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A function on the homology of 3–manifolds

VLADIMIR TURAEV

In analogy with the Thurston norm, we define for an orientable 3–manifold M a
numerical function on H2.M IQ=Z/ . This function measures the minimal complexity
of folded surfaces representing a given homology class. A similar function is defined
on the torsion subgroup of H1.M IZ/ . These functions are estimated from below in
terms of abelian torsions of M .

57M27; 57Q10

1 Introduction

One of the most beautiful invariants of a 3–dimensional manifold M is the Thurston
semi-norm on H2.M IQ/ [9]. The geometric idea leading to this semi-norm is to
consider the minimal genus of a surface in M realizing any given 2–homology class
of M . Thurston’s definition of the semi-norm uses a suitably normalized Euler charac-
teristic of the surface rather than the genus. The Thurston semi-norm is uninteresting
for a rational homology sphere M , since then H2.M IQ/D 0. However, a rational
homology sphere may have nontrivial 2–homology with coefficients in Q=Z. Homology
classes in H2.M IQ=Z/ can be realized by folded surfaces, locally looking like unions
of several half-planes in R3 with common boundary line. It is natural to consider
“smallest” folded surfaces in a given homology class.

We use this train of ideas to define for an arbitrary orientable 3–manifold M (not
necessarily a rational homology sphere) a function

� D �M W H2.M IQ=Z/! RC D fr 2 R j r � 0g:

This function measures the “minimal” normalized Euler characteristic of a folded
surface representing a given class in H2.M IQ=Z/.

Using the boundary homomorphism

d W H2.M IQ=Z/!H1.M /DH1.M IZ/;

whose image is equal to Tors H1.M /, we derive from � a function

‚D‚M W Tors H1.M /! RC
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by ‚.u/ D infx2d�1.u/ �.x/ for any u 2 Tors H1.M /. One can view ‚.u/ as a
“normalized minimal genus” of oriented knots in M representing u. If M is a rational
homology sphere, then d is an isomorphism and ‚D � ı d�1 .

We give an estimate of the function � from above in terms of the Thurston semi-norm
on knot complements in M . This estimate implies that � is bounded from above and
is upper semi-continuous with respect to a natural topology on H2.M IQ=Z/. (I do not
know whether � is continuous.) The functions � and ‚ are also estimated from below
using abelian torsions of M . These estimates are parallel to the McMullen estimate
[6] of the Thurston semi-norm in terms of the Alexander polynomial.

A simple example of nonzero functions � and ‚ is provided by the lens space M D

L.5; 1/. We identify H1.M / D Z=5Z so that the core circles of the two solid tori
forming M represents ˙12Z=5Z. It is shown in Section 2.3, Section 2.4, and Section
6.1 that ‚M .˙1/D‚M .0/D 0 and ‚M .2/D‚M .�2/� 1=5. In this example, the
function ‚ takes nonzero values only on ˙2 2 Z=5Z. This shows that, in contrast to
the Thurston semi-norm, the function ‚ may not satisfy the triangle inequality and may
be nonhomogeneous, that is in general ‚.kx/¤ k‚.x/ for k 2 Z and x 2H1.M /.
The same remarks apply to � since in this example H2.M IQ=Z/ D H1.M / and
� D‚ ı d .

The Thurston semi-norm of a 3–manifold M is fully determined by the Heegaard-Floer
homology of M (see Ozsváth and Szabó [8]), and by the Seiberg–Witten monopole
homology of M (see Kronheimer and Mrowka [4]). It would be interesting to obtain
similar computations of the functions � and ‚.

The organization of the paper is as follows. We introduce the functions � and ‚ in
Section 2 and estimate them from above in Section 3. In Section 4 these functions are
estimated from below in the case where the first Betti number of the 3–manifold is
nonzero. A similar estimate for rational homology spheres is given in Section 5. In
Section 6 we describe a few examples. In Section 7 we make several miscellaneous
remarks.

Throughout the paper, the unspecified group of coefficients in homology is Z.

2 Folded surfaces and the functions �;‚

2.1 Folded surfaces

By a folded surface (without boundary), we mean a compact 2–dimensional polyhedron
such that each point has a neighborhood homeomorphic to a union of several half-planes
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in R3 with common boundary line. Such a neighborhood is homeomorphic to R��n

where n is a positive integer and �n is a union of n closed intervals with one common
endpoint and no other common points.

The interior Int.X / of a folded surface X consists of the points of X which have
neighborhoods homeomorphic to R2 . Clearly, Int.X / is a 2–dimensional manifold.
The singular set sing.X /DX � Int.X / of X consists of a finite number of disjoint
circles. A neighborhood of a component of sing.X / in X fibers over this component
with fiber �n for some n¤ 2.

Cutting out X along sing.X / we obtain a compact 2–manifold (with boundary) Xcut .
Each component of Int.X / is the interior of a component of Xcut . Set

��.X /D
X
Y

��.Y /;

where Y runs over all components of Xcut and

��.Y /Dmax.��.Y /; 0/:

The number ��.X /� 0 measures the complexity of X . It is equal to zero if and only
if all components of Xcut belong to the following list: spheres, tori, projective planes,
annuli, Möbius bands, disks.

By an orientation of a folded surface X , we mean an orientation of the 2–manifold
Int.X /. An orientation of X allows us to view X as a singular 2–chain with integer
coefficients. This 2–chain is denoted by the same letter X . Its boundary expands asP

K i.K/ hKi where K runs over connected components of sing.X /, the symbol hKi
denotes a 1–cycle on K representing a generator of H1.K/ Š Z and i.K/ 2 Z.
Multiplying, if necessary, both hKi and i.K/ by �1, we can assume that i.K/� 0.
In this way the integer i.K/ is uniquely determined by K . It is called the index of K

in X . For K with i.K/¤ 0, the 1–cycle hKi determines an orientation of K . We
say that this orientation is induced by the one on X .

We call a folded surface X simple if it is oriented, the set sing.X / is homeomorphic
to a circle, and its index in X is nonzero. This index is denoted iX . Note that X is not
required to be connected; however, all components of X but one are closed oriented
2–manifolds.

