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Integrality of Homfly 1–tangle invariants

HUGH R MORTON

Given an invariant J.K/ of a knot K , the corresponding 1–tangle invariant J 0.K/D

J.K/=J.U / is defined as the quotient of J.K/ by its value J.U / on the unknot
U . We prove here that when J is the Homfly satellite invariant determined by
decorating K with any eigenvector of the meridian map in the Homfly skein of the
annulus then J 0 is always an integer 2–variable Laurent polynomial. Specialisation
of the 2–variable polynomials for suitable choices of eigenvector shows that the
1–tangle irreducible quantum sl.N / invariants of K are integer 1–variable Laurent
polynomials.

57M25, 57M27; 57R56

Introduction

Decorating a framed knot K with a pattern Q (a diagram in the standard annulus)
determines a satellite K �Q of K , whose Homfly polynomial is a 2–variable Laurent
polynomial P .K �Q/2ZŒv˙1; z˙1�. For each fixed Q this gives a 2–variable invariant
of the knot K . We admit linear combinations of patterns, regarded as elements of the
Homfly skein of the annulus, in place of single diagrams Q, and extend our coefficients
to the ring ƒ of Laurent polynomials ZŒv˙1; s˙1� with denominators sr � s�r ; r � 1,
taking z D s� s�1 , to provide an invariant J.K/D P .K �Q/ 2ƒ for any ƒ–linear
combination Q of patterns.

For each partition � of n and each N , the quantum sl.N /q invariant of K when
colored by the irreducible module corresponding to � is an integral Laurent polynomial
in s , with qD s2 . It has been known for some time (Wenzl [12], Aiston and Morton [1],
Kawagoe [5], Lukac [8]) how to choose a decoration Q� so that the 2–variable Homfly
invariant P .K �Q�/ gives all these 1–variable invariants for different values of N

by substituting v D sN . The invariant P .K �Q�/ typically involves denominators
sr � s�r with r up to the maximum hook-length of the partition �.

In [7] Thang Le showed that the 1–tangle invariant J 0
K
.V�/ of a framed knot K when

colored by an irreducible module V� over any quantum group is an integer Laurent
polynomial in the quantum parameter q . In this case the ‘quantum dimension’ of V� ,
which is JU .V�/, is itself in ZŒq˙1� and hence so is the invariant JK .V�/.
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328 Hugh R Morton

Consequently the denominators in the 2–variable invariant P .K �Q�/ will be cancelled
by terms in the numerator when v is replaced by sN for any N . Each of the resulting
1–variable Laurent polynomial invariants of K is then divisible by the value of the
invariant for the unknot. Many constructions of manifold invariants based on quantum
invariants involve substitution of a root of unity for the variable s ; the 1–tangle invariant
gives a reliable means of retaining information at values of s for which the quantum
dimension of the coloring module is zero.

The purpose of this paper is to show that the integrality of these sl.N /q 1–tangle
invariants of K can already be seen at the 2–variable level. We show further that if
J.K/D P .K �Q/ where Q is any eigenvector of the meridian map on the Homfly
skein of the annulus then the 1–tangle invariant J 0.K/ lies in ZŒv˙1; s˙1�. Such
eigenvectors Q include the elements Q� mentioned already, as well as a wider family
Q�;� (Hadji and Morton [4]) depending on two partitions � of n and � of p . These
give a single 2–variable invariant which packages together for different N the quantum
invariants coming from the irreducible submodule of the tensor product of n copies of
the fundamental sl.N /q module and p copies of its dual determined by the partitions
� and �. The individual 1–variable invariants are recovered from P .K �Q�;�/ in the
form of a single 2–variable integral invariant J 0.K/ D aK .�; �/ which yields each
sl.N /q invariant by setting vD sN . In the simplest case where nDpD 1 the modules
are the adjoint representations of sl.N /q , and the 2–variable invariant is closely related
to the Homfly polynomial of the reverse parallel of the knot.

The eigenvectors Q�;� of the meridian map in the Homfly skein of the annulus are
described explicitly in [4], where further details of their properties can be found.
The main result here is the following integrality theorem for the 2–variable 1–tangle

invariants aK .�; �/ D
P .K �Q�;�/

P .U �Q�;�/
of a framed knot K coming from J.K/ D

P .K �Q�;�/.

