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Connective Im.J /–theory for cyclic groups

KARLHEINZ KNAPP

We study connective Im.J /–theory for the classifying space BZ=pa of a finite cyclic
p–group and compute the Im.J /–cohomology groups completely. We also compute
the Im.J /–homology groups, with the exception of a finite range of dimensions.

55N35, 19L64; 19D99, 19L20

1 Introduction

Im.J /–theory A is a generalized homology theory appearing both in homotopy theory
and algebraic K–theory. It is (sometimes) a fairly good first approximation to stable
homotopy capturing v1 –periodic phenomena, and is closely related to the classical
J –homomorphism and the e–invariant. Let p be an odd prime, k be an integer
which generates .Z=p2/� and  k be the (stable) Adams operation in p–local complex
K–theory. Then the spectrum of nonconnected Im.J /–theory Ad may be defined by
the cofiber sequence:

! Ad
D
�!K

 k�1
�! K

4
�!†Ad!

See Knapp [13] and Crabb and Knapp [5]. Connective Im.J /–theory A is then defined
as the (�1)–connected cover of Ad. More importantly, A appears as the p–localization
of the K–theory of a finite field. If k is chosen as a prime power, then

A' .KFk/.p/

where KFk is the algebraic K–theory spectrum of the finite field Fk .

Since Ad and A are not complex orientable, the computation of Im.J /–groups even
of rather simple spaces is not obvious. But due to the close relationship of K�.BG/

to the representation ring of G , the computation of the nonconnected Im.J /–groups
of the classifying space of a finite group BG turned out to be surprisingly simple [12].
For example, for the cyclic group G D Z=pa we have

Adi.BZ=pa/D

8<:
.Zp1/

a i D�1;�2;La
jD1 Z=pjC�p.n/ i D 2n� 1; n 2 Z�f0g;

0 otherwise,
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798 Karlheinz Knapp

and Adi.BZ=pa/D

8<:
.Z^p /

a i D 0; 1;La
jD1 Z=pjC�p.n/ i D 2nC 1; n 2 Z�f0g;

0 otherwise.

Here �p.n/ denotes the power of p in n and Z^p are the p–adic integers.

The noticeable duality results form a universal coefficient formula which is satisfied by
nonconnected Im.J /–theory (but not by A) [13].

In this paper we compute the connective Im.J /–groups of the classifying spaces of
cyclic groups with the exception of a finite dimension range in homology. More pre-
cisely, we determine A�.BZ=pa/ and A2n.BZ=pa/ for n�n0.a/ and p an odd prime.
Here n0.a/ is a constant which is roughly .aC1/pa . The groups A2n�1.BZ=pa/ for
n � n0.a/ are given by Ad2n�1.BZ=pa/ [12]. Determining A2n�1.BZ=pa/ from
A2n�1.P1C/ for n< n0.a/ is carried out in [10], but the result is difficult to describe
explicitly. The main results of this paper are as follows:

Theorem 1.1

Aj .BZ=pa/Š

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Adj .BZ=pa/ j � 1;

a�2L
iD0

Z=pa�iC�p.n/˚Z=p1C�p.n/�a j D 2nC 1> 1;

�p.n/� a� 1� 0;
aL

iD1
i¤a��p.n/

Z=piC�p.n/ j D 2nC 1> 1;

�p.n/ < a� 1;

0 otherwise.

Theorem 1.2 A2n�2.BZ=pa/ŠA2nC1.BZ=pa/ for n� n0.a/.

The case aD 1 was known before:

A2n�1.BZ=p/Š Ad2n�1.BZ=p/D Z=p1C�p.n/

A2n�2.BZ=p/Š Z=p�p.n/ .n> 0/

A direct computation of A2n�2.BZ=pa/ via the K–theory of lens spaces seems to
be inaccessible. Our method is therefore to find at first a lift of the problem to a
torsion free situation. We achieve this by showing that A2n�2.BZ=pa/ is isomorphic
to A2nC1.BZ=pa/ for n� n0.a/. This isomorphism is a consequence of Anderson
duality for connective Im.J /–theory [14], but we give a direct approach via the universal
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coefficient formula for Ad–theory. Now by definition we have with B D BZ=pa

A2nC1.B/D Im Ad2nC1.B;B2n/ �! Ad2nC1.B;B2n�1/

D Im Ad2nC1. zT .nH // �! Ad2nC1.T .nH //

where H is the Hopf line bundle on B , T .nH / is the Thom space of nH and zT .nH /D

T .nH /=S2n is the reduced Thom space. This is a lift to characteristic zero, since
the group Ad2nC1. zT .nH // is the cokernel of  k � 1 on K2n. zT .nH //ŠK2n.B/.
Now the action of  k on K2n. zT .nH // is much more complicated than the one on
K2n.B/, but nevertheless we have the following:

Theorem 1.3 There exists a  k –equivariant isomorphism K0. zT .nH //ŠK0.B/.

