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Descent for quasi-coherent sheaves on stacks

SHARON HOLLANDER

We give a homotopy theoretic characterization of sheaves on a stack and, more
generally, a presheaf of groupoids on an arbitary small site C . We use this to prove
homotopy invariance and generalized descent statements for categories of sheaves and
quasi-coherent sheaves. As a corollary we obtain an alternate proof of a generalized
change of rings theorem of Hovey.

14A20; 18G55, 55U10

1 Introduction

Stacks were introduced in order to parametrize problems in algebraic geometry where
the presence of automorphisms prevented representability by a scheme or even a sheaf
(see Artin [1], Deligne–Mumford [3] and Giraud [5]). One early application was
Deligne and Mumford’s use of stacks to prove the irreducibility of the space of curves
of a given genus [3]. More recently stacks have also played an important role in
algebraic topology. Complex oriented cohomology theories give rise to stacks over the
moduli stack of formal groups and, in certain situations, stacks over the moduli stack
of formal groups give rise to spectra (see Goerss [6], Goerss–Hopkins [8] and Rezk
[21]) which play an important role in understanding the homotopy groups of spheres
(see Goerss–Henn–Mahowald–Rezk [7] and Behrens [2]). One fundamental example
is the spectrum of topological modular forms (see Hopkins [12]) which is associated to
the moduli stack of elliptic curves.

The purpose of this paper is to continue the study of stacks from the point of view
of homotopy theory. We generalize basic definitions and constructions pertaining to
(quasi-coherent) sheaves on stacks, to an arbitrary small site C and an arbitrary presheaf
of groupoids on C (not just a stack). We use this point of view to give new proofs
of fundamental theorems in this setting. In the rest of the introduction we will give a
general overview of these results; precise definitions will be given in Sections 2 and 3.

Classically, stacks are defined as those categories fibered in groupoids over C, (or
equivalently lax presheaves of groupoids on C) which satisfy descent [3, Definition
4.1].
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In [11] we show that a category fibered in groupoids F over C is a stack if and
only if the assignment satisfies the homotopy sheaf condition, that is, for each cover
fUi!X 2 Cg, the natural map

F.X /
� // holim

�Q
F.Ui/ +3

Q
F.Uij / _*4

Q
F.Uijk/ � � �

�
is an equivalence of categories, (where the homotopy limit here is taken in the category
of small groupoids, denoted Grpd , which is a simplicial model category).

This characterization of stacks naturally leads to a model structure on categories fibered
in groupoids over C, in which the fibrant objects are the stacks. Similarly, one can
consider the strict functors, or presheaves of groupoids on C, denoted P .C;Grpd/.
Here too there is a local model structure, denoted P .C;Grpd/L , in which the fibrant
objects are those functors which are stacks or, equivalently, satisfy the homotopy
sheaf condition. Furthermore, there is a Quillen equivalence between these two model
categories. (See [11, Section 4]).

Since this paper will derive results about sheaves on stacks from the ambient model
category it makes no difference which of the Quillen equivalent model categories one
chooses to work in. For the sake of simplicity we will work in P .C;Grpd/L .

Given a stack M, on C, the category of sheaves on M [3, Definition 4.10] is defined
as sheaves on the site C=M. The site C=M can be easily generalized to an arbitrary
presheaf of groupoids M and site C (see Section 2.1). Here objects of C=M are
morphisms X !M 2P .C;Grpd/, with X 2C, and the morphisms are triangles with
a commuting homotopy. Covers in C=M are the collections of morphisms which forget
to covers in C. Notice that the underlying category C=M is just the Grothendieck
construction on the functor MW Cop! Grpd . Also notice that if M is represented by
an object X 2 C this is the usual topology on the over category C=X .

We prove that the category of sheaves on C=M is equivalent to the full subcategory of
fibrations F �M in P .C;Grpd/L where the fibers F.X /�M.X / are discrete for
each X 2 C. In fact, this yields an embedding of sheaves on M as a full subcategory
of the homotopy category Ho.P .C;Grpd/L=M/ (Corollary 4–6).

Using this embedding we prove that a local weak equivalence M!M0 induces via
the restriction functor an equivalence of categories

Sh.C=M0/! Sh.C=M/

(Theorem 4–7). This also holds for sheaves of abelian groups, simplicial sets, rings,
modules.
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We also present a definition of a quasi-coherent sheaf of modules over a sheaf of rings
O in an arbitrary site, (see Definition 4–11), and show that the results of the previous
paragraph holds for quasi-coherent sheaves (Corollary 4–10).

Classically, sheaves on an algebraic stack M are described via an atlas. If X !M
an atlas, sheaves on M can be written as a sheaves on X , with an isomorphism
of the two pullbacks to X �M X satisfying the cocycle condition (see for instance
Laumon–Moret-Bailly [14, Lemme 12.2.1]).

We generalize this and prove the following descent statement: given an I –diagram
MI in P .C;Grpd/ there is an equivalence of categories

Sh.C=.hocolimMi//! holim Sh.C=Mi/

(where the homotopy limit is taken in Cat with the categorical model structure, see
Rezk [20]). The same holds for sheaves taking values in any category with products
(Proposition 5–5). We prove also the analog for quasi-coherent sheaves of modules
(Proposition 5–9). We think of the diagram MI as a generalized presentation of
hocolimMI .

Our descent statement generalizes the classical scenario since (by [10, Proposition
A.9]) given an atlas X !M, the induced map below is a weak equivalence

hocolim
�
� � �X �h

MX �h
MX _*4 X �h

MX +3 X
� � // M;

and so it follows that Sh.C=M/ is the homotopy inverse limit of the categories

Sh.X / +3 Sh.X �h
MX / _*4 Sh.X �h

MX �h
MX / : : :

which is a modern formulation of the classical statement written above (see Section
4.1).

A simple application of this descent statement (Proposition 5–15) implies that the cate-
gory of comodules over an Hopf algebroid .A; �/ is equivalent to the category of quasi-
coherent sheaves on the presheaf of groupoids represented by the pair .Spec A;Spec�/
and so is also equivalent to quasicoherent sheaves on its stackification M.A;�/ (which
is its fibrant replacement in P .Aff flat;Grpd/L ).

It follows that if .A; �/ and .B; � 0/ are two weakly equivalent Hopf algebroids then
the categories of comodules on each are equivalent (Corollary 5–16).

