\) in this case. ☐

Lemma 3.2 Suppose that \(M\) is a closed, orientable hyperbolic 3–manifold such that \(\text{vol } M \leq 1.22\), and that \(C\) is a shortest geodesic in \(M\). Set \(N = \text{drill}_C(M)\). If \(\text{tuberad}(C) > (\log 3)/2\) then the maximal cusp neighborhood in \(N\) has volume less than \(\pi\).

Proof We let \(d(\infty) = .853276\ldots\) denote Böröczky’s lower bound [6] for the density of a horoball packing in hyperbolic space. It follows from the definition of the density of a horoball packing that the volume of a maximal cusp neighborhood in \(N\) is at most \(d(\infty) \text{vol } N\). **Lemma 3.1** gives \(\text{vol } N < 3.0177 \cdot 1.22 < \pi/d(\infty)\), and the conclusion follows. ☐
4 Filling

As in [4], we shall say that a group is semifree if it is a free product of free abelian groups; and we shall say that a group Γ is k–semifree if every subgroup of Γ whose rank is at most k is semifree. Note that Γ is 2–semifree if and only if every rank-2 subgroup of Γ is either free or free abelian.

The following improved version of [4, Theorem 6.1] is made possible by more recent developments.

Theorem 4.1 Let $k \geq 2$ be an integer and let Φ be a Kleinian group which is freely generated by elements ξ_1, \ldots, ξ_k. Let z be any point of \mathbb{H}^3 and set $d_i = \text{dist}(z, \xi_i \cdot z)$ for $i = 1, \ldots, k$. Then we have

$$\sum_{i=1}^{k} \frac{1}{1 + e^{d_i}} \leq \frac{1}{2}.$$

In particular there is some $i \in \{1, \ldots, k\}$ such that $d_i \geq \log(2k - 1)$.

Proof If Γ is geometrically finite this is included in [4, Theorem 6.1]. In the general case, Γ is topologically tame according to [1] and [7], and it then follows from [15, Theorem 1.1], or from the corresponding result for the free case in [14], that Γ is an algebraic limit of geometrically finite groups; more precisely, there is a sequence of geometrically finite Kleinian groups $(\Gamma_j)_{j \geq 1}$ such that each Γ_j is freely generated by elements $\xi_{1j}, \ldots, \xi_{kj}$, and $\lim_{j \to \infty} \xi_{ij} = \xi_i$ for $i = 1, \ldots, k$. Given any $z \in \mathbb{H}^3$, we set $d_{ij} = \text{dist}(z, \xi_{ij} \cdot z)$ for each $j \geq 1$ and for $i = 1, \ldots, k$. According to [4, Theorem 6.1], we have

$$\sum_{i=1}^{k} \frac{1}{1 + e^{d_{ij}}} \leq \frac{1}{2}$$

for each $j \geq 1$. Taking limits as $j \to \infty$ we conclude that

$$\sum_{i=1}^{k} \frac{1}{1 + e^{d_i}} \leq \frac{1}{2}. \quad \square$$

Let us also recall the following definition from [4, Section 8]. Let Γ be a discrete torsion-free subgroup of $\text{Isom}_+(\mathbb{H}^3)$. A positive number λ is termed a strong Margulis number for Γ, or for the orientable hyperbolic 3–manifold $N = \mathbb{H}^3 / \Gamma$, if whenever ξ and η are non-commuting elements of Γ, we have

$$\frac{1}{1 + e^{\text{dist}(\xi \cdot z, z)}} + \frac{1}{1 + e^{\text{dist}(\eta \cdot z, z)}} \leq \frac{2}{1 + e^{\lambda}}.$$
The following improved version of [4, Proposition 8.4] is an immediate consequence of Theorem 4.1.

Corollary 4.2 Let Γ be a discrete subgroup of $\text{Isom}_+(\mathbb{H}^3)$. Suppose that Γ is 2–semifree. Then $\log 3$ is a strong Margulis number for Γ.

Lemma 4.3 Let N be a non-compact finite-volume hyperbolic 3–manifold. Suppose that S is a boundary component of the compact core \hat{N}, and \mathcal{H} is the maximal cusp neighborhood in N corresponding to S. If infinitely many of the manifolds obtained by Dehn filling \hat{N} along S have 2–semifree fundamental group then \mathcal{H} has volume at least π.

Proof Suppose that (N_i) is an infinite sequence of distinct hyperbolic manifolds obtained by Dehn filling \hat{N} along S, and that $\pi_1(N_i)$ is 2–semifree for each i.