We prove this for n with �p.n/� a�1 by an explicit construction, whereas for n with
�p.n/ < a� 1 we only have an existence proof. An immediate consequence is that the
localizations of B and zT .nH / with respect to K–theory are equivalent. This is not
true for T .nH / itself or reduced Thom spectra of other bundles (eg H p on BZ=p2/.
The groups A2nC1.B/ are related to Ad2nC1. zT .nH // via the group extension

0! Z=pa
! Ad2nC1. zT .nH //!A2nC1.B/! 0 :

For n with �p.n/� a�1 the explicit  k –isomorphism K0. zT .nH //ŠK0.B/ allows
us to solve this extension problem, whereas for the other values of n we need to know
which multiples of H are orientable with respect to Ad�.�I Fp/.

The paper is organized as follows. In Section 2 we investigate the  k –module
K0. zT .nH // and construct for n with �p.n/ � a � 1 a Thom class of nH with
good invariance properties under the action of  k . The existence proof for a  k –
isomorphism K0. zT .nH //ŠK0.B/ for n 6� 0 mod pa�1 is postponed to Section 4.
We first show that K0. zT .nH /I Fp/ is a  k –permutation representation, which is
 k –isomorphic to K0.BI Fp/, and then lift this to integral K–theory. In Section 3
we relate A2n�2.B/ to A2nC1.B/ and solve the extension problem which leads to
the computation of A2nC1.B/. A few applications are contained in Section 5. We
give the proof for the equivalence of the K–localizations of B and zT .nH /, complete
the calculation of Ai.BZ=p2/ in the range not covered by Theorem 1.2 and derive
the formula of [15] for the group order of J.Ln.pa//, the J –group of the lens space
Ln.pa/D B2nC1 .

We shall use the following notation throughout. We abbreviate BZ=pa by B and its
m–skeleton by Bm . H is the Hopf line bundle on B , T .nH / is the Thom spectrum
of nH , n 2 Z, and zT .nH /D T .nH /=S2n is the associated reduced Thom spectrum.
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We assume that p is an odd prime and k 2 Z is chosen to reduce to a generator of
.Z=p2/� .

All (co)homology theories are taken as reduced.

2 Nonconnective Im.J /–theory of zT .nH /

In this section we investigate the nonconnective Im.J /–groups Ad�. zT .nH // of the
reduced Thom spectra zT .nH / of multiples of the Hopf line bundle H on BDBZ=pa .
As explained in Section 1, these results will be used to compute A�.B/ later on. In
order to determine Ad�. zT .nH // we must study K�. zT .nH // as a module over the
Adams operation  k . As preparation for this, we collect in the first part of this section
some standard material and notation which we shall use throughout the paper.

We begin by recalling some standard cofiber sequences.

It is well known that for n� 0 the Thom space T .nH / is homeomorphic to the stunted
lens space B=B2n�1 , hence we have a cofiber sequence

(1) B2n�1
�! B

j
�! T .nH / �!†B2n�1

which may be identified with the middle row in the commutative diagram of standard
cofiber sequences:

S2n�1 S2n †S2n�1

# # #

B2n�1 �! B �! B=B2n�1 �! †B2n�1

# k # #

B2n �! B �! B=B2n �! †B2n

Simple degree considerations show that the map S2n �! B=B2n�1 D T .nH / in this
diagram represents the generator in �2n.T .nH //, hence we may identify B=B2n with
zT .nH /D T .nH /=S2n . The inclusion B2n ,!B2nC1 then induces the commutative
diagram

(2)

B2n �! B
j1
�! zT .nH / �! †B2n

# k #j #

B2nC1 �! B
j2
�! T ..nC 1/H / �! †B2nC1

# #ı #

S2nC1 S2nC2 �! †S2nC1
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giving the cofiber sequence

zT .nH /
j
�! T ..nC 1/H /

ı
�! S2nC2:

Since the degree of ı in dimension 2nC 2 is pa we finally obtain the commutative
diagram of cofiber sequences

(3)

�! zT .nH /
xj
�! zT ..nC 1/H /

xı
�! †2nC2Ma

xh
�!

k " "

�! zT .nH /
j
�! T ..nC 1/H /

ı
�! S2nC2 h

�!

"i "pa

S2nC2 D S2nC2

with Ma D S0[pa e1 the Moore spectrum for Z=pa .

The action of  k on K0.T .nH // is the one on K0.BC/ but twisted by the Bott
characteristic class �k which describes the action of  k on the Thom class. We
therefore recall some simple properties of �k and identify the kernel of the map
j �W K0.T .nH //!K0.B/. If n is divisible by pa�1 this will be sufficient to identify
the  k –module K0.T .nH //.

Let reg WD
Ppa�1

iD0
H i 2K0.BC/ be the element defined by the regular representation

of Z=pa . Then the ideal generated by reg is the kernel of the map K0.BC/!K0.B/

defined by multiplication with x DH � 1. Since multiplication by x is injective on
K0.B/, .reg/ is also the kernel of multiplication by xn or by any power series in x

beginning with xn . Moreover reg � z D 0 for any z 2 K0.B/, since any such z is
divisible by x .