The greater generality here is important for many reasons. First we provide an ele-
mentary description of the category of sheaves on a stack which is independent of
the choice of site and makes sense for any stack M algebraic or not (compare with
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Laumon–Moret-Bailly [14, Chapter 12]). The descent statement shows that alternative
descriptions of the category of sheaves on M can be obtained in many fashions, not
just via an atlas, and not only in geometric contexts. In particular, in the case of
algebraic stacks these description are not a by-product of the geometry but of category
theory. Enlarging one’s frame of reference to include presheaves of groupoids which
are not stacks also enlarges the range of presentations and so the possible alternative
descriptions of one’s category of sheaves.

The moduli stack of formal groups MFG is of special importance in stable homotopy
theory (see Goerss [6], Pribble [18] and Naumann [17]). The Lazard ring provides an
atlas Spec L!MFG . But L is not noetherian and the maps Spec L�MF G

Spec L!

Spec L are not finitely presented. It follows that MFG is not an algebraic stack and
much of the classical literature concerning sheaves on a stack does not apply.

We believe that in the context of problems whose origin is homotopy theory, larger
classes of presentations for stacks should naturally appear and our descent statements
will be of use.

Finally, as in [11], we believe that the proper context in which to understand stacks is
a homotopy theoretic one. Weak equivalences (or 2–equivalences) of stacks are not
homotopy equivalences. One can not work in a naive homotopy category of stacks
and behave as if these equivalences were isomorphisms and the 2–category pullback
were a real pullback. A model category structure provides a powerful way in which
to contextualize these equivalences and the constructions that take them into account.
Abstract homotopy theory was invented precisely to solve these types of problems.

1.1 Relation to other work

Part of the results here are bringing those of Hovey [13] into the homotopy theoretic
framework of [11]. In [13], Hovey defines quasi-coherent sheaves on a presheaf
of groupoids on Aff flat and prove a generalized change of rings theorem. It is a
consequence of Corollary 4–6 and Lemma 5–11 that our definition of (quasi-coherent)
sheaves agrees with [13, Definitions 1.1 and 1.2]. Our Proposition 5–15 then is exactly
Theorem A in [13]. [11, Proposition 5.7] implies that the internal equivalences of [13,
Definition 3.1] agree with our local weak equivalences. It follows that Propositions
4–7 and 4–10 are exactly Theorems B and C of [13], when the site CDAff flat . [13,
Theorem D] also follows directly from [11, Proposition 5.7].

1.2 Acknowledgements

The project of understanding stacks from the point of view of homotopy theory was
inspired by a course by M Hopkins at M.I.T. and his ideas permeate this work. I would
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also like to thank G Granja, H Miller, and F Neumann for many helpful comments. This
research was partially supported by the Center for Mathematical Analysis, Geometry,
and Dynamical Systems at the Instituto Superior Técnico of the Technical University
of Lisbon and the Golda Meir Fellowship Trust at the Hebrew University of Jerusalem.

2 Background

In this section we recall some results from the homotopy theory of categories, groupoids
and presheaves of groupoids from Rezk [20] and from [11] and in the course of this fix
our notation and conventions for the rest of the paper.

2.1 Homotopy theory of categories

Recall that Grpd has a cofibrantly generated simplicial model category structure in
which:

� weak equivalences are equivalences of categories, and

� fibrations are maps pW G!H such that given ˛W b �
�! p.a/ 2H there exists

ˇW c! a 2G with p.ˇ/D ˛ .

� the simplicial structure is inherited via the fundamental groupoid functor �oid .

� The generating trivial cofibration is �! �oid�
1 . The generating cofibrations

are f�;�g! �oid�
1;BZ!�;∅!�.

There is also a simplicial model category structure on Cat in which weak equivalences
are equivalences of categories and fibrations are the maps which have the right lifting
property with respect to �! �oid�

1 . The simplicial structure on Cat is defined by
setting C˝X D C��oidX and CX D Cat.�oidX;C/. For more details see [20]. We
will sometimes abuse notation and write �1 for �oid�

1 .

It follows from Hirschhorn [9, 18.1.2, 18.1.8, 18.5.3] that we have the following explicit
formulas for homotopy limits and colimits in Cat . The homotopy inverse limit of an I

diagram of categories CI is the equalizerY
ob.I /

C.i/�oid.I=i/ �
Y

i!j2I

C.j /�oid.I=i/

which can also be described as the end of the functors C.�/ and �oid.I=�/, see [9,
18.3]. Similarly the homotopy colimit of the diagram is the coequalizera

i!j2I

C.i/��oid.j=I/�
a
i2I

C.i/��oid.i=I/
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or the coend C.�/˝I �oid.�=I/.

We can also compute the homotopy (co)limit by taking a cosimplicial (simplicial)
replacement of our diagram and applying the Tot (”geometric realization”) functor.

As the simplicial structure on Cat derives from a Grpd enrichment, it follows from
[11, Theorems 2.9 and 2.12] that Tot is equivalent to Tot2 . The category Tot2.C�/ of
a cosimplicial category C� , has

� objects pairs .x; ˛/ where x is an object of C0 and ˛W d0x
�
�! d1x is an

isomorphism in C1 satisfying s0˛ D idx and d2˛ ı d0˛ D d1˛ , and

� morphisms .x; ˛/! .y; ˇ/ consist of hW x ! y 2 C0 such that ˇ ı d0h D

d1h ıf .

Using cosimplicial replacement one obtains from this formula a compact description
of an arbitrary homotopy limit.

Similarly a model for the homotopy colimit of a simplicial diagram of categories C� is
the coend in Cat , C�˝��oid�Œ��, which we also refer to as the geometric realization,
denoted jC�j. Here too we have a smaller model for jC�j where the objects are the
objects of C0 and the morphisms are generated by those in C0 and the isomorphisms
fy W d0y! d1y for each y 2 C1 , subject to the relations

� fs0x D idx ,

� for y
g

�! y0 2 C1 , d1g ıfy D fy0 ı d0g , and

� for z 2 C2 , fd2z ıfd0z D fd1z .

The formulas above also give descriptions of homotopy (co)limits in Grpd (note that
the inclusion of Grpd in Cat preserves limits and colimits).

2.2 Sites and presheaves

We will always assume that our sites C are small and closed under finite products and
pullbacks. We write P .C;D/ for the category of presheaves on C with values in a
category D and P .C/D P .C;Set/. We abuse notation and identify the objects in C

with the presheaves of sets (or discrete groupoids) they represent.