Thurston’s Dehn filling theorem [5, Appendix B], implies that for each sufficiently large i, the manifold N_i admits a hyperbolic metric; that the core curve of the Dehn filling N_i of \hat{N} is isotopic to a geodesic C_i in N_i; that the length L_i of C_i tends to 0 as $i \to \infty$; and that the sequence of maximal tubes $(\text{tube}(C_i))_{i \geq 1}$ converges geometrically to \mathcal{H}. In particular

$$\lim_{i \to \infty} \text{vol(\text{tube}(C_i))} = \text{vol} \mathcal{H}.$$

According to Corollary 4.2, $\log 3$ is a strong Margulis number for each of the hyperbolic manifolds N_i. It therefore follows from [4, Corollary 10.5] that $\text{vol \text{tube}(C_i)} > V(L_i)$, where V is an explicitly defined function such that $\lim_{x \to 0} V(x) = \pi$. In particular, this shows that

$$\text{vol} \mathcal{H} \geq \lim_{i \to \infty} V(L_i) \geq \pi. \quad \Box$$

5 Non-exceptional manifolds, arbitrary primes

5.1 A closed hyperbolic 3–manifold M will be termed *exceptional* if every shortest geodesic in M has tube radius at most $(\log 3)/2$.

In this section we shall prove a result, Proposition 5.3, which gives a bound of 3 for the dimension of $H_1(M; \mathbb{Z}_p)$ for any prime p when M is a non-exceptional manifold with volume at most 1.22.
Lemma 5.2 Suppose that \(M \) is a compact, irreducible, orientable 3–manifold, such that every non-cyclic abelian subgroup of \(\pi_1(M) \) is carried by a torus component of \(\partial M \). Suppose that either

(i) \(\dim H_1(M; \mathbb{Q}) \geq 3 \), or

(ii) \(M \) is closed and \(\dim H_1(M; \mathbb{Z}_p) \geq 4 \) for some prime \(p \).

Then \(\pi_1(M) \) is 2–semifree.

Proof Let \(X \) be any subgroup of \(\pi_1(M) \) having rank at most 2. According to [11, Theorem VI.4.1], \(X \) is free, or free abelian, or of finite index in \(\pi_1(M) \). If \(\dim H_1(M; \mathbb{Q}) \geq 3 \), it is clear that \(X \) has infinite index in \(\pi_1(M) \). If \(M \) is closed and \(H_1(M; \mathbb{Z}_p) \geq 4 \) for some prime \(p \), then Proposition 1.1 of [17] implies that every 2–generator subgroup of \(\pi_1(M) \) has infinite index. Thus in either case \(X \) is either free or free abelian. This shows that \(\pi_1(M) \) is 2–semifree.

Proposition 5.3 Suppose that \(M \) is a closed, orientable, non-exceptional hyperbolic 3–manifold such that \(\text{vol} \ M \leq 1.22 \). Then \(H_1(M; \mathbb{Z}_p) \) has dimension at most 3 for every prime \(p \).

Proof Since \(M \) is non-exceptional, there is a shortest geodesic \(C \) in \(M \) with \(R = \text{tuberd}(C) > (\log 3)/2 \). We set \(\mathcal{N} = \text{drill}_C(M) \). Let \(\mathcal{H} \) denote the maximal cusp neighborhood in \(\mathcal{N} \). Since \(R > (\log 3)/2 \), Lemma 3.2 implies that \(\text{vol} \mathcal{H} < \pi \).

Now assume that \(\dim H_1(M; \mathbb{Z}_p) \geq 4 \) for some prime \(p \). There is an infinite sequence \((M_i) \) of manifolds obtained by distinct Dehn fillings of \(\mathcal{N} \) such that \(H_1(M_i; \mathbb{Z}_p) \) has dimension at least 4 for each \(i \). (For example, if \((\lambda, \mu) \) is a basis for \(H_1(\partial \mathcal{N}, \mathbb{Z}_p) \) such that \(\lambda \) belongs to the kernel of the inclusion homomorphism \(H_1(\partial \mathcal{N}, \mathbb{Z}_p) \rightarrow H_1(\mathcal{N}, \mathbb{Z}_p) \), we may take \(M_i \) to be obtained by the Dehn surgery corresponding to a simple closed curve in \(\partial \mathcal{N} \) representing the homology class \(\lambda + i p \mu \).) It follows from Thurston’s Dehn filling theorem [5, Appendix B] that for sufficiently large \(i \) the manifold \(M_i \) is hyperbolic. Hence by case (ii) of Lemma 5.2, the fundamental group of \(M_i \) is 2–semifree for sufficiently large \(i \). Thus Lemma 4.3 implies that \(\text{vol} \mathcal{H} \geq \pi \), a contradiction.