2.2 Representation of 2–homology by folded surfaces

Let M be an orientable 3–manifold. By a folded surface in M , we mean a folded
surface embedded in M . Given a simple folded surface X in M , the 2–chain .iX /�1X
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with rational coefficients is a 2–cycle modulo Z. This cycle represents a homology
class in H2.M IQ=Z/ denoted ŒX �.

The short exact sequence of groups of coefficients 0! Z!Q!Q=Z! 0 induces
an exact homology sequence:

(1) � � � !H2.M IQ/!H2.M IQ=Z/!H1.M /!H1.M IQ/! � � �

The homomorphism H2.M IQ=Z/!H1.M / in this sequence will be denoted dM

and called the boundary homomorphism. The exactness of (1) implies that the image of
dM is equal to the group Tors H1.M / consisting of all elements of H1.M / of finite
order.

For a simple folded surface X in M , the homomorphism dM sends ŒX � into the
homology class in H1.M / represented by the circle sing.X / with orientation induced
by the one on X .

For example, if X �M is a compact oriented 2–manifold with connected nonvoid
boundary, then X is a simple folded surface with sing.X /D @X , iX D 1, and ŒX �D 0.
Another example: consider an unknotted circle K lying in a 3–ball in M and pick
n¤ 2 closed 2–disks bounded by K in this ball and having no other common points.
We orient these disks so that the induced orientations on K are the same. The union of
these disks, X D X.n/, is a simple folded surface with sing.X /DK , iX D n, and
ŒX �D 0.

Lemma 2.1 Any homology class x 2H2.M IQ=Z/ can be represented by a simple
folded surface.

Proof Set d DdM W H2.M IQ=Z/!H1.M /. We can represent d.x/2Tors H1.M /

by an oriented embedded circle K � Int.M /DM � @M . Pick an integer n� 1 such
that n d.x/D 0. The standard arguments, using the Poincaré duality and transversality,
show that there is a simple folded surface X in M such that sing.X /DK and iX D n.

Since both X and M are orientable, the 1–dimensional normal bundle of Int.X / in
M is trivial. Keeping sing.X / and pushing X � sing.X / in a normal direction, we
obtain a “parallel” copy X1 of X such that X \X1D sing.X1/D sing.X /DK . The
orientation of X induces an orientation of X1 in the obvious way. Repeating this
process k � 1 times, we can obtain k parallel copies X1;X2; :::;Xk of X meeting
each other exactly at K . Then X .k/ DX1[X2[ :::[Xk is a simple folded surface
such that sing.X .k// D K and iX .k/ D nk . It follows from the construction that
ŒX .k/�D ŒX � 2H2.M IQ=Z/ for all k � 1.
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The equalities d.x/D ŒK�D d.ŒX �/ imply that x � ŒX � 2 Ker d D Im j , where j is
the homomorphism H2.M IQ/!H2.M IQ=Z/ induced by the projection Q!Q=Z.
Pick y 2 j�1.x � ŒX �/ � H2.M IQ/. There is an integer k � 1 such that ky lies
in the image of the coefficient homomorphism H2.M IZ/!H2.M IQ/. A fortiori,
the homology class nky lies in this image. We represent nky by a closed oriented
(possibly nonconnected) surface †�M . Since d.x/ 2 Tors H1.M /, the intersection
number † �KD† �d.x/ is 0. Applying if necessary surgeries of index 1 to †, we can
assume that †\K D∅. Then y is represented by the 2–cycle .nk/�1† in M �K

and xD ŒX �Cj .y/D ŒX .k/�Cj .y/ is represented by the 2–cycle .nk/�1.X .k/C†/

mod Z. Applying to X .k/ and † the usual cut and paste technique, we can transform
their union into a simple folded surface Z such that sing.Z/D sing.X .k//DK and
iZ D nk . Clearly, ŒZ�D x .

2.3 Functions � and ‚

For an orientable 3–dimensional manifold M , we define a function � D �M from
H2.M IQ=Z/ to RC by

(2) �.x/D inf
X

��.X /

iX
;

where x 2H2.M IQ=Z/ and X runs over all simple folded surfaces in M represent-
ing x . In particular, the class x D 0 can be represented by the simple folded surface
X DX.n/�M with n¤ 2, constructed before Lemma 2.1. The equality ��.X /D 0

implies that �.0/D 0.

For a simple folded surface X , denote by �X the same simple folded surface with
opposite orientation in its interior. The obvious equalities

Œ�X �D�ŒX �; ��.�X /D ��.X /; i�X D iX

imply that �.�x/D �.x/ for all x 2H2.M IQ=Z/.

We define a function ‚D‚M W Tors H1.M /! RC by

(3) ‚.u/D inf
x2d�1.u/

�.x/D inf
X

��.X /

iX
;

where u 2 Tors H1.M /, X runs over all simple folded surfaces in M such that the
circle sing.X / represents u, and d W H2.M IQ=Z/!H1.M / is the boundary homo-
morphism. In (3), we can restrict ourselves to connected X . Indeed, all components of
X disjoint from sing.X / are closed oriented surfaces. They may be removed from X

without increasing ��.X /.
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The properties of � imply that ‚.0/D 0 and ‚.�u/D �.u/ for all u 2 Tors H1.M /.
By the very definition of ‚, for all x 2H2.M IQ=Z/,

�.x/�‚.d.x//:

Using folded surfaces with boundary, we can similarly define relative versions

H2.M; @M IQ=Z/! RC and Tors H1.M; @M IZ/! RC

of the functions � and ‚. We will not study them in this paper.

2.4 Constructions and examples

2.4.1 Let † be a closed connected 2–manifold embedded in an oriented 3–manifold
M . Let K �† be a simple closed curve such that †�K has an orientation which
switches to the opposite when one crosses K in †. (Such an orientation exists when
† is orientable and K splits † into two surfaces or when † is nonorientable and
K represents the Stiefel–Whitney class w1.†/ 2 H 1.†IZ=2Z/ D H1.†IZ=2Z/.)
The orientations of M and † �K induce an orientation of the normal bundle of
†�K in M . Keeping K and pushing †�K in the corresponding normal direction,
we obtain a copy †0 of † such that †0 transversely meets † along K . The union
X D †[†0 is a simple folded surface such that sing.X / D K and iX D 4. Then
�.ŒX �/� .1=4/ ��.X /D .1=2/ ��.†�K/.