If fUi !X g is a cover, we write U D
`

i Ui for the coproduct of the presheaves and
F.U / for Hom.U;F /D

Q
i F.Ui/. U� is the nerve of the cover which is the simplicial

object obtained by taking iterated fiber products over X . We will sometimes abuse
notation and write a cover as U !X . jU�j will denote the geometric realization of the
simplicial object in P .C;Grpd/. Recall that the geometric realization of a simplicial
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diagram F� in P .C;Grpd/ is defined by jF�j.Y /D jF�.Y /j (see [11, Section 2.2]).
In particular, jU�j.Y / is the groupoid whose objects are

`
i Hom.Y;Ui/ and whose

isomorphisms are generated by the set
`

i;j Hom.Y;Ui �X Uj / satisfying the obvious
relations (see the previous subsection).

We will consider two different model structures on the category of presheaves of
groupoids. P .C;Grpd/ will denote the levelwise model structure where a map F!F 0

is a fibration (weak equivalence) if and only if F.X /! F 0.X / is a fibration (weak
equivalence) in Grpd . We will write P .C;Grpd/L for the local model structure which
is the localization of P .C;Grpd/ with respect to the maps

fjU�j !X 2 P .C;Grpd/g

where fUi!X g is a cover in C. F 2P .C;Grpd/L is fibrant iff F.X /! holim�F.U�/

is an equivalence of groupoids for all covers fUi!X g, that is, iff F is a stack (see
[11]). The stack condition is a direct generalization of the sheaf condition since a
presheaf of sets F is a sheaf if and only if F.X /! lim� F.U�/ is an isomorphism
for all covers fUi!X g.

Note that, by the definition of localization, the cofibrations and trivial fibrations in
P .C;Grpd/L are the same as those in P .C;Grpd/. Unless otherwise noted, when we
say a map of presheaves of groupoids F !G is a fibration or weak equivalence we
mean in the local model structure.

P .C;Grpd/ is enriched with tensor and cotensor over Grpd in the obvious way and
therefore also over sSet . Moreover, with this enrichment P .C;Grpd/ and P .C;Grpd/L
are simplicial model categories (see [11]).

Note that the geometric realization of a simplicial groupoid can be constructed by a
finite sequence of pushouts along cofibrations and so jF�j is cofibrant in P .C;Grpd/
so long as F0 , F1 and F2 are. In particular, if fUi!X g is a cover, jU�j is always
cofibrant.

We say that a levelwise fibration F � F 0 in P .C;Grpd/ has discrete fibers if for each
X 2 C the fiber of F.X /! F 0.X / over each object a 2 F 0.X / is a discrete groupoid
(that is, a groupoid with only identity morphisms).

HomP.C;Grpd/.F;G/ denotes the groupoid of maps between two presheaves of groupoids.
We write hHom.A;B/ for the homotopy function complex of maps between two objects
A and B in a model category.

We will use repeatedly the following basic result [11, Theorem 5.7] characterizing
the weak equivalences in P .C;Grpd/L as those maps F

�

�!G 2 P .C;Grpd/ which
satisfy the local lifting conditions:
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(1) Given a commutative square

∅ //

��

F.X /

��
? // G.X /

there exists a cover U !X and lifts in the diagram as follows:

?
**j i g f d b a _ ] \ Z X W U

��

∅oo //

��

F.X /

��

// F.U /

��
�1 44U W X Z \ ] _ a b d f g i?oo // G.X / // G.U /

(2) For A! B , one of the generating cofibrations in Grpd (see [11, Section 2:1])
@�1 D f?; ?g !�1 or BZ! ?; given a commutative square

A //

��

F.X /

��
B // G.X /

there exists a cover U !X and a lift in the diagram as follows:

A //

��

F.X /

��

// F.U /

��
B //

55kkkkkkkkk
G.X / // G.U /

Note that condition (1) means that F ! G is locally essentially surjective while
condition (2) says that F !G is locally full and faithful.

3 Presheaves on a Stack

In this section we associate a site to a presheaf of groupoids M and prove an equivalence
of categories between presheaves of groupoids on this site and the full subcategory
.P .C;Grpd/=M/df of the over category consisting of levelwise fibrations with discrete
fiber.

Algebraic & Geometric Topology, Volume 7 (2007)



Descent for quasi-coherent sheaves on stacks 419

3.1 Grothendieck topology on M

The site we define is a simple generalization of the one first defined by Deligne and
Mumford in [3, Definition 4.10].

Definition 3–1 Let M be presheaf of groupoids on C and let C=M denote the
category whose

� objects are pairs .X; f / where X 2 C and X
f

�!M 2 P .C;Grpd/,

� morphisms from X
f

�!M to X 0
g

�!M are pairs .h; ˛/ where X
h
�!X 0 and

˛ is a homotopy f ! g ı h.

Remark 3–2 (a) Given maps f; f 0W X !M, a homotopy ˛W f ! f 0 determines
an isomorphism in C=M between the objects f and f 0 and so a presheaf F

on C=M will satisfy F.X; f /Š F.X; f 0/.

(b) The category C=M is just the Grothendieck construction on the functor M,
that is, the category whose objects are pairs .X; a/ with X 2 C and a 2M.X /

and morphisms defined in the obvious way.
Notice that the projection C=M! C is pM, the category fibered in groupoids
associated to M [11, Definition 3.11].

Lemma 3–3 Let .g; ˛/W .Y;g0/! .X; f / and .h; ˇ/W .Z; h0/! .X; f / be maps in
C=M. The pullback of the maps .g; ˛/ and .h; ˇ/ in C=M is

.Y �X Z; f ı .g� h//

where g � h denotes the canonical map Y �X Z
g�h

�! X . The projection maps are
.pY ; ˛

�1/ and .pZ ; ˇ
�1/.

Using the previous lemma, the proof of the following proposition is an easy exercise.

Proposition 3–4 Let C be a site and M2P .C;Grpd/. The collections of morphisms
which forget to covers in C form the basis for a Grothendieck topology on C=M.

Remark 3–5 The site of Proposition 3–4 generalizes the étale site [3, 4.10] of a
Deligne–Mumford stack M which has

� objects the schemes étale over M, and

� morphisms triangles with a commuting homotopy, and

� covers those morphisms which forget to étale covers.
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The Deligne–Mumford site is C=M when we take C to be the category of schemes
and étale maps between them. If we take C to be the category of schemes and all maps
between them, and M to be the sheaf represented by a scheme, the site of Proposition
3–4 is strictly bigger. It is called the big étale site of M (see Tamme [22, II.3.3]).

The sites that arise through the construction above are always over categories. This
rules out some examples such as the smooth-étale site of an algebraic stack (see
Laumon–Moret-Bailly [14, Definition 12.1]).