\section{Non-exceptional manifolds, odd primes}

Proposition 6.3, which is proved in this section, gives a bound of 2 for the dimension of \(H_1(M; \mathbb{Z}_p) \) for any odd prime \(p \) when \(M \) is a non-exceptional manifold with volume at most 1.22.
Definition 6.1 Let N be a connected manifold, $\star \in N$ a base point, and Q a subgroup of $\pi_1(N, \star)$. We shall say that a connected based covering space $r : (N', \star') \to (N, \star)$ carries the subgroup Q if $Q \leq r_\#(\pi_1(N', \star')) \leq \pi_1(N, \star)$

Lemma 6.2 Suppose that H is a maximal cusp neighborhood in a finite-volume hyperbolic 3–manifold N. Let \star be a base point in H, and let $P \leq \pi_1(N, \star)$ denote the image of $\pi_1(H, \star)$ under inclusion. Then there is an element β of $\pi_1(N, \star)$ with the following property:

\[(\dagger) \quad \text{For every based covering space } r : (N', \star') \to (N, \star) \text{ which carries the subgroup } \langle P, \beta \rangle \text{ of } \pi_1(N, \star), \text{ there is a maximal cusp neighborhood } H' \text{ in } N' \text{ which is isometric to } H. \]

Proof We write $N = \mathbb{H}^3 / \Gamma$, where Γ is a discrete, torsion-free subgroup of $\text{Isom}(\mathbb{H}^3)$. Let $q : \mathbb{H}^3 \to N$ denote the quotient map and fix a base point \star' which is mapped to \star by q. The components of $q^{-1}(H)$ are horoballs. Let B_0 denote the component of $q^{-1}(H)$ containing \star'. The stabilizer Γ_0 of B_0 is mapped onto the subgroup P of $\pi_1(N, \star)$ by the natural isomorphism $\iota : \Gamma \to \pi_1(N, \star)$.

Since H is a maximal cusp, there is a component $B_1 \neq B_0$ of $q^{-1}(H)$ such that $\overline{B_1} \cap \overline{B_0} \neq \emptyset$. We fix an element g of Γ such that $g(B_0) = B_1$, and we set $\beta = \iota(g) \in \pi_1(N, \star)$.

To show that β has property (\dagger), we consider an arbitrary based covering space $r : (N', \star') \to (N, \star)$ which carries the subgroup $\langle P, \beta \rangle$ of $\pi_1(N, \star)$. We may identify N' with \mathbb{H}^3 / Γ', where Γ' is some subgroup of Γ containing $\langle \Gamma_0, g \rangle$.

Since $\Gamma_0 \subset \Gamma'$, the cusp neighborhood H lifts to a cusp neighborhood H' in N'. In particular H' is isometric to H. The horoballs B_0 and $B_1 = g(B_0)$ are distinct components of $(q')^{-1}(H')$, where $q' : \mathbb{H}^3 \to N'$ denotes the quotient map. Since $g \in \Gamma'$ and $\overline{B_1} \cap \overline{B_0} \neq \emptyset$, the cusp neighborhood H' is maximal.

Proposition 6.3 Suppose that M is a closed, orientable, non-exceptional hyperbolic 3–manifold such that $\text{vol } M \leq 1.22$. Then $H_1(M; \mathbb{Z}_p)$ has dimension at most 2 for every odd prime p.

Proof Since M is non-exceptional, we may fix a shortest geodesic C in M with $R = \text{tuberad}(C) > (\log 3)/2$. We set $N = \text{drill}_C(M)$. Let H denote the maximal cusp neighborhood in N. Since $R > (\log 3)/2$, Lemma 3.2 implies that $\text{vol } H < \pi$.

As in the statement of Lemma 6.2, we fix a base point $\star \in H$, and we denote by $P \leq \pi_1(N, \star)$ the image of $\pi_1(H, \star)$ under inclusion. We fix an element β of $\pi_1(N, \star)$ having property (\dagger) of Lemma 6.2. We set $Q = \langle P, \beta \rangle \leq \pi_1(N, \star)$.
Suppose that \(\dim H_1(M; \mathbb{Z}_p) \geq 3 \) for some prime \(p \). We shall prove the proposition by showing that this assumption leads to a contradiction if \(p \) is odd.