For example, we can apply this construction to the projective plane † D RP2 in
RP3 taking as K a projective circle on RP2 . The resulting simple folded surface X

represents the only nonzero element x of H2.RP3IQ=Z/D Z=2Z because sing.X /
represents the nonzero element of H1.RP3/D Z=2Z. The equality ��.†�K/D 0

implies that �RP3 D 0 and ‚RP3 D 0.

2.4.2 Consider the 3–dimensional lens space M DL.p; q/, where p; q are coprime
integers with p � 2. The manifold M splits as a union of two solid tori with common
boundary. It is easy to exhibit a folded surface X �M such that sing.X / is the core
circle of one of the solid tori and X � sing.X / is a disjoint union of p open 2–disks.
This implies that the function ‚M annihilates the elements of H1.M / represented by
the core circles of the solid tori. Under an appropriate isomorphism H1.M /Š Z=pZ,
these elements correspond to 1 .mod p/ and q .mod p/. This implies that ‚M D 0 if
p D 2 or p D 3 or p D 5; q D 2. For p D 2, we recover the previous example, since
L.2; 1/D RP3 .
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2.4.3 Let K be an oriented homologically trivial knot in an oriented 3–manifold N .
Let M be obtained by a .p; q/–surgery on K where p; q are coprime integers with
p � 2. Thus, M is obtained by cutting out a tubular neighborhood U �N of K and
gluing it back along a homeomorphism @U ! @U mapping the meridian � � @U
of K onto a curve on @U homological to p�C q�, where �� @U is the longitude
of K homologically trivial in N �K . The element u 2H1.M / represented by the
(oriented) core circle of the solid torus U �M has finite order. This follows from
the fact that the p–th power of the core circle is homotopic in U �M to � � @U .
We claim that ‚.u/D 0 if K is a trivial knot in N and ‚.u/� p�1.2g� 1/ if K is
a nontrivial knot of genus g � 1. Indeed, the longitude � bounds in N � Int.U / an
embedded compact connected oriented surface of genus g . This surface extends in the
obvious way to a simple folded surface X in M such that sing.X / is the core circle
of U �M and iX D p . Clearly, ��.X /D max.2g� 1; 0/. This implies our claim.
(For p D 2, one should “double” X along sing.X / as in Section 2.4.1.) As we shall
see below, if K is a nontrivial fibred knot and p � 4g� 2, then ‚.u/D p�1.2g� 1/.

3 Estimates from above and semi-continuity

In this section we estimate the function � D �M from above using the Thurston
norm. Throughout this section, M is a connected orientable 3–manifold (possibly,
noncompact).

3.1 Comparison with the Thurston norm

Recall first the definition of the Thurston semi-norm k � kM on H2.M IQ/. The
Poincaré duality (applied to compact submanifolds of M ) implies that the abelian
group H2.M /DH2.M IZ/ has no torsion. We shall view H2.M / as a lattice in the
Q–vector space H2.M IQ/ D Q˝Z H2.M /. For any x 2 H2.M IQ/, there is an
integer n� 1 such that nx 2H2.M /. Then kxkM D n�1 min† ��.†/ 2Q, where †
runs over all closed oriented embedded surfaces in M representing nx . The number
kxkM does not depend on the choice of n and is always realized by a certain †. Using
surfaces in M with boundary on @M , one similarly defines the Thurston semi-norm
on H2.M; @M IQ/.

Lemma 3.1 Let j be the coefficient homomorphism H2.M IQ/! H2.M IQ=Z/.
Then �.j .x//� kxkM for any x 2H2.M IQ/.

Proof Let † be a closed oriented embedded surface in M representing nx 2H2.M /

with n � 3. The surface † is an oriented folded surface with empty singular set.
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Consider a folded surface X DX.n/ inside a 3–ball in M �†, as constructed before
Lemma 2.1. The union Z D X [† is a simple folded surface representing x and
iZ D iX D n. By the definition of � ,

�.j .x//� n�1 ��.Z/D n�1 ��.†/:

Therefore �.j .x//� kxkM .

Lemma 3.2 Let K be an oriented knot in M . Set N D M � K and let � be
the inclusion homomorphism H2.N IQ/ ! H2.M IQ/. Let j be the coefficient
homomorphism H2.M IQ/!H2.M IQ=Z/. Then for any simple folded surface X

in M with sing.X /DK and any y 2H2.N IQ/,

(4) �
�
ŒX �C j �.y/

�
� .iX /

�1��.X /CkykN :

Proof Set nD iX and let k be a positive integer such that ky 2H2.N /�H2.N IQ/.
It is enough to prove that for any closed oriented surface †�N representing nky ,

(5) �
�
ŒX �C j �.y/

�
� n�1��.X /C .nk/�1��.†/:

This can be reformulated in terms of the simple folded surface X .k/ as

�
�
ŒX .k/�C j �.y/

�
� .nk/�1

�
��.X

.k//C��.†/
�
:

Therefore it is enough to prove that for any simple folded surface T in M with
sing.T /DK and iT D nk ,

(6) �.ŒT �C j �.y//� .nk/�1
�
��.T /C��.†/

�
:

Suppose first that T is compressible in N D M �K in the sense that there is an
embedded closed 2–disk D �N such that T \D D @D � T �K and the circle @D
does not bound a 2–disk in T �K . The surgery on T along D yields a simple folded
surface TD with ŒTD �D ŒT � and ��.TD/ < ��.T /. Applying this procedure several
times, we can reduce (6) to the case where T is incompressible, ie T admits no disks
D as above. By the same reasoning, we can assume that † is incompressible in N