Lemma 2.1 For n � 0 the kernel of j �W K0.T .nH // ! K0.B/ is generated by
reg �U , where U is any Thom class for nH .

Proof The commutative diagram

K0.T .nH //
j�

�! K0.B/

�"Š k

K0.BC/
� e.nH /
�! K0.B/

with � the Thom isomorphism defined by U and e.nH / the Euler class belonging to
U shows that ker j � is generated by reg �U , since e.nH /D xnC � � � .
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Let now xM be any complex orientation of p–local complex K–theory. This defines
a multiplicative Thom class UM .E/ for complex vector bundles E [2]. Associated to
this is an exponential Bott class �k

M
.E/ 2K0.XC/ defined by the equation

 kUM .E/D �k
M .E/ �UM .E/:

Lemma 2.2  l�r
M
.E/ � �l

M
.E/D �r �l

M
.E/.

Proof This follows directly from the definition writing  r �l D  l ı r .

Corollary 2.3 �k
M
.EC kEC � � �C kr�1

E/D �kr

M
.E/.

Let UK .E/ denote the standard K–theory Thom class with Euler class L � 1 for
E D L a complex line bundle. The exponential Bott class associated to this choice
of complex orientation will simply be denoted by �k . It satisfies in addition �l.L/D

1CLCL2C � � �CLl�1 for a line bundle L.

The Adams summand G of p–local K–theory will be used in several places, we
therefore recall the splitting of p–local K–theory (see Adams [1] and Jankowski [8]).

Let ! D .k; kp; kp2

; : : :/ 2 Z^p D lim
 �

Z=pi , then ! is a primitive (p � 1)–root of
unity in Z^p satisfying ! � kpa�1

mod pa . The idempotents

ˆi WD
1

p� 1

p�1X
rD1

!�r �i !
r

for 0� i � p� 2

with  ! a p–adic Adams operation are defined p–locally and split M DK0.X / into
p� 1 pieces:

M Dˆ0.M /˚ˆ1.M /˚ � � �˚ p̂�2.M / :

Then ˆ0.M /DG0.X / and from ˆi.u�x/Du�ˆi�1.x/ we get u�iˆi.M /DG2i.X /.
Moreover

K '

p�2_
iD0

†2iG

with G�.S
0/D Z.p/Œv1; v

�1
1
�; v1 D up�1 .

Since the splitting maps commute with  k ,  k restricts to a self map of G and
Im.J /–theory may equally well be defined by replacing K in the definition of Ad by
G [13]:

! Ad
D
�!G

 k�1
�! G

4
�!†Ad!
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The Adams summand G is a multiplicative complex orientable cohomology theory.
We now choose a fixed complex orientation xG for G . This defines a multiplicative
Thom class UG.�/ for complex vector bundles � on X and an exponential Bott class
�k

G
.�/ 2G0.XC/ as above.

For convenience we recall now the computation of Ad�.BC/ [12; 11]. The key
observation is that K0.BC/ is a permutation representation of  k which results in
an easy computation of Ad�.BC/. The different  k –orbits in K0.BC/ are generated
by H pi

with i 2 f0; 1; : : : ; a � 1g. Let L D H pi

and si WD .p � 1/pa�i�1 then
 ksi LDL and the  k invariant subspace Wi WD hL;  

kL;  k2

L; : : : ;  ksi�1

Li of
K0.BC/ has rank si . It is then elementary to determine ker. k�1/ and coker( k�1/

on Wi . In dimension 0 we have coker. k�1/DZ^p generated by 4.L/D4. kjL/

and ker k � 1 D Z^p generated by
Psi�1

jD0
 kjL. In dimension 2n ¤ 0 the map

k�n k
0
� 1 (which is the stable Adams operation  k � 1 on K2n.B/ by definition,

with  k
0

the classical Adams operation on K0.B/) has determinant kn�si � 1 on Wi ,
and since coker. k � 1/jWi

must again be cyclic we get

ker. k
� 1/jWi

D 0 and coker ( k
� 1/jWi

D Z^p =.k
n�si � 1/ � 4.L/:

Note that �p.kn�si � 1/D a� i C �p.n/. Hence we conclude the following:

Proposition 2.4

Adi.B/D

8<:
.Z^p /

a i D 0; 1;La
jD1 Z=pjC�p.n/ i D 2nC 1; n 2 Z�f0g;

0 otherwise.

Using Z=pb with b D aC �p.n/ as coefficients, we see that pi �
Psi�1

jD0
k�nj Lkj is

in ker.k�n k
0
� 1/ on Wi ˝ Z=pb . This describes the elements in Ad2nC1.B/ Š

Ad2n.BIZ=pb/ as elements in ker k � 1�K2n.BIZ=pb/.

After these preparations we now turn to Ad�.�T .nH //.