Theorem 1 Let K be a framed knot and let Q be any eigenvector of the meridian
map. Then the 1–tangle invariant aK D P .K �Q/=P .U �Q/ is a 2–variable integer
Laurent polynomial aK 2 ZŒv˙1; s˙1�.

As a corollary the Homfly polynomial P .K �Q�;�/ of the satellite K �Q�;� will al-
ways factorise as P .K�Q�;�/DaK .�; �/P .U �Q�;�/ with aK .�; �/2ZŒv˙1; s˙1�.

The proof depends on controlling the powers of z�1 in a skein resolution of a single
diagram in a surface in terms of the number of null-homotopic closed components
of the diagram. Calculations in which braids interact with an element of the Hecke
algebra which closes to give Q� , based on Aiston and Morton [1], are then combined
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with relations from Morton and Hadji [9] between Q�;� , Q� and Q� to complete the
argument.

1 Homfly skeins and resolutions

The general setting

Homfly skein theory applies to a surface F with some distinguished input and output
boundary points.

The (linear) skein of F is defined as linear combinations of diagrams in F , up to
Reidemeister moves II and III, modulo the skein relations

(1) � D .s� s�1/ ;

(2) D v�1 :

The coefficient ring ƒ is taken as ZŒv˙1; s˙1�, with denominators frgD sr �s�r ; r �

1.

Application of the first relation to the crossing in the second relation gives the relation

.v�1� v/ D z . This can be used to remove a null-homotopic curve

without crossings from a diagram at the expense of introducing z�1 in the coefficients.

Examples

The skein of the plane is spanned by a single element, . Any link L represents
P .L/ where P .L/ 2ƒ is its Homfly polynomial.

When F is a rectangle with n outputs and p inputs at the top, matched at the bottom
as in Figure 1 the diagrams are called .n;p/–tangles.

n p

Figure 1: The framework for an .n;p/ tangle

The resulting skein, Hn;p , has finite dimension .nCp/!, and is an algebra over ƒ,
where the product is induced by placing one tangle above another.
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Remark In some contexts 1–tangles are known as .1; 1/–tangles, and in such cases
we should expand the name of .n;p/–tangles to .Œn;p�; Œn;p�/–tangles.

Resolutions

A resolution tree for a diagram D in F is a directed tree of diagrams in F , with
initial vertex D , having either one or two edges leaving each internal vertex. Two
edges lead to the diagrams where one crossing in the current diagram is either switched
or smoothed. A single edge performs a Reidemeister move of type I on the current
diagram or removes a null-homotopic closed curve without crossings.

The following general integral resolution lemma controls the use of negative powers of
z , and will shortly be applied in Hn;p . Write k.D/ for the number of null-homotopic
closed curves in a diagram D .

Lemma 1 Let D be a diagram in a surface F having a resolution tree with diagrams
fDi W i 2 Ig at its end vertices. Then D can be written in the skein of F as a ƒ–linear
combination of fDig in the form

zk.D/D D
X
i2I

ciz
k.Di /Di ;

where ci 2 ZŒv˙1; z�.

Proof By induction on the number of edges of the resolution tree.

(1) If two edges leave the vertex D then the resolution has switched or smoothed
a crossing of sign ˙1 in D , resulting in diagrams D� and D0 which satisfy
D DD�˙ zD0 . Now k.D�/D k.D/ while k.D0/� k.D/C 1. Then

zk.D/D D zk.D�/D�˙ zazk.D0/D0;

with a� 0, and the resolution subtrees for D� and D0 allow the right hand side
to be expanded in terms of the end vertices Di by induction. The coefficients ci

are either unchanged or multiplied by �za; a� 0.

(2) If a single edge leaving D comes from a Reidemeister type I move then the
result is immediate. If the edge corresponds to the removal of a null-homotopic
closed curve without crossings, leading to a diagram D0 , then k.D0/Dk.D/�1,
while zD D .v�1� v/D0 in the skein. Then

zk.D/D D .v�1
� v/zk.D0/D0;

and again induction gives the required expansion, using the subtree for D0 whose
coefficients ci are multiplied by .v�1� v/.
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The induction starts trivially for a resolution tree with 0 edges.

Resolutions in Hn;p

A framed knot K can be represented as a 1–tangle T .K/ by a single knotted arc as in
Figure 2. The .n;p/–parallel of this, Tn;p.K/, in the skein Hn;p is constructed by
drawing nCp parallel strands to the arc T .K/, with n oriented in one sense and p

in the other, illustrated with nD 2;p D 1.