(it may be compressible in M ). The homology class ŒT �C j �.y/ 2H2.M IQ=Z/ is
represented by the 2–cycle .nk/�1 T [† (mod Z). Deforming † in N so that it
meets T transversely and applying to T [† the usual cut and paste technique, we
can transform T [† into a simple folded surface Z with sing.Z/D sing.T /DK

and iZ D nk . Clearly, ŒZ�D ŒT �C j �.y/. The folded surface Z may have spherical
components (that is components homeomorphic to S2 ) created from pieces of T �K

and † by cutting and pasting. One of these pieces will necessarily be a 2–disk D

such that either D � T �K and D \† D @D or D � † and D \ .T �K/ D @D .
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In the first case the incompressibility of † implies that the circle @D bounds a disk
on †. The surgery on † along D yields a surface †C � †q S2 homological to
† in N . Then ��.†C/D ��.†/ and the 1–manifold T \†C has one component
less than T \†. Similarly, if D � †, then the incompressibility of T �K implies
that @D bounds a disk on T �K . The surgery on T along D yields a simple folded
surface TC � T qS2 such that ŒTC�D ŒT �, ��.TC/D ��.T /, and the 1–manifold
TC\† has one component less than T \†. Continuing in this way, we can reduce
ourselves to the case where Z does not have spherical components except the spherical
components of T disjoint from † and the spherical components of † disjoint from
T . A similar argument allows us to assume that the components of Z �K are not
disks except the disk components of T �K disjoint from †. Then the additivity of the
Euler characteristic under cutting and pasting implies that ��.Z/D ��.T /C��.†/.
Therefore

�
�
ŒT �C j �.y/

�
� .nk/�1��.Z/D .nk/�1

�
��.T /C��.†/

�
:

This proves (6), (5), and (4).

Theorem 3.3 If M is compact, then there is a number C > 0 (depending on M ) such
that �.x/� C for all x 2H2.M IQ=Z/.

Proof Set d D dM W H2.M IQ=Z/!H1.M /. Since the group Im d D Tors H1.M /

is finite, it is enough to prove that for every u 2 Tors H1.M /, the values of � on the
elements of the set d�1.u/ are bounded from above.

Consider first the case u D 0. Then d�1.u/ D Im j where j is the coefficient
homomorphism H2.M IQ/!H2.M IQ=Z/. We need to prove that the values of � ıj
are bounded from above. Since M is compact, the group H2.M / is finitely generated.
Pick a basis a1; :::; an in H2.M / and let Q �H2.M IQ/ be the cube consisting of
the vectors r1a1C :::C rnan with rational nonnegative r1; :::; rn � 1. The supremum
s D supx2QkxkM is a finite number, because the Thurston semi-norm extends to a
continuous semi-norm on H2.M IR/ and the closure of Q in H2.M IR/ is compact.
We claim that �.j .x//� s for any x 2H2.M IQ/. Indeed, there is a 2H2.M / such
that xC a 2Q. Then j .x/D j .xC a/ and �.j .x//D �.j .xC a//� s .

Consider now the case u ¤ 0. Pick an oriented knot K �M representing u and a
simple folded surface X in M with sing.X /DK . Then d�1.u/D fŒX �C j �.y/gy
where � is the inclusion homomorphism H2.M �KIQ/! H2.M IQ/ and y runs
over H2.M �KIQ/. The rest of the argument goes as in the case u D 0 using
Lemma 3.2.
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3.2 Semi-continuity

For compact M , the group H2.M IQ=Z/ has a natural topology as follows. The image
of the coefficient homomorphism j W H2.M IQ/! H2.M IQ=Z/ can be identified
with the quotient H2.M IQ/=H2.M /. Provide Im .j / with the quotient topology
induced by the standard topology in the finite dimensional Q–vector space H2.M IQ/.
This extends to a topology in H2.M IQ=Z/ by declaring a set U � H2.M IQ=Z/

open if .aC U / \ Im .j / is open in Im .j / for all a 2 H2.M IQ=Z/. Recall that
an R–valued function f on a topological space A is upper semi-continuous if for
any point a 2 A and any real " > 0, there is a neighborhood U � A of a such that
f .U /� .�1; f .a/C "/.

Lemma 3.4 For compact M , the function � D �M is upper semi-continuous.

Proof Let a 2 H2.M IQ=Z/ and " > 0. Let X be a simple folded surface in M

representing a and such that .iX /�1��.X / � �.a/C "=2. Set K D sing.X / and
N DM �K . Let �W H2.N IQ/!H2.M IQ/ be the inclusion homomorphism. Put

V D fy 2H2.N IQ/ j kykN < "=2g:

The set V is open in H2.N IQ/ since the Thurston norm is continuous. The set �.V /
is open in H2.M IQ/ since � is an epimorphism. The set j �.V / is open in Im .j /

by definition of the topology in Im .j /. Finally, the set U D aC j �.V / is an open
neighborhood of a in H2.M IQ=Z/ by definition of the topology in H2.M IQ=Z/.
By (4), we have �.U /� .�1; �.a/C "/. Hence � is upper semi-continuous.

4 Estimates from below: the case b1 � 1

In this section we give an estimate from below for the functions �D�M and ‚D‚M of
a 3–manifold M with nonzero first Betti number b1.M /. We begin with preliminaries
on group rings and abelian torsions of 3–manifolds.

4.1 Preliminaries

Let H be a finitely generated abelian group written in multiplicative notation. Any
element a of the group ring QŒH � expands uniquely in the form a D

P
h2H ahh,

where ah 2Q and ah D 0 for all but finitely many h. We say that an element h 2H

is a–basic if ah ¤ 0. The (finite) set of a–basic elements of H is denoted Ba . The
element

P
h2Tors H h of QŒH � will be denoted †H . Clearly, B†H

D Tors H .
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The classical ring of quotients of QŒH � that is, the (commutative) ring obtained by
inverting all nonzero-divisors of QŒH � is denoted Q.H /. It is known that QŒH � splits
as a direct sum of domains. Therefore Q.H / splits as a direct sum of fields and the
natural ring homomorphism QŒH � ! Q.H / is an embedding. We identify QŒH �

with its image under this embedding. Note that if H is a finite abelian group, then
Q.H /DQŒH �.

Let M be a compact connected 3–manifold. From now on, we use multiplicative
notation for the group operation in H DH1.M /. In particular, the neutral element
of H is denoted 1. The manifold M gives rise to a maximal abelian torsion �.M /

which is an element of Q.H / defined up to multiplication by �1 and elements of
H (see Turaev [11] and Nicolaescu [7]). If b1.M / � 2, then all representatives of
�.M / belong to ZŒH � � QŒH � �Q.H /. We express this by writing �.M / 2 ZŒH �.
If b1.M / D 1 and @M ¤ ∅, then �.M / 2 ZŒH �C†H �Q.H /. This implies that
.h� 1/ �.M / 2 ZŒH � for all h 2 Tors H (indeed .h� 1/†H D 0).