It follows from Poincaré duality that the image of the inclusion homomorphism \(\alpha : H_1(\partial \hat{N}; \mathbb{Z}_p) \to H_1(\hat{N}; \mathbb{Z}_p) \) has rank 1. Hence the image of \(P \) under the natural homomorphism \(\pi_1(N, \ast) \to H_1(N; \mathbb{Z}_p) \) has dimension 1. It follows that the image of \(Q \) of \(Q \) under this homomorphism has dimension either 1 or 2. In the case \(\dim \hat{Q} = 1 \) we shall obtain a contradiction for any prime \(p \). In the case \(\dim \hat{Q} = 2 \) we shall obtain a contradiction for any odd prime \(p \).

First consider the case \(\dim \hat{Q} = 1 \). We have assumed \(\dim H_1(M; \mathbb{Z}_p) \geq 3 \). Thus there is a \(\mathbb{Z}_p \times \mathbb{Z}_p \)-regular based covering space \((N', \ast')\) of \((N, \ast)\) which carries \(Q \). By property (†), there is a maximal cusp neighborhood \(\mathcal{H}' \) in \(N' \) which is isometric to \(\mathcal{H} \). In particular \(\text{vol} \mathcal{H}' < \pi \).

Since in particular \((N', \ast')\) carries \(P \), the boundary of the compact core \(\hat{N} \) lifts to \(\hat{N}' \). As \(N' \) is a \(p^2 \)-fold regular covering, it follows that \(\hat{N}' \) has \(p^2 \geq 4 \) boundary components.

It follows from Thurston’s Dehn filling theorem [5, Appendix B] that there are infinitely many hyperbolic manifolds obtained by Dehn filling one boundary component of \(\hat{N}' \). If \(Z \) is any hyperbolic manifold obtained by such a filling, then \(Z \) has at least three boundary components, and it follows from case (i) of Lemma 5.2 that \(\pi_1(Z) \) is 2-semifree. It therefore follows from Lemma 4.3 that each maximal cusp neighborhood in \(N' \) has volume at least \(\pi \). Since we have seen that \(\text{vol} \mathcal{H}' < \pi \), this gives the desired contradiction in the case \(\dim \hat{Q} = 1 \).

It remains to consider the case in which \(\dim \hat{Q} = 2 \) and the prime \(p \) is odd. Since we have assumed \(\dim H_1(M; \mathbb{Z}_p) \geq 3 \), there is a \(p \)-fold cyclic based covering space \((N', \ast')\) of \((N, \ast)\) which carries \(Q \). Since \(N' \) carries \(P \), the boundary of the compact core \(\hat{N} \) lifts to \(\hat{N}' \), and as \(N' \) is a \(p \)-fold regular covering, it follows that \(\hat{N}' \) has \(p \) boundary components.

We claim that the inclusion homomorphism \(\alpha' : H_1(\partial \hat{N}', \mathbb{Z}_p) \to H_1(\hat{N}', \mathbb{Z}_p) \) is not surjective. To establish this, we consider the commutative diagram

\[
\begin{array}{ccc}
H_1(\partial \hat{N}'; \mathbb{Z}_p) & \xrightarrow{\alpha'} & H_1(N'; \mathbb{Z}_p) \\
\downarrow & & \downarrow r_* \\
H_1(\partial \hat{N}; \mathbb{Z}_p) & \xrightarrow{\alpha} & H_1(N; \mathbb{Z}_p)
\end{array}
\]

where \(r : N' \to N \) is the covering projection. Since \((N', \ast')\) carries \(Q \) we have \(\hat{Q} \subset \text{Im} r_* \). Hence surjectivity of \(\alpha' \) would imply \(\hat{Q} \subset \text{Im} \alpha \). This is impossible.
observed above that \(\text{Im} \alpha \) has rank 1, and we are in the case \(\dim \widetilde{Q} = 2 \). Thus \(\alpha' \) cannot be surjective.

Since \(\tilde{N}' \) has \(p \) boundary components, it follows from Poincaré duality that \(\dim \text{Im} \alpha' = p \geq 3 \). Since \(\alpha' \) is not surjective and \(p \) is an odd prime, it follows that \(\dim H_1(N'; \mathbb{Z}_p) \geq p + 1 \geq 4 \).