Definition 3–6 Let T be a site. We say a collection of covers S generates the
topology on T when a presheaf F on T is a sheaf if and only if it satisfies the sheaf
condition when applied to a cover in S .

Proposition 3–7 The collection of covers of the form

f.Ui ; f ıui/
.ui ;id/
����! .X; f /g

generate the topology on C=M.

Proof Consider an arbitrary cover f.Ui ; fi/
.ui ;˛i /
����! .X; f /g. We may factor these

maps as

.Ui ; fi/
.id;˛i /
����! .Ui ; f ıui/

.ui ;id/
����! .X; f /:

The first map is an isomorphism. If F is a presheaf, the sheaf condition applied to the
original cover requires that the top row in the following diagram be an equalizer while

the sheaf condition applied to f.Ui ; f ı ui/
.ui ;id/
����! .X; f /g requires that the bottom

row be an equalizer.

F.X; f / //

D

��

�Q
F.Ui ; fi/ +3

F.id;˛i /
��

Q
F.Ui �X Uj ; f ı .ui �uj //

�
D

��
F.X; f / //

�Q
F.Ui ; f ıui/ +3

Q
F.Ui �X Uj ; f ı .ui �uj //

�
Since the above diagram commutes these two conditions are equivalent.

3.2 Presheaves on M

We will now define an equivalence of categories between P .C=M/ and the full
subcategory of P .C;Grpd/=M consisting of levelwise fibrations with discrete fibers,
which we denote by .P .C;Grpd/=M/df .
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Definition 3–8 Given G 2 P .C=M/, let BG 2 P .C;Grpd/ be the presheaf so
that BG.X / is the groupoid whose objects are pairs .a; s/ where a 2M.X / and
s 2G.X; a/. A morphism .a; s/! .b; s0/ is a morphism a

˛
�! b 2M.X / such that

s D ˛�s0 .

Alternatively, BG.X / is the Grothendieck construction on the restriction of the functor
G to the subcategory M.X / of C=M. The proof of the following lemma is an easy
exercise.

Lemma 3–9 The natural projection BG!M is a levelwise fibration with discrete
fibers. Moreover the fiber in BG.X / over a 2M.X / is the set G.X; a/.

It is easy to check that B defines a functor from P .C=M/ to .P .C;Grpd/=M/df .

A fibration � WG!H of groupoids with discrete fibers satisfies unique path lifting
and so the assignment a 7! ��1.a/ for a 2 ob H defines a functor from H op to Set .
Using this it is easy to see that the following definition makes sense.

Definition 3–10 The functor �W .P .C;Grpd/=M/df ! P .C=M/ is defined on ob-
jects by �.F �

�!M/.X; a/D ��1
X
.a/ where ��1

X
.a/ denotes the fiber in F.X / over

a 2M.X /.

Proposition 3–11 The pair .B; �/ is an adjoint equivalence of categories.

Proof There is a natural isomorphism G! �BG which when evaluated at .X; a/
sends an element s 2 G.X; a/ to the element .a; s/ in BG.X / lying over a. Given
H 2 .P .C;Grpd/=M/df , an element of B�H.X / is a pair .a; s/ where a 2M.X /

and s is in the fiber of H.X / over a. Sending .a; s/ to s 2H.X / defines a natural
isomorphism B�H !H over M.

4 Sheaves

In this section we identify sheaves on M with the category of fibrations N �M in
P .C;Grpd/L with objectwise discrete fiber, which we denote by .P .C;Grpd/L=M/df .
This homotopy theoretic characterization of the sheaves on a presheaf of groupoids
allows us to prove invariance under weak equivalence. We also extend these results to
the categories of sheaves of rings and sheaves of quasi-coherent modules.

Proposition 4–1 The functors .B; �/ restrict to give an equivalence of categories
between Sh.C=M/ and .P .C;Grpd/L=M/df .
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Proof By Proposition 3–7 a presheaf F on C=M is a sheaf if and only if

F.X; a/Š equalizer
�Y

F.Ui ; a ıui/�
Y

F.Uij ; a ıuij /
�

for all covers fUi

ui
�!X g and a 2M.X /. Since

F.X; a/D HomP.C;Grpd/=M.X
a
�!M;BF !M/

the sheaf condition can be rewritten as

HomP.C;Grpd/=M.X;BF /Š lim
�

HomP.C;Grpd/=M.U�;BF /:

As BF!M has discrete fibers, each groupoid of maps into it is discrete and therefore
the inverse limit of HomP.C;Grpd/=M.U�;BF / agrees with the homotopy inverse limit.

This shows that F is a sheaf if and only if BF !M is local with respect to the maps
jU�j !X 2 P .C;Grpd/=M where U� is the nerve of a cover of X . It follows from
the following Proposition that this is equivalent to BF !M being a fibration.

Proposition 4–2 A map F!M in P .C;Grpd/L is a fibration if and only if it it is a
levelwise fibration and satisfies descent for covers, meaning for all covers fUi!X g

in C, the following is a homotopy pullback square:

F.X / //

��

holim F.U�/

��
M.X / // holimM.U�/:

Proof The outline of the proof follows the arguments in Dugger–Hollander–Isaksen
[4, Lemmas 7.2 and 7.3, Proposition 7.3].

Let A! B denote a generating cofibration ∅!�, BZ!�, f�;�g!�1 in Grpd .
Let J be the set of morphisms in P .C;Grpd/ consisting of

Z!Z ��1;Z 2 C

and
jU�j �B

a
jU�j�A

zX �A! zX �B

where fUi!X g is a cover and jU�j! zX !X is the factorization of the natural map
into a cofibration followed by a trivial fibration in P .C;Grpd/L .

We claim that a map F!M has the right lifting property with respect to the morphisms
in J iff it satisfies descent for covers and is a levelwise fibration. First note that a
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map F!M is a levelwise fibration iff it has the right lifting property with respect
to the maps fZ!Z ��1g. Next observe that for a levelwise fibration F!M, the
canonical map

(4–3) Hom. zX ;F/ �! Hom.jU�j;F/�Hom.jU�j;M/ Hom. zX ;M/

is a fibration (because jU�j ! zX is a cofibration in the levelwise model structure
P .C;Grpd/). A levelwise fibration F!M satisfies the right lifting property with
respect to J if and only if the map (4–3) is a trivial fibration, and therefore if and only
if the following square is homotopy cartesian

Hom. zX ;F/ //

��

Hom.jU�j;F/

��
Hom. zX ;M/ // Hom.jU�j;M/:

By definition, zX !X is a trivial fibration and therefore a levelwise weak equivalence.
Since X and zX are cofibrant and all objects are levelwise fibrant,

Hom.X;F/! Hom. zX ;F/; Hom.X;M/! Hom. zX ;M/

are weak equivalences. This completes the proof of the claim.