Now the simplest method to compute Ad�.T .nH // would be to use a Thom isomor-
phism. The orientability conditions for Im.J /–theory are well known [5, Section 5]: A
complex vector bundle �n on X has a Thom class UA.�/ 2 Ad2n.T .nH //, or equiva-
lently a  k –invariant Thom class in K–theory, if and only if 4.Œ��/D 0 in Ad1.X /.
Here Œ�� 2K0.X / is the class defined by � and 4W K0.X /! Ad1.X / the map ap-
pearing in the definition of Im.J /–theory. As we have seen above 4.H�1/2Ad1.B/

is of infinite order, hence no multiple of H can be Ad�–orientable.
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Our main goal in this section will be to derive a  k –equivariant isomorphism

(4) gW K0. zT .nH // �!K0.B/

allowing a computation of Ad�.�T .nH // along the lines as for Adi.B/ above. In
particular it follows that K0. zT .nH // is a  k –permutation representation.

Although there is no Thom isomorphism between Ad�.T .nH // and Ad�.BC/ the
map g is related to a relative Thom isomorphism as follows.

For n of the form n D m.p � 1/pa�1 we shall explicitly construct a Thom class
U 0.nH /2K0.T .nH // which is nearly invariant under  k , giving g as in (4) directly.
The rest of the argument is much more technical. For n still divisible by pa�1 but not
necessarily by p� 1, this is extended by using the Adams summand G . For the other
values of n we only have an existence proof which is postponed to Section 4.

Case 1 We assume n D m � .p � 1/pa�1 . To construct this nearly  k –invariant
Thom class, observe first that for i 6� 0 mod p the map given by x 7�! x˝ i on fibers
defines a p–local fiber homotopy equivalence between H and H i . The join of such
maps gives a p–local fiber homotopy equivalence f between m � � and n �H where
� DH CH k C � � �CH ks0�1

and si D .p� 1/pa�1�i : Define

(5) U 0.nH / WD d�1f �UK .m�/ 2K0.T .nH //

where UK .E/ is the standard K–theory Thom class and d is the degree of f on
fibers. Since two Thom classes for the same bundle differ by a unit e we may write
U 0.nH /D e �UK .nH / with e 2K0.BC/. It is not hard to see

e D

s0�1Y
iD0

�ki

.mH �m/ :

Proposition 2.5 For the Thom class U 0 defined in (5) we have

 kU 0 D U 0C c � reg �U 0

in K0.T .nH //, ie U 0 is invariant mod ker j � .

Proof By definition, naturality and Corollary 2.3,

 kU 0 D �k.m�/ �U 0 D �ks0
.mH / �U 0 :

But k.p�1/pa�1

� 1D c1pa and �r .H /D 1CH C � � �CH r�1 immediately give

�ks0
.H /D 1C c1 � reg and �ks0

.mH /D .1C c1 � reg/m D 1C c � reg :
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If we restrict now the Thom isomorphism with U 0 to classes z of virtual dimension
zero, ie to K0.B/�K0.BC/, we have

 k.z �U 0/D  kz � kU 0 D  kz � .U 0C c � reg �U 0/D . kz/ �U 0

since  kz � regD 0. Hence we have the following theorem.

Theorem 2.6 For nDm�.p�1/pa�1 , multiplication by U 0 defines a  k –equivariant
relative Thom isomorphism

�W K0.B/ŠK0. zT .nH // :

Corollary 2.7 For r; t 2 Z, multiplication by U 0 gives a  k –equivariant Thom
isomorphism

K0. zT ..t C rs0/H //ŠK0. zT .tH // :

By the five lemma there is an induced isomorphism in Im.J /–theory:

Corollary 2.8 For nDm � .p� 1/pa�1 ,

Adi. zT .nH //Š Adi.B/;

and if l � j mod s0 ,
Adi. zT .lH //Š Adi. zT .jH //:

This shows that the groups Adi. zT .jH // are periodic in j , so, in principle, we are left
with finitely many cases.

Note however that there is no dimension shift as it would be in case of a standard Thom
isomorphism. The reason is that we view U 0 as an element in K0.T .nH // and not
in K2n.T .nH //, and so the action of  k is different. We shall call this the modified
Thom isomorphism.

Case 2 We next turn to nDm �pa�1 , that is without the factor p�1. In this case we
shall choose the Thom class U 0 in G�.T .nH //. This is less explicit than for n� 0

mod .p � 1/pa�1 , but it will be sufficient to obtain an explicit description for the
elements in Ad�. zT .nH //. This will be important later on in Section 3 for determining
the group extension between Ad�. zT .nH // and Ad�.T .nH //. To determine the action
of  k on U 0 we shall use Lemma 2.1. We therefore first collect some information on
G2j .B/ and the action of  k on these groups.

Setting M DK0.BC/, the minimal polynomial p of  k is

p .t/D t .p�1/pa�1

� 1
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(since k.p�1/pa�1

� 1� 0 mod pa and H pa

D 1/. This splits as

p .t/D .t
pa�1

� 1/.tpa�1

�!/ � � � .tpa�1

�!p�2/

with ! as above. To describe G2j .B/ we can proceed  k –orbit wise. Let L WDH pb

,
0� b � a�1, and W D hL;  kL; : : :i the orbit generated by L. Then  !LDLkpc

with c D a� 1� b . Hence

Li WDˆi.L/D
1

p� 1

p�1X
rD1

!�r �iLkpc �r

:

Then

(a)  kpc

Li D !
iLi , and

(b) Ei WD

n
Li ;  

kLi ; : : : ;  
kpc�1

Li

o
gives a cyclic basis for ˆi.W /.