Since \((N', \star) \) carries \(Q \), some subgroup \(Q' \) of \(\pi_1(N', \star) \) is mapped isomorphically to \(Q \) by \(r_\# \). In particular \(Q' \) has rank at most 3. Since \(\dim H_1(N'; \mathbb{Z}_p) \geq 4 \), there is a \(p \)-fold cyclic based covering space \((N'', \star'') \) of \((N', \star') \) which carries \(Q' \). Hence \((N'', \star'') \) is a \(p^2 \)-fold (possibly irregular) based covering space of \((N, \star) \) which carries \(Q \). By property (\dagger), there is a maximal cusp neighborhood \(\mathcal{H}' \) in \(N'' \) which is isometric to \(\mathcal{H} \). In particular \(\text{vol} \mathcal{H}' < \pi \).

Since \(P \leq Q \), there is a component \(T \) of \(\partial \tilde{N}' \) such that \(Q' \) contains a conjugate of the image of \(\pi_1(T) \) under the inclusion homomorphism \(\pi_1(T) \to \pi_1(N') \). Hence \(T \) lifts to the \(p \)-fold cyclic covering space \(N'' \) of \(N' \). It follows that the covering projection \(r': N'' \to N' \) maps \(p \geq 3 \) components of \((r')^{-1}(\partial \tilde{N}') \) to \(T \). As \(\tilde{N}' \) has at least three boundary components, \(\tilde{N}' \) must have at least five boundary components.

Hence if \(Z \) is any hyperbolic manifold obtained by Dehn filling one boundary component of \(\tilde{N}' \), we have \(\dim H_1(Z; \mathbb{Q}) \geq 4 > 3 \), and it follows from case (i) of Lemma 5.2 that \(\pi_1(Z) \) is \(2 \)-semifree. It therefore follows from Lemma 4.3 and Thurston’s Dehn filling theorem that each maximal cusp neighborhood in \(N'' \) has volume at least \(\pi \). Since we have seen that \(\text{vol} \mathcal{H}' < \pi \), we have the desired contradiction in this case as well. \(\square \)

7 Exceptional manifolds

Our treatment of exceptional manifolds begins with Proposition 7.1 below, the proof of which will largely consist of citing material from [9]. In order to state it we must first introduce some notation.

For \(k = 0, \ldots, 6 \) we define constants \(\tau_k \) as follows:

\[
\begin{align*}
\tau_0 &= 0.4779 \\
\tau_1 &= 1.0756 \\
\tau_2 &= 1.0527 \\
\tau_3 &= 1.2599 \\
\tau_4 &= 1.2521 \\
\tau_5 &= 1.0239 \\
\tau_6 &= 1.0239
\end{align*}
\]
For $k = 0, \ldots, 6$ let \mathcal{E}_k be the 2–generator group with presentation
\[
\mathcal{E}_k = \langle x, y : r_{1,k}, r_{2,k} \rangle,
\]
where the relators $r_{1,k} = r_{1,k}(x, y)$ and $r_{2,k} = r_{2,k}(x, y)$ are the words listed below (in which we have set $X = x^{-1}$ and $Y = y^{-1}$):
\[
\begin{align*}
 r_{1,0} &= xyXyyXyxyy, \\
 r_{2,0} &= Xyxyxyy, \\
 r_{1,1} &= XXYXYXYXYYXyXXy, \\
 r_{2,1} &= XXYxyxxXyxyXyy, \\
 r_{1,2} &= XyxyXyxyXyxyXyy, \\
 r_{2,2} &= XXYyXXyyXyxyXyy, \\
 r_{1,3} &= XXYyXyxyXXyyXXyXYXyXYXyy, \\
 r_{2,3} &= XXYyXXyyXXyXYXYXyXYXyy, \\
 r_{1,4} &= XXYyXXyXYxXyxyXXyXYXYXYyXYYy, \\
 r_{2,4} &= XXYyXXyXXyXYXyXXyXXyXYXYXyXYXYXYyXYYy, \\
 r_{1,5} &= XyXYyXyxyXXyyXyxyXyxy, \\
 r_{2,5} &= XyxyXXyXXyyXyxyXyxy, \\
 r_{1,6} &= XYYxXYXXyXYXYxyy, \\
 r_{2,6} &= XYYxyXXyXXyXYXyxyy.
\end{align*}
\]

The group \mathcal{E}_0 is the fundamental group of an arithmetic hyperbolic 3–manifold which is known as Vol3. This manifold, which was studied in [12], is described as $m007(3,1)$ in the list given in [10], and can also be described as the manifold obtained by a Dehn filling of the once-punctured torus bundle with monodromy $-R^2L$.