It now suffices to show that J provides a set of generating trivial cofibrations for
P .C;Grpd/L . By [4, Lemma 7.3] it is enough to show that if F!M is a weak
equivalence, a levelwise fibration, and satisfies descent for covers then it is in fact a
levelwise trivial fibration. We’ll check the right lifting property of F.X /!M.X /

with respect to the generating cofibrations in Grpd for every X 2 C.

Given a diagram

BZ

��

˛ // F.X /

��

//___ F.U /

��
� // M.X / //___ M.U /

there exists a cover U ! X such that the isomorphism ˛ becomes trivial in F.U /.
As holim F.U�/! F.U / is faithful, it follows that ˛ is also trivial in holim F.U�/.
As F!M satisfies descent for covers, ˛ must be trivial to begin with. This shows
that F.X /!M.X / is faithful for all X .
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Given a commutative square

f�;�g

��

// F.X /

��

//___ F.U /

��

+3 F.U �X U /

��
�1 //

˛

44jjjjjjjjjj M.X / //___ M.U / +3 M.U �X U /;

the local lifting conditions provide us with a lift ˛ and the two images of ˛ in F.U �X

U / lie over the same morphism in M.U �X U /. Since F!M is levelwise faithful
it follows that ˛ is equalized by the two maps. Thus ˛ gives rise to a morphism in
holim F.U�/ and hence in F.X /. Thus F.X /!M.X / is also full.

Given a 2M.X /, the local lifting conditions provide us with a cover U !X such
that a lifts to an element in F.U /. As the two images in M.U �X U / are isomorphic,
levelwise fullness implies that they are isomorphic in F.U �X U / and this isomorphism
satisfies descent by faithfulness of the map F.U �X U �X U /!M.U �X U �X U /.
This provides us with an element in holim F.U�/ and as F!M satisfies descent
for covers, this element lifts to F.X / up to isomorphism. This proves essentially
surjectivity of F.X /!M.X / and completes the proof.

Corollary 4–4 Given levelwise fibrations F
�
�! F0 � M with the first map a

levelwise weak equivalence, then F0!M is a fibration if and only if F!M is a
fibration.

Proposition 4–5 If G is a sheaf on M and H 2 P .C;Grpd/L=M then

HomP.C;Grpd/=M.H;BG/Š hHomP.C;Grpd/L=M.H;BG/D ŒH;BG�P.C;Grpd/L=M:

Proof Let K denote the cofibrant replacement of H in P .C;Grpd/. We need to show
that HomP.C;Grpd/=M.K;BG/Š HomP.C;Grpd/=M.H;BG/. Given X 2 C, the map
K.X /!H.X / is a trivial fibration, so writing K.X /a for the fiber over a2 ob H.X /,
we have a pushout square in Grpd`

a2ob.H .X //K.X /a //

��

K.X /

��
ob.H.X // // H.X /:
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Since the fibers of G.X / !M.X / are discrete, it follows that there is a unique
extension

K.X / //

�
����

G.X /

����
H.X /

!
::uuuuu

// // M.X /

so every map from K factors uniquely through H . This proves the first equivalence in
the statement.

On the other hand, since BG ! M has discrete fibers, two maps K ! BG 2

P .C;Grpd/=M are homotopic if and only if they are equal, which completes the
proof.

If F;F 0 are presheaves on M, HomP.C;Grpd/=M.BF;BF 0/ is a discrete groupoid so
we have the following corollary.

Corollary 4–6 The composition

Sh.C=M/
B
�! P .C;Grpd/L=M!Ho.P .C;Grpd/L=M/

induces an equivalence of Sh.C=M/ with the full subcategory of the homotopy cate-
gory which consists of fibrant objects with levelwise discrete fiber.

We can now prove the main result of this section which states the invariance of the
categories of sheaves under a local equivalence of presheaves of groupoids.

Theorem 4–7 A weak equivalence M0 p

�!M in P .C;Grpd/L induces a Quillen
equivalence

LW P .C;Grpd/L=M0$ P .C;Grpd/L=M WR:
The induced equivalence of homotopy categories yields an equivalence of categories

(4–8) p�W Sh.C=M0/$ Sh.C=M/ W p�

where the right adjoint p� is composition with C=M0 p

�! C=M and the left adjoint
p� is the left Kan extension along p followed by sheafification.

Proof For first statement it suffices to observe that P .C;Grpd/L is right proper [11,
Corollary 5.8]. L is composition with p and R is pullback by p .

The derived functor R is just the pullback when applied to fibrant objects, and the
pullback of a fibration with discrete fibers is also one. Furthermore the sections of
F �MM0.X / over a 2M0.X / are exactly the sections of F.X / over p.a/ 2M.X /,
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and so R agrees with p� when applied to the image of a sheaf on M. It follows that
p� is full and faithful and it remains to show that p� is essentially surjective.

The functor assigning to F0
f

�!M0 the second map in the factorization of p ıf

F0
�
�! F �M

as trivial cofibration followed by a fibration provides a model for the derived functor
L.

Given a fibration F0
f

�!M0 we have the following commutative diagram

F0 //

f

$$ $$JJJ
JJJ

JJJ
J M0 �MF

� //

����

F

Lf
����

M0
� // M:

By two out of three the map F0!M0 �MF is a weak equivalence between fibrant
objects and is therefore a levelwise weak equivalence.

Given a sheaf F 0 on M0 , applying L to BF 0
f

�!M0 yields a fibration F!M. The
fiber of F!M over X !M is

HomP.C;Grpd/=M.X;F/D hHomP.C;Grpd/=M.X;F/

' hHomP.C;Grpd/=M0.M0 �MX;M0 �MF/

where the equivalence arises from R being part of a Quillen equivalence. Since
M0 �M F ! M0 is a fibration with homotopically discrete fibers the homotopy
function complex of maps from any object in P .C;Grpd/=M0 into it is homotopically
discrete. It follows that F!M also has homotopically discrete fibers.

Given F � M a fibration with levelwise homotopically discrete fibers a variation
on the construction in the last proof can be used to construct a factorization F!

F0!M, where F!M is a levelwise fibration with discrete fibers and F!F0 is a
levelwise trivial fibration. It follows that F0!M is a fibration P .C;Grpd/L from
the characterization of fibrations in Proposition 4–2. We conclude that F!M is
isomorphic to a sheaf in Ho.P .C;Grpd/=M/. The pullback of F!M is weakly
equivalent to BF 0 and so p�W Sh.M/! Sh.M0/ is essentially surjective.