Figure 2: A 1–tangle and its .2; 1/–parallel

Standard procedures allow its resolution into .n C p/! totally descending tangles
without closed components; these are tangles in which every crossing is first met as an
overcrossing when the arcs are traversed in order. The ordering of the arcs in each of
these tangles can be chosen by ordering their initial points counterclockwise around
the boundary, starting from the bottom left corner. As a corollary of the integrality
lemma above, Tn;p.K/ can be written as a linear combination of these tangles with all
coefficients in ZŒv˙1; z�.

In the case p D 0 such tangles are the ‘positive permutation braids’, fb� I� 2 Sng,
with strings oriented from bottom to top, while when nD 0 they are again positive
permutation braids fb�� I � 2 Spg, with string orientation from top to bottom. In general
each tangle is determined up to isotopy by knowing which input and output points are
connected by its arcs.

For each tangle we may count the number k of its arcs which connect input and output
points at the bottom. Then 0 � k � min.n;p/. We can write Tn;p.K/ in the skein
Hn;p as Tn;p.K/D T

.0/
n;p.K/CT

.1/
n;p.K/ where T

.0/
n;p.K/ is a combination of tangles

with k D 0 and T
.1/
n;p.K/ is a combination of tangles with k � 1. Tangles with k D 0

have the form b� ˝ b�� for some � 2 Sn and � 2 Sp , where ˝ denotes juxtaposition
of tangles side by side. We then have

T .0/
n;p.K/D

X
�2Sn;�2Sp

c�;�.K/.b� ˝ b�� /;
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with all coefficients c�;�.K/ in ZŒv˙1; z�.

The subspace H
.1/
n;p of the algebra Hn;p spanned by the totally descending tangles with

k � 1 forms a 2–sided ideal, and indeed is one of a chain of ideals H
.l/
n;p , spanned by

the tangles with k � l , which are discussed further in [9]. The closure map, induced
by taking an .n;p/–tangle to its closure in the annulus, carries the skein Hn;p to a
subspace Cn;p of the skein C of the annulus. The image of H

.1/
n;p under this map can

readily be seen to lie in Cn�1;p�1�Cn;p . In much of what follows we can work modulo
Cn�1;p�1 , so that the element T

.1/
n;p.K/ will not figure largely in the calculations.

2 The meridian map

The skein of the annulus, C , has been studied extensively, starting with work of Turaev
[11]. It forms a commutative algebra over ƒ, with the product induced by placing two
diagrams in concentric annuli. The meridian map ' W C! C is induced by including a
single meridian curve around a diagram D in the thickened annulus to give the diagram
shown in Figure 3.

'.D/ =

D

Figure 3: The meridian map

Satellites

Diagrams in the annulus are sometimes known as patterns when they are used in the
construction of satellites of a framed knot. Starting with a framed knot K and a pattern
Q, the satellite K �Q is formed by replacing the framing annulus around K with the
annulus containing Q. This operation, known as decorating K by Q, induces a linear
map at the skein level, so that the Homfly polynomial P .K �Q/ depends only on Q

as an element of the skein C . If K is drawn in the annulus as the closure of a 1–tangle
then decorating it by Q gives a diagram of K �Q in the annulus, shown in Figure 4,
and induces a linear map TK W C! C .
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Q

Figure 4: Decorating a closed 1–tangle

If Q is an eigenvector of TK with eigenvalue aK then K �QD TK .Q/D aK QD

aK U �Q where U is the unknot with framing 0. Taking the Homfly polynomial
then gives aK D P .K �Q/=P .U �Q/ as the 1–tangle invariant J 0.K/ coming from
J.K/D P .K �Q/.

Eigenvectors

The subspaces Cn;p � C are invariant under the meridian map ' , and under TK . A
basis Q� of Cn;0 consisting of eigenvectors of ' determined by partitions � of n

has been described in [1]. The element Q� is constructed there as the closure of
an idempotent e� in the skein Hn;0 , which is isomorphic to the Hecke algebra Hn

of type A. More recent constructions of Kawagoe and Lukac, [5; 8], following the
interpretation of Cn;0 as symmetric functions of degree n in N variables, show that the
counterpart of the Schur function s� is also an eigenvector of the meridian map which
can be identified with Q� . The existence of a basis for the whole space C consisting
of eigenvectors of ' with distinct eigenvalues, indexed by pairs �;� of partitions, is
established in [9], and explicit formulae for the eigenvectors Q�;� are given in [4].
Any eigenvector Q of the meridian map is then a multiple of Q�;� for some partitions
�;�.