Proposition 7.1 Suppose that M is an exceptional closed, orientable hyperbolic 3–manifold which is not isometric to Vol3. Then there exists an integer k with $1 \leq k \leq 6$ such that the following conditions hold:

1. M has a finite-sheeted cover \tilde{M} such that $\pi_1(\tilde{M})$ is isomorphic to a quotient of \mathcal{E}_k; and
2. there is a shortest closed geodesic C in M such that $\text{vol}(\text{tube}(C)) \geq \tau_k$.

Proof This is in large part an application of results from [9], and we begin by reviewing some material from that paper.

We begin by considering an arbitrary simple closed geodesic C in a closed, orientable hyperbolic 3–manifold $M = \mathbb{H}^3 / \Gamma$. As we pointed out in 2.2, there is a loxodromic
isometry $f \in \Gamma$ with $A_f/\langle f \rangle = C$. If we set $R = \text{tuberad}(C)$ and $Z = Z_R(f)$, it follows from the definitions that $\text{tube}(C) = Z/\langle f \rangle$, that $h(Z) \cap Z = \emptyset$ for every $h \in \Gamma - \langle f \rangle$, and that there is an element $w \in \Gamma - \langle f \rangle$ such that $w(\bar{Z}) \cap \bar{Z} \neq \emptyset$.

Let us define an ordered pair (f, w) of elements of Γ to be a GMT pair for the simple geodesic C if we have (i) $A_f/\langle f \rangle = C$, (ii) $w \notin \langle f \rangle$, and (iii) $w(\bar{Z}) \cap \bar{Z} \neq \emptyset$. Note that since $\langle f \rangle$ must be a maximal cyclic subgroup of Γ, condition (ii) implies that the group $\langle f, w \rangle$ is non-elementary.

Set $Q = \{ (L, D, R) \in \mathbb{C}^3 : \Re L, \Re D > 0 \}$. For any point $P = (L, D, R) \in Q$ we will denote by (f_P, w_P) the pair $(f, w) \in \text{Isom}_+^+(\mathbb{H}^3) \times \text{Isom}_+^+(\mathbb{H}^3)$, where $f, w \in PGL_2(\mathbb{C}) = \text{Isom}_+^+(\mathbb{H}^3)$ are defined by

$$f = \begin{bmatrix} e^{L/2} & 0 \\ 0 & e^{-L/2} \end{bmatrix}$$

and

$$w = \begin{bmatrix} e^{R/2} & 0 \\ 0 & e^{-R/2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{D/2} & 0 \\ 0 & e^{-D/2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

With this definition, f_P has (real) translation length $\Re L$, and the (minimum) distance between A_f and $w(A_f)$ is $(\Re D)/2$.

In [9, Section 1], it is shown that if (f, w) is a GMT pair for a shortest geodesic C in a closed, orientable hyperbolic 3–manifold and $\text{tuberad}(C) \leq (\log 3)/2$, then (f, w) is conjugate by some element of $\text{Isom}_+^+(\mathbb{H}^3)$ to a pair of the form (f_P, w_P) where $P \in Q$ is a point such that $\exp(P) = (e^L, e^D, e^R)$ lies in the union $X_0 \cup \cdots \cup X_6$ of seven disjoint open subsets of \mathbb{C}^3 that are explicitly defined in [9, Proposition 1.28].

For every k with $0 \leq k \leq 6$ and every point $P = (L, D, R)$ such that $\exp(P) \in X_k$, it follows from [9, Definition 1.27 and Proposition 1.28] that

(I) the isometries $r_{1,k}(f_P, w_P)$ and $r_{2,k}(f_P, w_P)$ have translation length less than $\Re L$;

and it follows from [9, Table 1.1] that

(II) $\pi \Re(L) \sinh^2(\Re(D)/2) > \tau_k$.

According to [9, Proposition 3.1], if C is a shortest geodesic in a closed, orientable hyperbolic 3–manifold, and if some GMT pair for C has the form (f_P, w_P) for some P with $\exp(P) \in X_0$, then M is isometric to Vol3.