Finally the description given for p� follows as it is the left adjoint of p� .

Remark 4–9 Since sheaves of abelian groups are just abelian group objects in the
category of sheaves Theorem 4–7 also yields an equivalence of sheaves of abelian
groups. Similarly we obtain equivalences of sheaves of rings, simplicial sets, and have
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the following equivalence for sheaves of modules (see Mac Lane and Moerdijk [15,
page 95]).

Corollary 4–10 Let M0 p

�!M be a weak equivalence in P .C;Grpd/L . Let O be a
sheaf of rings on M, and let O0 D p�O , then p� induces an equivalence of categories
.O�mod/

p�

�!.O0�mod/.

I learned the following definition from M Hopkins1.

Definition 4–11 Let O be a sheaf of rings on M. A quasi-coherent sheaf of modules
relative to O is an O module F which is locally presentable. This means that for every
X

a
�!M there exists a cover fUi

ui
�!X g in C and exact sequences of .a ı ui/

�O–
modules

˚I .a ıui/
�O!˚J .a ıui/

�O! .a ıui/
�F! 0:

The category O�modqc of quasi-coherent modules is by definition the full subcategory
of O�mod whose objects are quasi-coherent sheaves. This is not necessarily an abelian
category. Even if it is an abelian category, the inclusion of O�modqc in O�mod is not
necessarily exact. See Section 5.4 for a discussion of this in the case of affine schemes
in the flat topology.

Corollary 4–12 Let O be a sheaf of rings on M. A weak equivalence M0 p

�!M in
P .C;Grpd/L induces an equivalence of categories between quasi-coherent O modules
and quasi-coherent p�O modules.

Proof It is obvious that p� applied to a quasi-coherent O module is a quasi-coherent
p�O module.

Conversely, let M be an O module such that p�M is a quasi-coherent p�O module.
Given X

a
�!M, it follows from the local lifting conditions that we can find a cover

of the form .U;p.b//
.u;˛/

���!.X; a/ such that p.b/�M is presentable. The isomorphism
p.b/

˛
�! a ı u induces a natural isomorphism between the functors .p.b//� and

.a ı u/� from sheaves of rings on M to sheaves of rings on U . It follows that

.p.b//�OŠ .a ıu/�O and that there is an equivalence of categories between quasi-
coherent modules over .p.b//�O and .a ı u/�O . Since .p.b//�M D b�p�M is
quasi-coherent .a ıu/�M is also quasi-coherent and hence so is M .

We note that while p� is always exact as a functor between categories of O modules,
it will not in general be exact when restricted to O�modqc .

1It follows from faithfully flat descent (see Section 5.4) that this definition generalizes [14, Definition
13.2.2] for the étale site of a Deligne–Mumford stack. Roughly speaking the difference between the
definitions is that [14] requires a sheaf to be globally presentable, in the sense that for each X !M the
sheaf has what we have called a presentation, while we only require this to hold locally.
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4.1 Application: sheaf cohomology spectral sequence

If F is a sheaf of abelian groups on M we can regard F as an abelian group object in
P .C;Grpd/=M. The global sections �.F/ are isomorphic to the discrete simplicial
abelian group HomP.C;Grpd/=M.M;F/. Let fUi ! Mg be a collection of maps
such that the induced map jU�j !M is a weak equivalence. Then we have weak
equivalences of simplicial abelian groups

HomM.M;F/Š HomM.jU�j;F/Š lim HomM.U�;F/

Š lim HomUi
.Ui ;F�MUi/Š lim�.F�MUi/:

The Grothendieck spectral sequence for composition of functors in this case yields a
spectral sequence with E2 –term

LH i.Rj�.F�MUi//)RiCj�.F/:

This a generalization of the usual Čech cohomology spectral sequence for a cover
which holds by the usual proof (see Tamme [22, Theorem I.3.4.4]).

5 Descent for Sheaves on M

In this section we use the homotopy theory of categories recalled in Section 2.1 and a
notion of homotopy decomposition of a site to prove descent statements for categories
of sheaves on M 2 P .C;Grpd/L . A very special case of these statements yields a
characterization of sheaves (of quasi-coherent modules) on the stack associated to a
groupoid object in C.

In the case of affine schemes in the flat topology Aff flat this says that quasi-coherent
sheaves on the stack associated to a Hopf algebroid .A; �/ is equivalent to the category
of .A; �/–comodules. Combining this result with Theorem 4–7 gives an alternate
proof of a generalized change of rings theorem due to Mark Hovey [13].

5.1 Descent

In order to phrase our descent statement for categories of sheaves we need the following
definition.

Definition 5–1 Let T be a site. A homotopy decomposition of T is an I diagram of
sites TI and an equivalence hocolim Ti

�
�! T such that

(1) the induced maps Ti! T are maps of sites,
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(2) the images in T of all the covers in Ti generate the topology.

Proposition 5–2 Let D be any category with products. A homotopy decomposition
hocolim Ti

�
�! T induces equivalences of categories

P .T;D/
�
�! holim P .Ti ;D/

Sh.T;D/ ��! holim Sh.Ti ;D/

Proof Even though D is not necessarily a small category, the functor categories are
well defined and the duality of our presentations of hocolim and holim in the previous
subsection imply

.Dop/hocolim Ti D holim.Dop/Ti

for any I diagram of categories TI and any category D.

The proof for sheaves is an easy application of the following lemma applied to the
cosimplicial replacements of our diagrams.

Lemma 5–3 Let D�!C� be a map of cosimplicial categories such that each Di!Ci

is a full subcategory, then

Tot.D�/D D0
�C0 Tot.C�/:

In particular, if C
�
�! Tot.C�/ and D ,!C is the full subcategory consisting of objects

whose images in C0 lie in the subcategory D0 then D
�
�! Tot.D�/.

Proposition 5–4 Let UI be an I diagram in P .C;Grpd/. There is a canonical
homotopy decomposition

hocolim.C=Ui/
�
�! C=.hocolim Ui/:

Proof Recall that C=Ui is the Grothendieck construction on the functor Ui W Cop!

