Volume 7, issue 1 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
Confluence theory for graphs

Adam S Sikora and Bruce W Westbury

Algebraic & Geometric Topology 7 (2007) 439–478
Bibliography
1 J E Andersen, V Turaev, Higher skein modules, J. Knot Theory Ramifications 8 (1999) 963 MR1723433
2 J E Andersen, V Turaev, Higher skein modules II, from: "Topology, ergodic theory, real algebraic geometry", Amer. Math. Soc. Transl. Ser. 2 202, Amer. Math. Soc. (2001) 21 MR1819178
3 F Baader, T Nipkow, Term rewriting and all that, Cambridge University Press (1998) MR1629216
4 G M Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978) 178 MR506890
5 C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883 MR1362791
6 B Bollobás, O Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (2002) 81 MR1906909
7 D Bullock, The $(2,\infty)$–skein module of the complement of a $(2,2p+1)$ torus knot, J. Knot Theory Ramifications 4 (1995) 619 MR1361084
8 D Bullock, Rings of $\mathrm{SL}_2(\mathbb{C})$–characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997) 521 MR1600138
9 D Bullock, C Frohman, J Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications 8 (1999) 265 MR1691437
10 D Bullock, C Frohman, J Kania-Bartoszynska, The Yang-Mills measure in the Kauffman bracket skein module, Comment. Math. Helv. 78 (2003) 1 MR1966749
11 D Bullock, J H Przytycki, Multiplicative structure of Kauffman bracket skein module quantizations, Proc. Amer. Math. Soc. 128 (2000) 923 MR1625701
12 P L Curien, Categorical combinators, sequential algorithms, and functional programming, Progress in Theoretical Computer Science, Birkhäuser (1993) MR1231971
13 H Ehrig, Introduction to the algebraic theory of graph grammars (a survey), from: "Graph-grammars and their application to computer science and biology (Internat. Workshop, Bad Honnef, 1978)", Lecture Notes in Comput. Sci. 73, Springer (1979) 1 MR565034
14 H Ehrig, Tutorial introduction to the algebraic approach of graph grammars, from: "Graph-grammars and their application to computer science (Warrenton, VA, 1986)", Lecture Notes in Comput. Sci. 291, Springer (1987) 3 MR943167
15 C Frohman, R Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000) 4877 MR1675190
16 C Frohman, R Gelca, W Lofaro, The $A$–polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc. 354 (2002) 735 MR1862565
17 C Frohman, J Kania-Bartoszyńska, A quantum obstruction to embedding, Math. Proc. Cambridge Philos. Soc. 131 (2001) 279 MR1857120
18 C Frohman, J Zhong, The Yang–Mills measure in the $SU_3$ skein module, preprint (2004)
19 R Gelca, J Sain, The noncommutative $A$–ideal of a $(2,2p+1)$–torus knot determines its Jones polynomial, J. Knot Theory Ramifications 12 (2003) 187 MR1967240
20 R Gelca, J Sain, The computation of the non-commutative generalization of the $A$–polynomial of the figure-eight knot, J. Knot Theory Ramifications 13 (2004) 785 MR2088746
21 P M Gilmer, J M Harris, On the Kauffman bracket skein module of the quaternionic manifold, arXiv:math.GT/0406152
22 P M Gilmer, J K Zhong, The Homflypt skein module of a connected sum of 3-manifolds, Algebr. Geom. Topol. 1 (2001) 605 MR1875610
23 R J Hadji, H R Morton, A basis for the full Homfly skein of the annulus, Math. Proc. Cambridge Philos. Soc. 141 (2006) 81 MR2238644
24 J Hoste, J H Przytycki, Homotopy skein modules of orientable 3–manifolds, Math. Proc. Cambridge Philos. Soc. 108 (1990) 475 MR1068450
25 J Hoste, J H Przytycki, A survey of skein modules of 3–manifolds, from: "Knots 90 (Osaka, 1990)", de Gruyter (1992) 363 MR1177433
26 J Hoste, J H Przytycki, The $(2,\infty)$–skein module of Whitehead manifolds, J. Knot Theory Ramifications 4 (1995) 411 MR1347362
27 J Hoste, J H Przytycki, The Kauffman bracket skein module of $S^1\times S^2$, Math. Z. 220 (1995) 65 MR1347158
28 F Jaeger, Confluent reductions of cubic plane maps (1990)
29 V F R Jones, The Potts model and the symmetric group, from: "Subfactors (Kyuzeso, 1993)", World Sci. Publ., River Edge, NJ (1994) 259 MR1317365
30 U Kaiser, Deformation of string topology into homotopy skein modules, Algebr. Geom. Topol. 3 (2003) 1005 MR2012962
31 U Kaiser, Link bordism skein modules, Fund. Math. 184 (2004) 113 MR2128047
32 U Kaiser, Quantum deformations of fundamental groups of oriented 3–manifolds, Trans. Amer. Math. Soc. 356 (2004) 3869 MR2058509
33 E Kalfagianni, X S Lin, The HOMFLY polynomial for links in rational homology 3–spheres, Topology 38 (1999) 95 MR1644083
34 L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395 MR899057