Integrality

We are now in a position to establish the main integrality result.

Theorem 1 Let K be a framed knot and let Q be any eigenvector of the meridian
map. Then the 1–tangle invariant aK D P .K �Q/=P .U �Q/ is a 2–variable integer
Laurent polynomial aK 2 ZŒv˙1; s˙1�.

Proof It is readily noted, [4], that the map TK commutes with the meridian map
' . Since the eigenvalues of ' are distinct then any eigenvector Q of ' is also an
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eigenvector of TK . The 1–tangle invariant J 0.K/ coming from the satellite invariant
J.K/D P .K �Q�;�/ is then the eigenvalue a.�; �/ of TK for its eigenvector Q�;� .
The integrality of a.�; �/ will now be established using features of Q� and Q�;�

from [1] and [9].

Turning the annulus over induces a symmetry � in C which carries an element Q to
Q� . If Q 2 Cn;p then Q� 2 Cp;n . Thus if � is a partition of n and � is a partition of
p we have Q� 2 Cn;0 and Q�� 2 C0;p and their product Q�Q�� lies in Cn;p .

In [9] it is shown that Q�;�DQ�Q��CW where W 2 Cn�1;p�1 . Now TK .Q�;�/D

a.�; �/Q�;� so TK .Q�Q��/D a.�; �/Q�Q��CV where V 2 Cn�1;p�1 .

The idempotent e� in [1], whose closure is Q� , can be factorised, following lemma 11
there, as e� D e

.a/

�
e
.b/

�
so that e

.a/

�
ˇe
.b/

�
D k.ˇ; �/e� with k.ˇ; �/ 2 ZŒs˙1�, for any

n–braid ˇ . It follows that the closure of e�
 , which is also the closure of e�
 e� , can
be written as c.
; �/Q� , with c.
; �/ 2 ZŒs˙1�, for any n–braid 
 .

We can express TK .Q�Q��/ as the closure of the element .e�˝ e��/Tn;p.K/ in Hn;p .
Now

.e�˝ e��/Tn;p.K/D .e�˝ e��/T
.0/
n;p.K/; modH .1/

n;p:

The closure of

.e�˝ e��/T
.0/
n;p.K/D

X
�2Sn;�2Sp

c�;�.e�b� ˝ e��b�� /

is a scalar multiple A.�; �/Q�Q�� , where

A.�; �/D
X

�2Sn;�2Sp

c�;�.K/c.b� ; �/c.b�; �/ 2 ZŒv˙1; s˙1�:

Then TK .Q�Q��/ D A.�; �/Q�Q�� modulo Cn�1;p�1 . Hence A.�; �/ D a.�; �/

is the 1–tangle invariant P .K �Q�;�/=P .U �Q�;�/, which is a 2–variable integer
Laurent polynomial in ZŒv˙1; s˙1�, as claimed.

3 Some relations

The 1–tangle invariants a.�; �/ of K are not all independent.

Firstly there are some symmetries.

� By reversing orientation of all strings we get a.�; �/D a.�; �/.

� Replacing � and � by their conjugate partitions switches s for �s�1 in a.�; �/.
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Secondly the 1–variable invariant a.�; �/jvDsN agrees with a.�/jvDsN for some
explicit � depending on N; �; �, and corresponds to an irreducible quantum sl.N /

invariant. Details of the appropriate partition � can be found in [4].

An explicit determinantal construction for Q�;� is given in [4] in terms of the elements
hn DQ�;� where p D 0 and � has a single part, and h�p with the reverse orientation,
where nD 0 and � has a single part. These elements generate C freely as an algebra.

The general construction of Q�;� in [4] can be illustrated by the case when � has parts
2; 2; 1 and � has parts 3; 2.

Take a matrix with diagonal entries as shown, corresponding to the parts of � and �:0BBBB@
h�

2

h�
3

h2

h2

h1

1CCCCA
Complete the rows by shifting indices upwards for the parts of �, and downwards for
the parts of �, to get:

M D

0BBBB@
h�

2
h�

1
1 0 0

h�
4

h�
3

h�
2

h�
1

1

1 h1 h2 h3 h4

0 1 h1 h2 h3

0 0 0 1 h1

1CCCCA
Then Q�;� D det M .