Grpd , or the coend C=.�/˝C Ui . An I diagram UI in P .C;Grpd/ is a functor
Cop � I ! Grpd . Since coends commute we have

hocolim.C=Ui/D .C=.�/˝C UI /˝I �oid.�=I/

Š C=.�/˝C .UI ˝I �oid.�=I//D C=.hocolim Ui/:

Using the presentation of the homotopy colimit obtained by simplicial replacement
of the diagram, we see that all maps X ! .hocolim Ui/ factor through some Ui . It
follows from Proposition 3–7 that the equivalence is a homotopy decomposition.
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The main descent statement of this section is the following corollary of the previous
proposition.

Proposition 5–5 Let D be any category with products, UI be an I diagram in
P .C;Grpd/L and hocolim Ui

�
�!M a weak equivalence. There is an equivalence of

categories of presheaves

P .C=M;D/
�
�! holim P .C=Ui ;D/

and sheaves
Sh.C=M;D/

�
�! holim Sh.C=Ui ;D/:

The previous result yields the following more explicit description of the category of
sheaves on M.

Corollary 5–6 Let UI be an I diagram in P .C;Grpd/L and hocolim Ui
�
�!M a

weak equivalence. The category of Sh.M/ is equivalent to the category whose

� objects are collections fFi ; f̨ g where

(i) Fi is a sheaf on Ui ,
(ii) f̨ Wf

�Fj ! Fi is an isomorphism,

satisfying ˛idi
D idFi

and ˛gıf D f̨ ıf
�.˛g/ for each i 2ob I and i

f

�!j
g

�!k

2 I ,

� morphisms fFi ; f̨ g ! fF
0
i ; f̌ g are maps �i W Fi ! F 0i 2 Sh.Ui/ such that

�i ı f̨ D f̌ ıf
��j .

5.2 Descent for Quasi-coherent Sheaves

Next we prove a version of these results for quasi-coherent sheaves.

Definition 5–7 A ringed space in P .C;Grpd/ is a pair .U;OU/ where U2P .C;Grpd/
and OU is a sheaf of rings on U. A morphism of ringed spaces in P .C;Grpd/,
.U;OU/! .V;OV/ consists of a morphism f W U!V 2 P .C;Grpd/ and an isomor-
phism OU

�
�! f �OV of sheaves of rings on U.

Example 5–8 If CD Aff with any reasonable topology and M 2 P .C;Grpd/, the
assignment OM.Spec R!M/DR yields a ringed space.
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An I diagram of ringed spaces .UI ;OI / consists of an I diagram UI in P .C;Grpd/
together with sheaves of rings Oi on Ui and for each i

�

�!j isomorphisms ��Oj
�
�!

Oi of sheaves of rings on Ui satisfying descent (that is, the conditions in Corollary
5–6). Such a diagram gives rise to an I op diagram of categories

i 7!Oi�mod

which assigns to a morphism i
�

�! j 2 I the composite functor

Oi�mod �! ��Oi�mod �! Oj�mod:

A diagram of ringed spaces .UI ;OI / yields an element ŒOI � 2 holim.Sh.Ui ;Ring//.
Using Corollary 5–6 one can see that ŒOI � is a ring object in holim.Sh.Ui ;Set// and
it is straightforward to check that the category of modules over ŒOI � is equivalent
to the homotopy inverse limit of the I op diagram of categories i 7! Oi�mod . As a
consequence we have the following result.

Proposition 5–9 Let .OI ;UI / be an I diagram of ringed spaces in P .C;Grpd/. Let
O be a sheaf of rings on hocolim Ui which is isomorphic to ŒOI �2holim Sh.Ui ;Ring/.
Then

O�mod �
�! holim.Oi�mod/

and this equivalence restricts to an equivalence for quasi-coherent modules

O�modqc
�
�! holim.Oi�modqc/:

Proof Since Sh.hocolim Ui ;Set/ ��! holim Sh.Ui ;Set/ the categories of modules
over the ring objects O and ŒOI � are equivalent, and the category of modules over
ŒOI � is equivalent to holim.Oi�mod/. The proof for quasi-coherent modules follows
by an application of Lemma 5–3.

5.3 Descent for M.X0;X1/

A groupoid object .X0;X1/ 2 C determines a simplicial diagram in C:

� � �X1 �X0
X1 �X0

X1
_ *4 X1 �X0

X1
p1;�

p2

_*4 X1
d

r
+3 X0:

and therefore a simplicial diagram in P .C;Grpd/ which we denote by .X0;X1/� .
By definition, the presheaf of groupoids represented by .X0;X1/ is the geometric
realization of this simplicial diagram and so there is a weak equivalence

j.X0;X1/�j
�
�!M.X0;X1/:
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Using the model for the homotopy limit of a cosimplicial diagram given by Tot2 we
see that an instance of Proposition 5–5 is the following result.

Corollary 5–10 The category of sheaves on a M.X0;X1/ is equivalent to the category
with

(1) objects .F; ˛/ with F a sheaf on X0 and ˛W d�F ! r�F an isomorphism
satisfying i�.˛/D idF and p�

2
.˛/ ıp�

1
.˛/D ��.˛/,

(2) morphisms the maps of sheaves �WF ! F 0 on X0 satisfying r�.�/ ı ˛ D

˛0 ı d�.�/.

Similarly, given a sheaf of rings O on M, let O0 be the pullback of O to X0 . The
category of quasi-coherent O–modules is equivalent to the category with objects .F; ˛/
with F a quasi-coherent O0 –module and ˛W d�F ! r�F an isomorphism of d�O0 –
modules (where r�F is regarded as a d�O0 –module via the canonical isomorphism
d�O0 ' r�O0 ) satisfying the relations above.

5.4 Quasi-Coherent Sheaves on a Hopf Algebroid

In this section C is the category affine schemes (and all morphisms between them)
with the flat topology. A groupoid object .Spec A;Spec�/ in Aff flat is called a Hopf
algebroid.

Given M2P .Aff flat;Grpd/ there is a natural choice of “structure sheaf” of rings OM
defined by

OM.Spec R; a/DR:

For the rest of this section quasi-coherent sheaves will always refer to quasi-coherent
modules relative to this structure sheaf.

In the site Aff flat=Spec.R/ faithfully flat descent of modules (see Milne [16, Remark
I.2.19]) tells us that quasi-coherent modules are not only locally presentable, but
globally presentable. We include the argument for completeness.

Lemma 5–11 The category quasi-coherent sheaves on Aff flat=Spec.R/ is equivalent
to the opposite category of R–modules.