The first claim follows directly from the definition of ˆi . For (b) one uses

L0C!L1C � � �C!
p�2Lp�2 DL

to see that E0 [E1 [ : : :[Ep�2 is a generating set for W . Since it is a minimal
generating set it must be a basis. On ˆi.M / the Adams operation  kpa�1

acts
as multiplication by !i . Thus the Adams splitting of K0.B/ is nothing but the
splitting into generalized eigenspaces or the primary decomposition for  k . From
G2i.B/D u�iˆi.M / we see that

(6)  kpa�1

acts on G2i.B/ as multiplication by .!=k/i :

For later use we digress for a moment and work out the Jordan decomposition of  k

on K0.B/˝ Fp . Since p � .t � 1/p
a�1

.t �!/p
a�1

� � � .t �!p�2/p
a�1

mod p , the
minimal polynomial p of  k on M ˝ Fp splits into linear factors and  k has a
Jordan canonical form. Note that ! � k mod p . Recall that if v;  kv; : : : ;  km�1

v

with  km

v D �v is a cyclic basis, then z.m/ D v; z.j/ D . k � �/m�j .v/, z.1/ D

. k ��/m�1.v/ will be a Jordan basis. Hence the basis sets Ei described above give
that on ˆi.W / the matrix of  k is just the Jordan block J!i .pc/.

Corollary 2.9 G2i.BI Fp/ŠG0.BI Fp/ as  k –modules.

Proof With G2i.B/D u�iˆi.M / and .!=k/i D 1 mod p we see that the Jordan
matrix of  k on G2i.BI Fp/ has the Jordan blocks

J1.p
0/; J1.p/; : : : ;J1.p

a�1/
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independently of i . Here J�.m/ denotes an m�m–Jordan block associated to the
eigenvalue �.

Returning to K0. zT .nH //, let now nDmpa�1 � 0, set

� DH C kH C � � �C k.p
a�1�1/

H

and let U 0 WD f �UG.m�/ with f the obvious p–local fiber homotopy equivalence
between m� and nH . Then

�k
G.m�/D �

kpa�1

G .mH /

as in Corollary 2.3. Hence

 kU 0 D �k
G.m�/U

0
D �kpa�1

G .mH /U 0

 kpa�1

UG.mH /D �kpa�1

G .mH / �UG.mH /and

�

�
!

kpa�1

�m

UG.mH /D
�!

k

�n

UG.mH /

mod ker j �W G2n.T .nH // �!G2n.B/ by (6). Therefore

(7)  kU 0 D
�!

k

�n

U 0 mod ker j � in G2n.T .nH //�K2n.T .nH //:

As above we have that reg �U 0 generates ker j � and z � regD 0 for z of dimension 0.
Multiplication by kn puts the Thom class U 0 into K0.T .nH // and shows

Proposition 2.10 For n D mpa�1 the  k –module K0. zT .nH // is a permutation
representation of  k with permutation basis˚

.H pc �ki

� 1/!n�i
�U 0

ˇ̌
0� c � a� 1; 0� i � sc D .p� 1/pa�c�1

	
and is thus  k –equivariantly isomorphic to K0.B/.

Since !n � 1 mod pa we can get a  k –equivariant relative Thom isomorphism by
introducing Z=pa coefficients (if n 6� 0 mod .p�1/ ). Note that Proposition 2.10 gives
explicit formulas for the elements in Ad�. zT .nH //. For example, Ad�. zT .nH /IZ=pb/

for b D aC �p.n/ is generated by the elements

(8) xc D pc
�

sc�1X
iD0

�!
k

�n�i

..H pc �ki

� 1/ �U 0/; 0� c � a� 1:
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Case 3 We now return to general values for n � 0 and discuss first what can be
said about Ad�. zT .nH // without knowing that K0. zT .nH // is a  k –permutation
representation.

The short exact sequence

(9) 0!K0. zT .nH //!K0.B/!K0.B2n/! 0

shows that this is true rationally, ie K0. zT .nH //˝Q is a permutation representation
of  k isomorphic to K0.B/˝Q, simply since K0.B2n/ is finite. As a consequence
we know the rank of Ad2i. zT .nH //D ker k � 1. This must be the same as the rank
of Ad2i.B/. Hence

(10) Ad2i. zT .nH //Š

�
0 i ¤ 0;

.Z^p /
a i D 0:

The number of elements in Ad2iC1. zT .nH //, i ¤ 0, can be computed from (9). The
cofiber sequence B2n! B! zT .nH / induces the exact sequence of finite groups