Remark The subalgebra of C spanned by the elements Q�;� with � D � can be
viewed as the algebra of symmetric functions in variables x1; : : : ;xN , for large N .
The elements hn play the role of the complete symmetric functions and then Q�;�

corresponds to the classical Schur function s� , expressed as a polynomial in fhig via
the Jacobi–Trudy formula. Determinants similar to the general case for Q�;� are used
by Koike [6] in giving universal formulae for the irreducible characters of rational
representations of GL.N /, along with interpretations in terms of skew Schur functions.

Examples

The simplest example is where n D p D 1, so that � and � each have one part of
length 1. In this case the formula gives Q�;� D h1h�

1
� 1, so that the knot invariant

P .K �Q�;�/ is very nearly the reverse-parallel invariant in this case.
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For the figure-eight with zero framing when j�j D j�j D 1 we have a.�; �/ D 3�

2z2� 6z4� 2z6C .v2C v�2/.�2� z2� 2z4C z6/C .v4C v�4/.1C 2z2C z4/: The
matrix of coefficients is displayed below, along with the invariant for the trefoil with
some choice of framing – change of framing involves simply factors of v2 .

Figure eight invariant Trefoil invariant

v �4 �2 0 2 4

z

6 1 �2 1

4 1 �2 �6 �2 1

2 2 �1 �2 �1 2

0 1 �2 3 �2 1

v 0 2 4 6

z

4 1 �2 1

2 1 2 �7 �4

0 1 �4 4

Relations with the Kauffman polynomial

In [10] Rudolph demonstrated a relation between the Kauffman polynomial of a link
and the Homfly reverse parallel invariant. His exact result can be described by using
the decoration Q�;� with j�j D 1, as above, on all components of a link L. Then
the Homfly polynomial of this decorated link determines an element of Z2Œv

˙1; z˙1�

when the coefficients are reduced mod 2. Rudolph showed that this invariant is the
same as the Kauffman polynomial of the link, again with coefficients reduced mod 2,
when the Kauffman variables v and z are replaced by v2 and z2 , and both Kauffman
and Homfly are normalised to have the value 1 on the empty diagram. The 1–tangle
invariants above should then reduce to the Kauffman polynomials of the figure eight
or trefoil knots, normalised to have the value 1 on the unknot, with this change of
variable. It is reassuring to compare the mod 2 reduction of the invariants above with
the coefficients for the Kauffman polynomials of these knots shown below, [3].

Kauffman polynomial for figure eight Kauffman polynomial for trefoil

v �2 �1 0 1 2

z

3 1 1

2 1 2 1

1 �1 �1

0 �1 �1 �1

v �5 �4 �3 �2

z

2 1 1

1 1 1

0 1 2

Algebraic & Geometric Topology, Volume 7 (2007)



Integrality of Homfly 1–tangle invariants 337

A possible extension

Blanchet and Beliakova [2] describe a decoration y� in the Kauffman skein of the
annulus corresponding to each partition �. Together these account for all possible
Kauffman satellite invariants. Where an unoriented link is decorated by one such
element y�i

on each component its Kauffman polynomial may be compared with the
Homfly polynomial of the same link decorated correspondingly by the elements Q�i ;�i

.
The invariant for decorations y� and Q�;� requires the use of the parameter s with
z D s� s�1 unless the partition � is self-conjugate. When working mod 2, replacing
s by s2 will also have the effect of replacing z by z2 . Limited evidence suggests the
following extension of Rudolph’s result from the case j�j D 1 to general Kauffman
satellite invariants.

Conjecture 1 Decorate each component Li of a framed unoriented link L by y�i
.

The Kauffman polynomial of this decorated link, with v; s replaced by v2; s2 and the
coefficients reduced mod 2, equals the mod 2 reduction of the Homfly polynomial of
L when each Li is decorated by Q�i ;�i

.

Known results about quantum dimensions allow the conjecture to be confirmed for
the unknot, and for the meridian maps. It is possible that this information can be
combined with the branching rules for multiplying y� and Q�;� by single strings in
their respective skeins to give a proof of the conjecture. It would certainly be of interest
to study further the 1–tangle invariants for Q�;� .
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