Proof Since ˝ is right exact there is a functor from R–modules to quasi-coherent
sheaves sending M ! FM where

FM .Spec R0/DM ˝R R0:
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It is clear that this functor is full and faithful. Given a quasi-coherent sheaf F

on Aff flat=Spec.R/ the definition of quasi-coherent implies that there is a cover
fSpec Si! Spec Rg and Si –modules Mi so that

FjAff=Spec Si
ŠMi ˝Si

.�/

(since ˝ is right exact). Evaluating F on Si ˝R Sj we see that

(5–12) Mi ˝R Sj ŠMj ˝R Si :

F.Spec R/ is the equalizer

(5–13)
Y

Mi �
Y
i;j

Mi ˝R Sj :

Let M be the value of this equalizer. Since Spec Si! Spec R is a cover

(5–14) R!
Y

i

Si �
Y
i;j

Si ˝R Sj

is exact on the left and remains so when we tensor with any R–module [16, Proposition
I.2.7 and Remark I.2.19]. It follows that we can tensor equation (5–14) with Mk and
tensor (5–13) with Sk to obtain the following isomorphismsQ

i Mk ˝R Si
+3

Š

��

Q
i;j Mk ˝R Si ˝R Sj

Š

��Q
i Mi ˝R Sk

+3
Q

i;j Mi ˝R Sj ˝R Sk

which induce an isomorphism between the equalizers M ˝R Sk ŠMk . Given a map
of rings R! R0 , a similar argument shows that F.Spec R0/ Š M ˝R R0 , which
completes the proof.

Proposition 5–15 The category of quasi-coherent sheaves on .Spec A;Spec�/ (or
M.Spec A;Spec�/ ) is equivalent to the category of comodules on the Hopf algebroid
.A; �/.

Proof An Hopf algebroid .A; �/ yields a diagram

A
L

R
+3 � _*4 �˝A �

where the maps �! �˝A � are L˝1� ; � and 1�˝R with � the comultiplication.
By Corollary 5–10 and Lemma 5–11, a quasi-coherent sheaf consists of an A module
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M and an isomorphism of � –modules � ˝A M
˛
�!M ˝� making the following

diagram commute:

�˝A M
�˝1//

˛

((PPPPPPPPPPP
�˝A �˝A M

1˝˛ //

˛˝�

))RRRRRRRRRRRRR
�˝A M ˝A �

˛˝1
��

M ˝A �
1˝� // M ˝A �˝A �:

Let � be defined as the composition

M
R˝1

�! �˝A M
˛
�!M ˝A �:

Precomposing the commutative diagram above with the map M
R˝1

�! � ˝A M and
using the identity 1˝R˝ 1D �˝ 1 ıR˝ 1, one can see that the composition along
the top and down to M ˝A �˝A � is .�˝ 1/ ı� . The composition along the bottom
is .1˝�/ ı� . so � defines a comodule structure on M (see Ravenel [19, Appendix
A.1]).

Conversely a comodule structure on M is a map of A–bimodules M !M ˝A �

and so there is an extension of this map over M
R˝1

�! �˝A M providing a � –module
isomorphism �˝A M

˛
�!M ˝A� . Another diagram chase shows that the comodule

identity is equivalent to the condition that ˛ satisfies descent.

The previous result together with Corollary 4–12 yields the following result of Hovey
[13, Theorems A and C].

Corollary 5–16 Let .A; �A/ and .B; �B/ be two Hopf algebroids, for which .Spec A;

Spec�A/ and .Spec B;Spec�B/ are weakly equivalent in P .Aff flat;Grpd/L . The
category of .A; �A/ comodules is equivalent to the category of .B; �B/–comodules.

For the sake of completeness, we use the equivalence of categories of Proposition 5–15
to provide the reader with an example of a category of quasicoherent sheaves which is
not an abelian category and conclude with some related remarks.

Example 5–17 Consider the Hopf algebroid .Z;ZŒ��=.p�; �2// where the composition

ZŒ��=.p�; �2/! ZŒ�1�=.p�1; �
2
1/˝Z ZŒ�2�=.p�2; �

2
2/

is given by sending � to .�1C �2C �1�2/. Every abelian group M has (at least) two
comodule structures

M ! ZŒ��=.p�; �2/˝M
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one of which is given by 1˝ idM and the other by .1C �/˝ idM . We denote these by
.M; 1/ and .M; 1C�/ respectively. Consider the epimorphism .Z=p2; 1/

r
�! .Z=p; 1/.

There are monomorphisms

.Z=p; 1/
i
�! .Z=p2; 1/; and .Z=p; 1C �/

i0

�! .Z=p2; 1/

such that r is the cokernel of both i and i 0 . Clearly .Z=p; 1/ and .Z=p; 1C �/ are
not isomorphic but in an abelian category a monomorphism must be the kernel of its
cokernel.

Even when the category of quasi-coherent OM–modules is an abelian category, the
inclusion into OM–modules is not necessarily exact. An example to consider is the
multiplication by p map

OSpec Z

p

�!OSpec Z:

Let Kp be the kernel of this map as an OSpec Z module. Then Kp.Spec R/ is the
p–torsion in R and so Kp is not quasi-coherent. The kernel of multiplication by p

within quasi-coherent modules exists and is 0.

Furthermore, given a map Spec R0
f

�! Spec R, pullback of sheaves is an exact functor
but pullback of quasi-coherent sheaves is not in general: the pullback of a quasi-coherent
sheaf FM on Spec R is

f �FM .Spec R0/D FM .Spec R0! Spec R/Š FM˝RR0

and therefore, for quasi-coherent sheaves, the pullback functor corresponds to the tensor
product .�/˝R R0 which is not always exact.

5.5 A different approach

An alternate approach to the descent statements in this section and the homotopy
invariance of the previous section would be to make use of the stack of sheaves, which
we learned about from M Hopkins.

Disregarding set theoretic questions one can define a stack of sheaves S 2 P .C;Grpd/
associating to X 2C the groupoid of sheaves on X . In a similar fashion one can define
a category object in P .C;Grpd/, .S;Smap/ where Smap classifies maps between
sheaves.

Given M 2 P .C;Grpd/ one could then define Sh.M/ D Hom.M;S/. With this
definition, a sheaf on M would consist of a compatible assignment of sheaves to each
X 2 C and map X !M. The equivalence of this definition with our definition of
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sheaf on C=M should come down to the equivalence of C=M with the homotopy
colimit over C=M of the categories C=X .

A levelwise weak equivalence M!M0 induces an equivalence of sites C=M �
�!

C=M0 and hence of categories of sheaves. Since cofibrant replacement is a levelwise
weak equivalence we would have

Hom.M;S/
�
�! hHom.M;S/:

An immediate corollary of this would be our homotopy invariance and descent results.
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