If M is oriented and b1.M/�2, then the Thurston semi-norm k�kM on H2.M; @M IQ/

can be estimated in terms of �.M / as follows (see [11]): for any s 2H2.M; @M IQ/

and any representative a 2 ZŒH � of �.M /,

(7) kskM � max
h;h02Ba

jh � s� h0 � sj;

where h � s 2 Z is the intersection index of h and s . Note that the right hand side of (7)
does not depend on the choice of a in �.M /.

4.2 An estimate for �M

The function � will be estimated in terms of spans of subsets of Q=Z. The span
spn.A/ of a finite set A�Q=Z is a rational number defined as the minimal length of
an interval in Q=Z containing A, that is the minimal rational number t � 0 such that
for some r 2Q, the projection of the set Œr; r C t �\Q into Q=Z contains A. Clearly,
1> spn.A/� 0 and spn.A/D 0 if and only if A is empty or has only one element.

Given an oriented 3–manifold M and a homology class x 2H2.M IQ=Z/, we set for
any a 2QŒH1.M /�,

spnx.a/D spn.fh �xgh2Ba
/;

where h �x 2Q=Z is the intersection index of h and x . Clearly, 1> spnx.a/� 0.

Theorem 4.1 Let M be a compact connected oriented 3–manifold with b1.M /� 1.
Set H D H1.M / and let � 2 Q.H / be a representative of the torsion �.M /. Let
x 2H2.M IQ=Z/ and uD dM .x/ 2H . Then .u� 1/ � 2 ZŒH � and

(8) �M .x/� spnx..u� 1/ �/:
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Proof If b1.M /� 2, then � 2 ZŒH � and .u�1/ � 2 ZŒH �. The inclusion u 2 Tors H

and the remarks in Section 4.1 imply that .u� 1/ � 2 ZŒH � for b1.M /D 1 as well.

We prove (8). Let X be a simple folded surface in M representing x . The knot
sing.X / �M endowed with orientation induced from the one on X represents the
class u 2 Tors H . Let E be the exterior of this knot in M . The homological sequence
of the pair .M;E/ and the inclusion u 2 Tors H imply that b1.E/� b1.M /C 1� 2.
Therefore �.E/ 2 ZŒH1.E/�. Pick a representative a 2 ZŒH1.E/� of �.E/. Denote
by � the inclusion homomorphism H1.E/ ! H1.M / D H and denote by �� the
induced ring homomorphism ZŒH1.E/�! ZŒH �. By [11, Theorem VII.1.4], we have
��.a/D .u� 1/ b where b is a representative of �.M /. Note that the right hand side
of (8) does not depend on the choice of � in �.M /. Therefore without loss of generality
we can assume that � D b .

Deforming, if necessary, X in M , we can assume that S DX \E is the complement
in X of a regular neighborhood of sing.X /. Then S is a proper surface in E and
��.X /D ��.S/. The orientation of Int.X / induces an orientation of S . The oriented
surface S represents a relative homology class s 2H2.E; @E/. By (7),

��.X /D ��.S/� max
h;h02Ba

jh � s� h0 � sj;

where Ba �H1.E/ is the set of a–basic elements. Let r 2Q be the minimal element
of the set fh � sgh2Ba

. Then

fh � sgh2Ba
� Œr; r C��.X /�:

Denote the projection Q!Q=Z by � . Observe that for any h 2H1.E/,

�.h/ �x D �

�
h � s

iX

�
:

Therefore f�.h/ �xgh2Ba
� �

��
r

iX
;

r C��.X /

iX

��
:

The equality ��.a/D .u� 1/ � implies that B.u�1/ � � �.Ba/. Hence

fg �xgg2B.u�1/ �
� f�.h/ �xgh2Ba

� �

��
r

iX
;

r C��.X /

iX

��
:

Therefore spnx..u� 1/ �/� .iX /
�1 ��.X /:

Since this holds for all simple folded surfaces X representing x , we have (8).
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4.3 An estimate for ‚M

Let M and H be as in Theorem 4.1. To estimate the function ‚M W Tors H !Q=Z,
we need the linking form LM W Tors H � Tors H ! Q=Z of M . It is defined by
LM .h;g/D h � x 2 Q=Z where x is an arbitrary element of H2.M IQ=Z/ mapped
to g by the boundary homomorphism d W H2.M IQ=Z/! H . The pairing LM is
well defined, bilinear, and symmetric.

Given u 2 Tors H and a 2QŒH �, set

spnu.a/D spn.fLM .h;u/gh2Ba\TorsH /:

Clearly, spnx.a/� spnd.x/.a/ for any x 2H2.M IQ=Z/ and any a 2QŒH �. This and
Theorem 4.1 imply that, under the conditions of this theorem,

(9) ‚M .u/� spnu..u� 1/ �/;

for any u 2 Tors H and any representative � of �.M /. Generally speaking, the
right-hand side of (9) depends on the choice of � .

Remark Estimate (7) strengthens the McMullen estimate [6] of the Thurston norm
via the Alexander polynomial. For recent more general estimates of this type, see
Friedl [3].

5 Estimates from below: the case of Q–homology spheres

For Q–homology spheres, the functions � and ‚ contain the same information and it
is enough to give an estimate for ‚. We begin with preliminaries on refined torsions
and Q–homology spheres, referring for details to [11, Chapters I and X].

5.1 Refined torsions

The maximal abelian torsion �.M / of a compact connected 3–manifold M admits a
refinement �.M; e; !/2Q.H1.M // depending on an orientation ! in the vector space
H�.M IQ/D˚i�0Hi.M IQ/ and an Euler structure e on M . An Euler structure on
M is determined by a nonsingular vector field on M directed outside on @M . Two such
vector fields determine the same Euler structure if for a point x2 Int.M /, the restrictions
of these fields to M � fxg are homotopic in the class of nonsingular vector field on
M�fxg directed outside on @M . The set of Euler structures on M is denoted Eul.M /.
This set admits a canonical free transitive action of the group H1.M /. The torsion
�.M; e; !/ satisfies �.M; he;˙!/D˙h �.M; e; !/ for any e2Eul.M /; h2H1.M /.
The unrefined torsion �.M / is just the set f˙�.M; e; !/ge2Eul.M / . If @M D∅, then
the set Eul.M / can be identified with the set of Spinc –structures on M .
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5.2 Homology spheres

Let M be an oriented 3–dimensional Q–homology sphere. Denote !M the orientation
in H�.M IQ/ D H0.M IQ/˚H3.M IQ/ determined by the following basis: (the
homology class of a point, the fundamental class of M ).