0! Ad2i.B2n/! Ad2iC1. zT .nH //! Ad2iC1.B/! Ad2iC1.B2n/! 0

for i ¤ 0. The groups Ad2iC1. zT .nH // and Ad2iC1.B/ will have the same number
of elements if this is true for Ad2i.B2n/ and Ad2iC1.B2n/. But this follows from the
exact sequence

0! Ad2i.B2n/!K2i.B2n/
 k�1
�! K2i.B2n/! Ad2iC1.B2n/! 0

and the fact that K0.B2n/ is finite. Hence for all n,

�p
ˇ̌
Ad2iC1. zT .nH //

ˇ̌
D �p

ˇ̌
Ad2iC1.B/

ˇ̌
:

Also the exponent of Ad2iC1. zT .nH // can be determined quite easily. From

� s0�1X
jD0

 kj
�
ı . k

� 1/D  ks0
� 1;

we have  ks0
D ki�s0 on K2i. zT .nH // � K2i. zT .nH //˝Q^p Š K0.B/˝Q^p and

�p.k
i�s0 � 1/ D aC �p.i/ it follows that for any z 2 K2i. zT .nH // we must have

4.paC�p.i/ � z/D 0. Hence

paC�p.i/ �Ad2iC1. zT .nH //D 0 :

It is also possible to show that the number of cyclic summands in Ad2iC1. zT .nH //

is a. We indicate only the main steps. The first step is to show that Ad1. zT .nH // is
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torsion free (and hence isomorphic to .Z^p /
a ). This can be done by showing that the

boundary map in the exact sequence

(11) 0! Ad0. zT .nH //! Ad0.B/! Ad0.B2n/
@
�! Ad1. zT .nH //! Ad1.B/!

is always zero. This is proved by showing that the restriction maps Ad0.B2n/ !

Ad0.B2n�2/ are all onto and using that @D 0 for nDm �pa�1 which follows from
Corollary 2.8. Then one knows Adi. zT .nH /I Fp/Š .Fp/

a for all n and all i� 0; 1 mod
2.p�1/ by Adams periodicity. Using the Thom isomorphism for paH in Ad�.�I Fp/

(see Section 2, Section 3 and the proof of Corollary 4.5), one gets the same conclusion
for the other values of i .

The Thom isomorphism transforms (9) into a relative Gysin sequence of nH

0!K0.B/
xn

�!K0.B/ �!K0.B2n/! 0

with xn D .H �1/n the Euler class of nH . Hence to find a  k –permutation basis for
K0. zT .nH // is the same as to find one for xn �K0.B/�K0.B/. This is possible for
small values of n, but becomes seemingly intractable for larger n.

Example 2.11 (nD 1) For simplicity we take aD 2, the general case is similar. Let
AD .H � 1/2 and B D .H p � 1/�

Pp�1
iD0

.H k.p�1/i

� 1/, then˚
A;  kA; : : : ;  k.p�1/p�1

A
	
[
˚
B;  kB; : : : ;  kp�2

B
	

is a permutation basis of x �K0.B/.

Instead of trying to construct an explicit permutation basis of K0. zT .nH // for the
values of n not divisible by pa�1 we shall give in Section 4 only an existence proof.
Using this, we have:

Theorem 2.12 There exists a  k –equivariant isomorphism

gW K0. zT .nH // �!K0.B/ :

Corollary 2.13 For all j and n,

Adj . zT .nH //Š Adj .B/ :

Ad2nC1. zT .nH //Š˚a
iD1Z=piC�p.n/ .n¤ 0/:In particular,

Remark The paper [7] contains a very short computation of the Im.J /–groups
Ad2mC1.B=B2n/DAd2mC1. zT .nH //, but the proof given there is, at least for a> 2,
in contradiction with Corollary 3.9.
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3 The connective Im.J /–groups of BZ=pa

In this section we compute the connective Im.J /–groups of B D BZ=pa using the
results of Section 2 and Section 4.

Let k denote the p–local connective complex K–theory spectrum, then for p ¤ 2

connective Im.J /–theory A may also be defined by the cofiber sequence

(12) !A
D
�! k

Q
�!†2k

4
�!†A!

where Q satisfies u �QD  k � 1. This gives A�.B/ as kernel and cokernel of Q:

(13) 0!A2n�1.B/
D
�! k2n�1.B/

Q
�! k2n�3.B/

D
�!A2n�2.B/! 0

The groups k2n�1.B/ŠK1.B
2n/ŠK0.B2n�1/ are known, even a set of (relation

free) generators [15]. Nevertheless the action of Q on these generators seems to be
too involved for a direct computation (except for p D 2 and aD 2 [16]).

Define the spectrum E as the fiber of . k�1/W k! k , then the resulting commutative
diagram

0 0

# #

0 ! A2n�1.B/ ! k2n�1.B/
Q
�! k2n�3.B/ ! A2n�2.B/ ! 0

#Š k #u #

0 ! E2n�1.B/ �! k2n�1.B/
 k�1
�! k2n�1.B/ ! E2n�2.B/ ! 0

#ch0 #

H2n�1.B/ D H2n�1.B/

shows jE2n�1.B/j D jE2n�2.B/j since k2n�1.B/ is finite. Because ch0 is onto we
therefore get:

Proposition 3.1 �p jA2n�2.B/j D �p jA2n�1.B/j � a.