Now suppose that M is an exceptional closed, orientable hyperbolic 3–manifold. Let us choose a shortest closed geodesic C in M. By the definition of an exceptional manifold, C has tube radius $\leq (\log 3)/2$. Hence the facts recalled above imply that C has a GMT pair of the form (f_P, w_P) for some P such that $\exp(P) \in X_k$ for some k.
with $0 \leq k \leq 6$; and furthermore, that if M is not isometric to Vol3, then $1 \leq k \leq 6$. We shall show that conclusions (1) and (2) hold with this choice of k.

For $i = 1, 2$ it follows from property (I) above that the element $r_{i,k}(f, \omega)$ has real translation length less than the real translation length $\text{Re } L$ of f. Since C is a shortest geodesic in M, it follows that the conjugacy class of $r_{i,k}(f, \omega)$ is not represented by a closed geodesic in M. As M is closed it follows that $r_{i,k}(f, \omega)$ is the identity for $i = 1, 2$. Hence the subgroup of Γ generated by f and ω is isomorphic to a quotient of \mathcal{E}_k. Since we observed above that (f, ω) is non-elementary, there is a non-abelian subgroup Y of $\pi_1(M)$ which is isomorphic to a quotient of \mathcal{E}_k. In particular Y has rank 2, and it cannot be a free group of rank 2 since the relators $r_{1,k}$ and $r_{2,k}$ are non-trivial. Hence by [11, Theorem VI.4.1] we must have $|\pi_1(M):Y| < \infty$. This proves (1).

Finally, we recall that

$$\text{vol tube}(C) = \pi(\text{length}(C)) \sinh^2(\text{tuberad}(C)) = \pi(\text{Re } L) \sinh^2((\text{Re } D)/2).$$

Hence (2) follows from (II).

We shall also need the following slight refinement of [17, Proposition 1.1].

Proposition 7.2 Let p be a prime and let M be a closed 3–manifold. If p is odd assume that M is orientable. Let X be a finitely generated subgroup of $\pi_1(M)$, and set $n = \dim H_1(X; \mathbb{Z}_p)$. If $\dim H_1(M; \mathbb{Z}_p) \geq \max(3, n+2)$, then X has infinite index in $\pi_1(M)$. In fact, X is contained in infinitely many distinct finite-index subgroups of $\pi_1(M)$.

Proof In this proof, as in [17, Section 1], for any group G we shall denote by G_1 the subgroup of G generated by all commutators and p-th powers, where p is the prime given in the hypothesis. Since $\dim H_1(X; \mathbb{Z}_p) = n$ we may write $X = EX_1$ for some rank-n subgroup E of X.

We first assume that $n \geq 1$. Set $\Gamma = \pi_1(M)$. Let S denote the set of all finite-index subgroups Δ of Γ such that $\Delta \geq X$ and $\dim H_1(\Delta; \mathbb{Z}_p) \geq n + 2$. The hypothesis gives $\Gamma \in S$, so that $S \neq \emptyset$. Hence it suffices to show that every subgroup $\Delta \in S$ has a proper subgroup D such that $D \in S$.

Any group $\Delta \in S$ may be identified with $\pi_1(\widetilde{M})$ for some finite-sheeted covering space \widetilde{M} of M. In particular, \widetilde{M} is a closed 3–manifold, and is orientable if p is odd. Since $\Delta \in S$ we have $X \leq \Delta = \pi_1(\widetilde{M})$ and $\dim H_1(\widetilde{M}; \mathbb{Z}_p) = \dim H_1(\Delta; \mathbb{Z}_p) \geq n + 2$. Now set $D = E \Delta_1 \leq \Delta$. Applying [17, Lemma 1.5], with \widetilde{M} in place of M, we deduce that
D is a proper, finite-index subgroup of Δ, and that $\dim H_1(D; \mathbb{Z}_p) \geq 2n + 1 \geq n + 2$. On the other hand, since $\Delta \in \mathcal{S}$, we have $X \leq \Delta$, and hence $X = EX_1 \leq E\Delta_1 = D$. It now follows that $D \in \mathcal{S}$, and the proof is complete in the case $n \geq 1$.

If $n = 0$ then, since $\dim H_1(M; \mathbb{Z}_p) \geq 3$, there exists a finitely generated subgroup $X' \geq X$ such that $H_1(X'; \mathbb{Z}_p)$ has dimension 1. The case of the Lemma which we have already proved shows that X' has infinite index. Thus X has infinite index as well.

Corollary 7.3 Let p be a prime and let M be a closed, orientable 3–manifold. Let X be a finite-index subgroup of $\pi_1(M)$, and set $n = \dim H_1(X; \mathbb{Z}_p)$. Then $\dim H_1(M; \mathbb{Z}_p) \leq \max(2, n + 1)$.