The group H D H1.M / is finite and the linking form LM W H � H ! Q=Z is
nondegenerate in the sense that the adjoint homomorphism H ! Hom.H;Q=Z/ is an
isomorphism. Recall that we use multiplicative notation for the group operation in H .
Every Euler structure e 2Eul.M / determines a torsion �.M; e; !M /2Q.H /DQŒH �.
The linking form LM can be computed from this torsion by

(10) LM .h;g/D��
��
.1� h/.1�g/ �.M; e; !M /

�
1

�
2Q=Z

for all h;g 2 H , where � is the projection Q! Q=Z and for any a 2 QŒH �, the
symbol a1 2Q denotes the coefficient of the neutral element 1 2H in the expansion
of a as a formal linear combination of elements of H with rational coefficients. The
Euler structure e determines a function qeW H !Q=Z by

(11) qe.u/D �
��
.1�u/ �.M; e; !M /

�
1

�
;

for any u 2 H . It follows from (10) and (11) that qe is quadratic in the sense that
qe.hg/D qe.h/Cqe.g/CLM .h;g/ for all h;g 2H . Formula (11) also implies that

(12) qhe.u/D qe.u/CLM .h;u/;

for any h 2H .

If u 2H has order n (ie n is the minimal positive integer such that un D 1), then by
[11, Section X.4.3] there is a unique residue K.e;u/ 2 Z=2nZ such that

(13) qe.u/D
K.e;u/

2n
C

1

2
.mod Z/:

Formula (12) implies that the residue K.e;u/ .mod 2/ does not depend on e . We say
that u is even if this residue is 0 and odd if it is 1.

Every homology class u 2H gives rise to a group

G DGu D fg 2H jLM .u;g/D 0g �H:

The nondegeneracy of LM implies that the quotient H=G is a finite cyclic group
whose order is equal to the order, n, of u in H . Moreover, there is an element
vD vu 2H such that LM .u; v/D n�1 .mod Z/. Such v is determined by u uniquely
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up to multiplication by elements of G . The inclusion vn 2G implies that the order, p ,
of v is divisible by n (in particular, p � n). Set

(14) ˛v D
1C 2vC 3v2C :::Cpvp�1

p
�

pC 1

2
�
1C vC :::C vp�1

p
:

This element of QŒH � can be uniquely characterized by the following property: if '
is any ring homomorphism from QŒH � to a field, then '.v/ D 1) '.˛v/ D 0 and
'.v/¤ 1) '.˛v/D .'.v/� 1/�1 . In [11] we used the notation .v� 1/�1

par for ˛v .

Theorem 5.1 Let M be an oriented 3–dimensional Q–homology sphere. Let u be
an element of H D H1.M / of order n � 1. Set G D fg 2 H jLM .u;g/ D 0g and
†G D

P
g2G g 2 ZŒG�� ZŒH �. Pick any v 2H such that LM .u; v/D n�1 .mod 1/.

For e 2 Eul.M /, set

ae.u/D .u� 1/ �.M; e; !M /�
vK.e;u/=2.vC 1/

2
˛v †G 2QŒH �;

if u is even and

ae.u/D .u� 1/ �.M; e; !M /� v.K.e;u/C1/=2 ˛v †G 2QŒH �;

if u is odd. Then for any e 2 Eul.M /,

‚M .u/� spnu.ae.u//D spn.fLM .h;u/gh2Bae.u/
/:

Proof If u is even (resp. odd), then K.e;u/ 2 Z2n is even (resp. odd). Therefore
the power of v in the definition of ae.u/ is well defined up to multiplication by vn .
However, vn 2 G and vn†G D †G . Therefore the right hand sides of the formulas
for ae.u/ are well defined. If v0 is another element of H such that LM .u; v0/ D

n�1 .mod 1/, then v0 2 vG and vk†G D .v
0/k†G for all k 2 Z. Therefore ae.u/

does not depend on the choice of v . It is easy to see that ahe.u/ D h ae.u/ for all
h 2H . Therefore the number spnu.ae.u// does not depend on e .

Consider a simple folded surface X � M which represents the 2–homology class
x D d�1

M
.u/ 2H2.M IQ=Z/. The knot K D sing.X / with orientation induced from

the one on X represents u 2 H1.M /. Let E be the exterior of K in M . Clearly
b1.E/D 1. Fix an orientation ! in H�.EIQ/ and an Euler structure eK on E . The
torsion �.E; eK ; !/ 2Q.H1.E// can be canonically expanded as a sum of a certain
Œ� �D Œ� �.E; eK ; !/ 2QŒH1.E/� with an element of Q.H1.E// given by an explicit
formula using solely ! and the Chern class of eK [11, Section II.4.5]. The inclusion
homomorphism QŒH1.E/�!QŒH1.M /� sends Œ� � to ˙ae.u/ for some e 2 Eul.M /

[11, Formula X.4.d]. The inequality (7) holds for any s 2H2.E; @EIQ/ and aD Œ� �
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[11, Chapter IV]. The rest of the argument goes as the proof of Theorem 4.1 with �
replaced by Œ� �. This gives .iX /�1��.X / � spnx.ae.u//D spnu.ae.u//. Since this
holds for all X representing x , we have ‚M .u/D �M .x/� spnu.ae.u//.

Remarks 1. Let 1
2

Z be the additive group of integers and half-integers. Then in
Theorem 5.1, ae.u/ 2 ZŒH � if u is even and ae.u/ 2

1
2

ZŒH � if u is odd. This follows
from the proof of this theorem and the inclusion Œ� � 2 ZŒH1.E/� if u is even and
Œ� � 2 1

2
ZŒH1.E/� if u is odd.

2. It is proven by Deloup and Massuyeau [2] that the function qeW H ! Q=Z de-
rived from the torsion coincides with the quadratic function defined geometrically by
Looijenga and Wahl [5] and Deloup [1].