The facts that one may in (12) replace k by l , the Adams summand of connective
p–local K–theory, and that l2n�1.BZ=p/ is cyclic, give the computation for aD 1:

A2n�2.BZ=p/Š Z=p�p.n/

(from A2n�1.BZ=p/Š Z=p1C�p.n/ ).

Instead of a direct computation via (13) we reduce the determination of A�.B/ to a
computation of nonconnected Im.J /–groups. The nonconnected Im.J /–groups of
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BG , G a finite group, are known [12; 13]. The case of a cyclic group is particularly
simple. Since K1.B/ is a  k –permutation representation, the computation of Ad�.B/
in Section 2 may be copied to give

Adi.B/D

8<:
.Zp1/

a i D�1;�2;La
jD1 Z=pjC�p.n/ i D 2n� 1; n¤ 0;

0 otherwise.

Alternatively one may use duality; see (15).

In [12] it is shown that for every finite group G the canonical map

d W A2n�1.BG/ �! Ad2n�1.BG/

is onto for n � n0.G/, with the constant n0.G/ depending only on G . Since for a
cyclic group G D Z=pa the map d is always injective, we have

A2n�1.BZ=pa/Š Ad2n�1.BZ=pa/ for n� n0.Z=p
a/:

A bound for n0.a/ WD n0.BZ=pa/, which is easy to write down is .aC 1/ �pa , this
can be proved using the results of [10, Appendix]. A way to determine A2n�1.B/ in
the range n< n0.a/ using results on A2n�1.P1C/ is given in [10]. For the relation
to P1C see also [12].

In the range n � n0.a/ we shall use the following approach to A2n�2.B/, which
describes this group as the cokernel of  k � 1 on a group of infinite order:

By definition of A� as the .�1/–connected cover of Ad� we have

A2n�2.B/D Im.i�W Ad2n�2.B
2n�2/! Ad2n�2.B

2n�1// :

The Ad�–theory exact sequence of the pair .B2n�1;B2n�2/ then shows

(14) A2n�2.B/Š tor Ad2n�2.B
2n�1/

(and Ad2n�2.B
2n�1/D Z.p/˚A2n�2.B//.

Simply for convenience reasons we now pass to Ad–cohomology at this point. The
universal coefficient formula of Im.J /–theory [13]

0! Ext( Ad2n�2.B
2n�1/;Z.p//

! Ad2n.B2n�1/! Hom.Ad2n�1.B
2n�1/;Z.p//! 0

(15)

then gives

(16) A2n�2.B/Š tor Ad2n.B2n�1/ :
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Using the exact sequence induced by the cofiber sequence (1)

0! Ad2n.B2n�1/! Ad2nC1.T .nH //

j�

�! Ad2nC1.B/
i�

�! Ad2nC1.B2n�1/! 0
(17)

and the easily verified fact that i�W Ad2nC1.B/ �! Ad2nC1.B2n�1/ is injective if
and only if d W A2n�1.B/ �! Ad2n�1.B/ is onto, we arrive at the following:

Proposition 3.2 A2n�2.B/Š tor Ad2nC1.T .nH // for n� n0.a/.

The advantage of this description is that Ad2nC1.T .nH // is the cokernel of  k�1 on
K2n.T .nH // ŠK0.BC/, ie we have a lift of our problem to a torsion free situation.

Remark A variant of the above is obtained by S-duality D . We have

A2n�2.B/ŠA2n�2.B
2n�1/ŠA2n�2.B

2n�1
C /

D
ŠA1..B2n�1/z�/Š tor Ad1..B2n�1/z�/

with z� D �n.H � 1/ the stable normal bundle of the manifold B2n�1 . Again for
n� n0.a/ we get

A2n�2.B/Š tor Ad1..B2n�1/z�/Š tor Ad1�2n.T .�nH //:

As already mentioned the reduced Thom spectra zT .nH /D T .nH /=S2n have simpler
 k –modules than T .nH //, so we divide the computation of tor Ad2nC1.T .nH // into
two parts. We first determine Ad�. zT .nH // and then solve the extension which leads
to tor Ad2nC1.T .nH //. From the exact sequence

Ad2n.T .nH //
i�

�! Ad2n.S2n/! Ad2nC1. zT .nH //

! Ad2nC1.T .nH //! Ad2nC1.S2n/

and degree(i�/D pa (to be proved below) we arrive at

(18) 0! Z=pa
! Ad2nC1. zT .nH //! tor Ad2nC1.T .nH //! 0 :

The results of Section 2 and Section 4 give Ad2nC1. zT .nH //, so we are left with
determining the group extension.