35 G Kuperberg, The quantum $G_2$ link invariant, Internat. J. Math. 5 (1994) 61 MR1265145
36 G Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996) 109 MR1403861
37 R Lalement, Computation as logic, Prentice Hall International Series in Computer Science, Prentice Hall International (1993) MR1232661
38 T T Q Lê, The colored Jones polynomial and the $A$–polynomial of knots, Adv. Math. 207 (2006) 782 MR2271986
39 J Lieberum, Skein modules of links in cylinders over surfaces, Int. J. Math. Math. Sci. 32 (2002) 515 MR1951085
40 P Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics 5, World Scientific Publishing Co. (1991) MR1103994
41 J C Mitchel, Foundations for Programming Languages, MIT Press (1996)
42 M Nagl, A tutorial and bibliographical survey on graph grammars, from: "Graph-grammars and their application to computer science and biology (Internat. Workshop, Bad Honnef, 1978)", Lecture Notes in Comput. Sci. 73, Springer (1979) 70 MR565035
43 M H A Newman, On theories with a combinatorial definition of “equivalence.”, Ann. of Math. $(2)$ 43 (1942) 223 MR0007372
44 M J O’Donnell, Computing in systems described by equations, Springer (1977) MR0483644
45 E Ohlebusch, Advanced topics in term rewriting, Springer (2002) MR1934138
46 T Ohtsuki, S Yamada, Quantum $\mathrm{SU}(3)$ invariant of 3–manifolds via linear skein theory, J. Knot Theory Ramifications 6 (1997) 373 MR1457194
47 J H Przytycki, Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91 MR1194712
48 J H Przytycki, Skein module of links in a handlebody, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 315 MR1184418
49 J H Przytycki, Vassiliev–Gusarov skein modules of 3–manifolds and criteria for periodicity of knots, from: "Low-dimensional topology (Knoxville, TN, 1992)", Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, MA (1994) 143 MR1316179
50 J H Przytycki, Algebraic topology based on knots: an introduction, from: "KNOTS '96 (Tokyo)", World Sci. Publ., River Edge, NJ (1997) 279 MR1664968
51 J H Przytycki, A $q$–analogue of the first homology group of a 3–manifold, from: "Perspectives on quantization (South Hadley, MA, 1996)", Contemp. Math. 214, Amer. Math. Soc. (1998) 135 MR1601241
52 J H Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe J. Math. 16 (1999) 45 MR1723531
53 J H Przytycki, Homotopy and $q$–homotopy skein modules of 3–manifolds: an example in algebra situs, from: "Knots, braids, and mapping class groups—papers dedicated to Joan S. Birman (New York, 1998)", AMS/IP Stud. Adv. Math. 24, Amer. Math. Soc. (2001) 143 MR1873115
54 J H Przytycki, Skein module deformations of elementary moves on links, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 313 MR2048107
55 J H Przytycki, From 3–moves to Lagrangian tangles and cubic skein modules, from: "Advances in topological quantum field theory", NATO Sci. Ser. II Math. Phys. Chem. 179, Kluwer Acad. Publ. (2004) 71 MR2147417
56 J H Przytycki, A S Sikora, On skein algebras and $\mathrm{Sl}_2(\mathbb{C})$–character varieties, Topology 39 (2000) 115 MR1710996
57 J H Przytycki, T Tsukamoto, The fourth skein module and the Montesinos–Nakanishi conjecture for 3–algebraic links, J. Knot Theory Ramifications 10 (2001) 959 MR1867103
58 P Sallenave, Structure of the Kauffman bracket skein algebra of $T^2\times I$, J. Knot Theory Ramifications 8 (1999) 367 MR1691417
59 P Sallenave, On the Kauffman bracket skein algebra of parallelized surfaces, Ann. Sci. École Norm. Sup. $(4)$ 33 (2000) 593 MR1834496
60 A S Sikora, Skein modules and TQFT, from: "Knots in Hellas '98 (Delphi)", Ser. Knots Everything 24, World Sci. Publ., River Edge, NJ (2000) 436 MR1865721
61 A S Sikora, Skein modules at the 4th roots of unity, J. Knot Theory Ramifications 13 (2004) 571 MR2080123
62 A S Sikora, Skein theory for $\mathrm{SU}(n)$–quantum invariants, Algebr. Geom. Topol. 5 (2005) 865 MR2171796
63 C C Sims, Computation with finitely presented groups, Encyclopedia of Mathematics and its Applications 48, Cambridge University Press (1994) MR1267733
64 V G Turaev, The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988) 79, 190 MR964255
65 B W Westbury, Invariant tensors for the spin representation of $\mathfrak{so}(7)$, Math. Proc. Camb. Phil. Soc. (to appear)
66 D N Yetter, On graph invariants given by linear recurrence relations, J. Combin. Theory Ser. B 48 (1990) 6 MR1047550
67 J K Zhong, The Kauffman skein module of the connected sum of 3–manifolds, arXiv:math.GT/0205131
68 J K Zhong, B Lu, On the Kauffman skein modules, Manuscripta Math. 109 (2002) 29 MR1931206