6 Examples

6.1 Lens spaces

The computation of the abelian torsions for the lens space M DL.p; q/ goes back to
K Reidemeister. See, for instance, [10] for an introduction to the theory of torsions.
Let t; tq be the generators of H D H1.M / represented by the core circles of the
two solid tori forming M . For an appropriate choice of an orientation on M and an
Euler structure e on M , we have �.M; e; !M /D ˛t ˛tq , where ˛v 2QŒH � is defined
by (14) for any v 2H . This allows us to compute ae.u/ for any u 2H and to apply
Theorem 5.1. We give here a few examples.

Consider the lens space M DL.5; 1/. By Section 2.3 and Section 2.4.2, ‚ satisfies
‚.t4/D‚.t/D‚.1/D 0 and ‚.t2/D‚.t3/. We show that ‚.t2/� 1=5. We have

˛t D
�2� t C t3C 2t4

5
:

Then � D �.M; e; !M /D ˛2
t D

t C t2� 2t4

5
:

A direct computation shows that

LM .t; t/D .�.1� t/2�/1 D 1=5; qe.t
2/D ..1� t/ �/1 D 0:

Note that uD t2 has order 5 in H . From (13), we obtain that K.e;u/D 5 .mod 10/.
Therefore u is odd. The associated group Gu is trivial, v D vu D t3 , and

ae.u/D .u� 1/ � � v3˛v D t4
� t:
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Since LM .t4;u/ D 3=5 .mod 1/ and LM .t;u/ D 2=5 .mod 1/, the span of the set
fLM .h;u/gh2Bae.u/

is equal to 1=5. By Theorem 5.1, ‚.t2/� 1=5.

Consider the lens space M DL.6; 1/. Then

˛t D
�5� 3t � t2C t3C 3t4C 5t5

12
;

� D ˛2
t D
�5C 13t C 19t2C 13t3� 5t4� 35t5

72
;

and LM .t; t/ D 1=6. For u D t2 , the computations similar to the ones above give
qe.u/ D 0 .mod 1/, K.e;u/ D 3.mod 6/, Gu D f1; t

3g, vu D t , and ae.u/ D t5 � t .
Theorem 5.1 yields ‚.t2/�1=3. For uD t3 , we similarly obtain qe.u/D3=4 .mod 1/,
K.e;u/ D 1 .mod 4/, Gu D f1; t

2; t4g, vu D t , and ae.u/ D t5 � t2 . Theorem 5.1
yields ‚.t3/� 1=2.

6.2 Surgeries on knots

Let L be an oriented knot in an oriented 3–dimensional Z–homology sphere N .
Let M be the closed oriented 3–manifold obtained by surgery on N along L with
framing p � 2. Let u 2 H D H1.M / be the homology class of the meridian of L

whose linking number with L is C1. Clearly, H is a cyclic group of order p with
generator u and LM .u;u/D p�1 .mod 1/. We explain now how to estimate ‚.u/ in
terms of the Alexander polynomial of L. We will see that in some cases this estimate
is exact.

Recall that the span spn.�/ of a nonzero Laurent polynomial �D
P

i ai t
i 2 ZŒt˙1�

is the number maxfi j ai ¤ 0g �min.fi j ai ¤ 0g/. Let � D �L.t/ be the Alexan-
der polynomial of L normalized so that �.t�1/ D �.t/ and �.1/ D 1. Expand
�.t/D 1C.t�1/ ˇ.t/ where ˇ.t/ 2 ZŒt˙1�. We claim the expression ae.u/ 2 QŒH �

defined in Theorem 5.1 is equal to ˇ.u/ for an appropriate Euler structure e on M . By
Theorem 5.1, this will imply that ‚.u/� spnu.ˇ.u//. For example, if p � 2 spn.ˇ/,
then spnu.ˇ.u//Dp�1spn.ˇ/Dp�1.spn.�/�1/. Therefore ‚.u/�p�1.spn.�/�1/.
On the other hand, by Section 2.4.3, ‚.u/� p�1.2g�1/, where g is the genus of K .
In particular, if spn.�/D 2g > 0 (for instance, if K is a nontrivial fibred knot) and
p � 4g� 2, then ‚.u/D p�1.2g� 1/.

We now verify the claim above. Set � D ˛2
u �.u/ 2QŒH �. It is easy to deduce from

the multiplicativity of the torsions that �.M; e; !M /D � for a certain orientation on
M and a certain Euler structure e on M (for details, see [11, Formula X.5.e]). Set
� D 1CuCu2C� � �Cup�1 2 ZŒH �. Clearly, �uk D � for any integer k . Therefore
for any integer 1–variable polynomial f , the product �f .u/ is equal to aug.f / �
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where aug.f /D f .1/ is the sum of coefficients of f . Since aug.˛u/D 0, we have
�˛u D 0. A direct computation shows that .1�u/˛u D �=p� 1. Hence

.1�u/ � D .1�u/ ˛2
u �.u/D .�=p� 1/ ˛u�.u/D�˛u�.u/

D�˛uC˛u .1�u/ ˇ.u/D�˛uC .�=p� 1/ ˇ.u/D�˛u�ˇ.u/;

where we use the equality aug.ˇ/D 0 which follows from the symmetry of �. Thus,

qe.u/D ..1�u/�/1 D�.˛u/1 D .p� 1/=2p .mod 1/:

Formula (13) implies that K.e;u/D�1 .mod 2p/. In particular, u is odd.