Lemma 7.4 Suppose that M is an exceptional hyperbolic 3–manifold with volume at most 1.22. Then $H_1(M; \mathbb{Z}_p)$ has dimension at most 2 for every prime $p \neq 2, 7$, and $H_1(M; \mathbb{Z}_2)$ and $H_1(M; \mathbb{Z}_7)$ have dimension at most 3. Furthermore, if M has volume at most 1.182, then $H_1(M; \mathbb{Z}_7)$ has dimension at most 2.

Proof If M is isometric to Vol^3 then $\pi_1(M)$ is generated by two elements, and the conclusions follow. For the rest of the proof we assume that M is not isometric to Vol^3, and we fix an integer k with $1 \leq k \leq 6$ such that conditions (1) and (2) of Proposition 7.1 hold.

By condition (2) of Proposition 7.1, we may fix a shortest closed geodesic C in M such that $\text{vol}(T) \geq \tau_k$, where $T = \text{tube}(C)$. It follows from a result of Przeworski’s [16, Corollary 4.4] on the density of cylinder packings that $\text{vol} T < 0.91 \text{vol} M$, and so $\text{vol} M > \tau_k/0.91$. If $k = 3$ we have $\tau_k/0.91 \geq 1.22$, and we get a contradiction to the hypothesis. Hence $k \in \{1, 2, 4, 5, 6\}$.

Furthermore, we have $\tau_1/0.91 > 1.182$. Hence if $\text{vol} M \leq 1.182$ then $k \in \{2, 4, 5, 6\}$.

By condition (1) of Proposition 7.1, $\pi_1(M)$ has a finite-index subgroup X which is isomorphic to a quotient of \mathcal{E}_k. From the defining presentations of the groups \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_4, \mathcal{E}_5 and \mathcal{E}_6, we find that $H_1(\mathcal{E}_1; \mathbb{Z})$ is isomorphic to $\mathbb{Z}_7 \oplus \mathbb{Z}_7$, that $H_1(\mathcal{E}_2; \mathbb{Z})$ and $H_1(\mathcal{E}_4; \mathbb{Z})$ are isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_{12}$, while $H_1(\mathcal{E}_5; \mathbb{Z})$ and $H_1(\mathcal{E}_6; \mathbb{Z})$ are isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_4$. (One can check that the two groups \mathcal{E}_5 and \mathcal{E}_6 are isomorphic to each other.) In particular, since $k \in \{1, 2, 4, 5, 6\}$ we have $\dim H_1(\mathcal{E}_k; \mathbb{Z}_p) \leq 1$ for any prime $p \neq 2, 7$, and $\dim H_1(\mathcal{E}_k; \mathbb{Z}_p) \leq 2$ for $p = 2$ or 7. As X is isomorphic to a quotient of \mathcal{E}_k, it follows that $\dim H_1(X; \mathbb{Z}_p) \leq 1$ for any prime $p \neq 2, 7$, and $\dim H_1(X; \mathbb{Z}_p) \leq 2$ for $p = 2$ or 7. Hence by Corollary 7.3, we have $\dim H_1(M; \mathbb{Z}_p) \leq 2$ for $p \neq 2, 7$, and $\dim H_1(M; \mathbb{Z}_p) \leq 3$ for $p = 2, 7$.

Algebraic & Geometric Topology, Volume 6 (2006)
It remains to prove that if $\text{vol } M \leq 1.182$ then $\dim H_1(M;\mathbb{Z}_7) \leq 2$. We have observed that in this case $k \in \{2, 4, 5, 6\}$. By the list of isomorphism types of the $H_1(\mathcal{E}_k;\mathbb{Z})$ given above, it follows that $\dim H_1(\mathcal{E}_k;\mathbb{Z}_7) = 0 < 1$. Hence in this case the argument given above for $p \neq 2, 7$ goes through in exactly the same way to show that $\dim H_1(M;\mathbb{Z}_7) \leq 2$.

Proof of Theorem 1.1 For the case in which M is non-exceptional, the theorem is an immediate consequence of Propositions 5.3 and 6.3. For the case in which M is exceptional, the assertions of the theorem are equivalent to those of Lemma 7.4.

References

Department of Mathematics, Statistics, and Computer Science (M/C 249) University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607-7045, USA

agol@math.uic.edu, culler@math.uic.edu, shalen@math.uic.edu

Received: 14 July 2006