We also have

.1�u/2� D .1�u/.�˛u�ˇ.u//D 1� �=p� .1�u/ˇ.u/:

Hence LM .u;u/D�..1�u/2�/1 D p�1 .mod 1/:

This shows that the orientation of M chosen so that �.M; e; !M / D � is actually
the one induced from the orientation on N . The equality LM .u;u/D p�1 .mod 1/

implies that vu D u and Gu D 1. We conclude that

ae.u/D .u� 1/ � �˛u D ˛uCˇ.u/�˛u D ˇ.u/:

6.3 Surgeries on 2–component links

Let M be a closed oriented 3–manifold obtained by surgery on a 2–component oriented
link LDL1[L2 in an oriented 3–dimensional Z–homology sphere N . Suppose that
the linking number of L1;L2 in N is 0, the framing of L1 is p¤ 0, and the framing
of L2 is 0. Then H DH1.M /D .Z=pZ/u1˚Zu2 , where ui 2H is the homology
class of the meridian of Li whose linking number with Li is C1, for i D 1; 2. The
Alexander polynomial of L has the form

�L.t1; t2/D f .t1; t2/.t1� 1/.t2� 1/

for some Laurent polynomial f .t1; t2/ 2 ZŒt˙1
1
; t˙1

2
�. Both �L and f are defined

only up to multiplication by �1 and monomials on t1; t2 . By [11, Formula VIII.4.e],
the torsion �.M / is represented by

� D f .u1;u2/˙�L2
.u2/un

2 .u2� 1/�2†H 2Q.H /

for an appropriate sign ˙ and an integer n, both depending on the choice of f .
Here �L2

is the Alexander polynomial of L2 normalized as in Section 6.2. Pick

Algebraic & Geometric Topology, Volume 7 (2007)



A function on the homology of 3–manifolds 153

x 2H2.M IQ=Z/ and set uD d.x/ 2 Tors H . Since .u� 1/†H D 0, Theorem 4.1
implies that

(15) �.x/� spnx..u� 1/ f .u1;u2//:

For sufficiently big p , the span on the right hand side does not depend on p .

Note another curious phenomenon. Suppose for simplicity that f .t1; t2/D1 (a constant
polynomial). Then �.x/ � spnx.u� 1/. If u D d.x/ ¤ 1, then the set Bu�1 � H

consists of two elements u; 1 and

spnx.u� 1/D spn.fu �x; 0g/D spn.fLM .u;u/; 0g/:

For u D uk
1

with k 2 f0; 1; :::; n � 1g, we have LM .u;u/ D k2=n .mod 1/. For
k <

p
n=2, we obtain spn.fLM .u;u/; 0g/ D k2=n. Thus ‚.uk

1
/ � k2=n. This

suggests that the number ‚.uk
1
/, considered as a function of k , may behave like a

quadratic function for small values of k .

7 Miscellaneous

7.1 Quasi-simple folded surfaces

One can use a larger class of folded surfaces to represent 2–homology classes. Let us
call a folded surface X quasi-simple if it is oriented, sing.X /¤∅, and the indices of all
components of sing.X / in X are equal to each other and nonzero. Denote the common
value of these indices iX . In particular, simple folded surfaces are quasi-simple.

For a quasi-simple folded surface X in a 3–manifold M , the 2–chain .iX /�1X is a
2–cycle mod Z representing a homology class ŒX � 2H2.M IQ=Z/. We claim that

(16) �.ŒX �/� i�1
X ��.X /C b0.sing.X //� 1;

where b0.sing.X // is the number of components of sing.X /. Indeed, X can be
modified in a neighborhood of sing.X / so that each point of sing.X / is adjacent
to exactly iX local branches of Int.X / (which then induce the same orientation on
sing.X /). Let � be a graph with two vertices and iX edges connecting these vertices.
Given an embedded arc in M with endpoints on different components of sing.X /
and with interior in M �X , we can modify X by cutting it out along sing.X / near
the endpoints and gluing in � � Œ0; 1� along the arc. This gives a quasi-simple folded
surface, Z , such that

b0.sing.Z//Db0.sing.X //�1; iZD iX ; ŒZ�D ŒX �; and ��.Z/���.X /CiX :
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Modifying X in this way, we can reduce ourselves to the case where sing.X / is
connected. In this case (16) follows from the definition of � . It may happen that
there are no distinct components of sing.X / connected by an arc with interior in
M �X . This occurs if each arc joining distinct components of sing.X / has to cross
the closed 2–manifold X0 formed by the components of X disjoint from sing.X /.
To circumvent this obstruction, we first modify X0 so that X �X0 is contained in a
connected component of M �X0 ; cf [11, p 60].

Formula (16) implies that for any x 2H2.M IQ=Z/,

(17) �.x/D inf
X

�
��.X /

iX
C b0.sing.X //

�
� 1;

where X runs over all quasi-simple folded surfaces in M representing x .

7.2 Coverings

Let M be a compact oriented 3–manifold and pW �M !M be an n–fold (unramified)
covering. Let p�W H2.M IQ=Z/!H2. �M IQ=Z/ be the following composition of the
duality isomorphisms and the pull back

H2.M IQ=Z/ŠH 1.M; @M IQ=Z/!H 1. �M ; @ �M IQ=Z/ŠH2. �M IQ=Z/:

Then for any x 2H2.M IQ=Z/,

� �M .p�.x//C 1� n.�M .x/C 1/:

This follows from (17) and the fact that if a simple folded surface X in M represents
x , then p�1.X /� �M is a quasi-simple folded surface representing p�.x/.

7.3 Norms associated with links

A link L in an oriented 3–manifold M determines a semi-norm k�kM;L on H2.M IQ/

as follows. Let U �M be a regular neighborhood of L and E DM �U the exterior
of L. We can embed H2.M IQ/ into H2.E; @EIQ/ via the inclusion homomorphism

H2.M IQ/ ,!H2.M;LIQ/ŠH2.M;U IQ/ŠH2.E; @EIQ/:

Restricting the Thurston semi-norm on H2.E; @EIQ/ to H2.M IQ/, we obtain the
semi-norm k � kM;L . The arguments as above allow us to estimate the latter semi-norm
from below for compact M . Namely, if L has m� 1 components and h1; :::; hm are
their homology classes in H DH1.M /, then

kxkM;L � spnx

� mY
iD1

.hi � 1/ �
�
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for any x 2H2.M IQ/ and any � 2Q.H / representing �.M / in the case b1.M /� 2

and representing Œ� �.M / in the case b1.M /D 1. A similar construction can be used
to derive a function on H2.M IQ=Z/ from the function � on H2.E; @EIQ=Z/. It
would be interesting to see whether these semi-norms and functions may be used to
distinguish nonisotopic links.

7.4 Open questions

Is the infimum in (2) realizable by a simple folded surface? Does � take only rational
values? A positive answer to the first question certainly implies a positive answer to
the second one. Similar questions can be asked for ‚.

It would be interesting to compute the function ‚ for the lens spaces. Is it true that for
the lens spaces, the inequality in Theorem 5.1 is an equality?
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