Before doing this, we pause to discuss the Im.J /–cohomology groups of B . By
definition we have

Ai.B/D Im.Adi.B;Bi�1/! Adi.B;Bi�2//
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hence for n> 0,

A2nC1.B/D Im.Ad2nC1. zT .nH //! Ad2nC1.T .nH ///D tor Ad2nC1.T .nH //

A2n.B/D Im.Ad2n.T .nH //! Ad2n. zT ..n� 1/H ///D 0and

by (10), whereas for n� 1,
An.B/D Adn.B/

by connectivity reasons. So the computation of tor Ad2nC1.T .nH // will also give
A2nC1.B/.

Corollary 3.3 For n� n0.a/, A2nC1.B/ŠA2n�2.B/.

Note also that for n� n0.a/ the canonical map

d W A2nC1.B/ �! Ad2nC1.B/

is zero, since it is induced by the homomorphism j � of (17), and this vanishes. This
also shows that the complex e–invariant of Adams (defined with periodic K–theory) is
zero on �2nC1

S
.B/ (see Crabb and Knapp [5] for the relation between the e–invariant

and Im.J /–theory). But, of course, �2nC1
S

.B/D 0 for n� 0 by the Segal conjecture.
Hence this is merely an example for the different behavior of Im.J /–theory and stable
cohomotopy on spaces like B . With respect to stable homotopy Im.J /–homology is
more interesting.

We first compute the degree of i�W Ad2n.T .nH // �! Ad2n.S2n/.

Proposition 3.4 i�W Ad2n.T .nH // �! Ad2n.S2n/ is a multiplication by pa .

Proof Let z be a generator of Ad2n.T .nH // Š Z.p/ . Then Ad2n.B/ D 0 implies
that z is in the image of ıW Ad2n�1.B2n�1/!Ad2n.T .nH //, where we are using (1).
Hence D.z/ is in ker j �W K2n.T .nH //!K2n.B/. From Lemma 2.1 we then have
D.z/ D 
1 � reg �UK .nH /. On the other hand  k.reg �UK .nH // D reg �UK .nH /,
hence reg �UK .nH /D 
2 �D.z/ for suitable constants 
1 and 
2 . Thus reg �UK .nH /

generates Im.DW Ad2n.T .nH //! K2n.T .nH /// and i�.reg �UK .nH // D pa im-
plies the statement.

We now solve the group extension (18) for n with �p.n/�a�1. Let U 02K2n.T .nH //

be the Thom class constructed in equation (7) of Section 2 which satisfies  kU 0 D

.!=k/nU 0 mod ker j � and set �D .!=k/n , bD aC�p.n/. Then by (8) the elements

xc D pc
�

sc�1X
iD0

�i..H pc �ki

� 1/ �U 0/; c 2 f0; 1; : : : ; a� 1g
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generate cyclic subgroups whose direct sum is Ad2n. zT .nH /IZ=pb/. We change this
basis by changing the generator xa�1 into

xxa�1 D xa�1Cp �xa�2C � � �Cpa�1
�x0 :

Note that

(19) p�p.n/�aC1
� xxa�1 D p�p.n/ �

pa�1X
jD1

.H j
� 1/ �U 0 D p�p.n/ereg �U 0

with ereg D
Ppa�1

jD1
.H j � 1/ since �� 1 mod pa .

Consider now the commutative diagram of exact sequences built up by Bockstein and
cofiber sequences ( zTn D

zT .nH /, Tn D T .nH /)

Ad2n. zTnIZ=p
b/

j�

! Ad2n.TnIZ=p
b/ ! Ad2n.S2nIZ=pb/

" "red "

Ad2n. zTn/ ! Ad2n.Tn/
i�

! Ad2n.S2n/ ! Ad1C2n. zTn/

" " "pb "

! Ad2n.S2n/
ı
! Ad1C2n. zTn/

" "ˇ

Ad2n. zTnIZ=p
b/

Well known relations between the two connecting homomorphisms ı and ˇ give

ı.1/D ˇ.w/

with w D .j �/�1 ı red ı .i�/�1.pb � 1/ 2 Ad2n. zT .nH /IZ=pb/ (for a proof see
Crabb and Knapp [5, Section 7]). But we have .i�/�1.pb � 1/ D pb�a reg �U 0 in
Ad2n.T .nH //�K2n.T .nH //. Hence

w D .j �/�1pb�a reg �U 0 D pb�aereg �U 0

with eregD reg�pa in Ad2n. zT .nH /IZ=pb/. From (19) we see that w is a multiple of
xxa�1 , the generator of the cyclic summand of order p1C�p.n/ . This shows that j � maps
the cyclic summands generated by xi ; 0� i � a�2, injectively into Ad1C2n.T .nH //

whereas j �.xxa�1/ has only order p1C�p.n/�a . Hence we have:

Theorem 3.5 For n> n0.a/ with �p.n/� a� 1� 1 we have

A2n�2.B/Š

a�2M
iD0

Z=pa�iC�p.n/˚Z=p1C�p.n/�a :
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Theorem 3.6 For n> 0 with �p.n/� a� 1� 1 we have

A2nC1.B/Š

a�2M
iD0

Z=pa�iC�p.n/˚Z=p1C�p.n/�a :

Note that the elements generating A2n�2.B/ in Theorem 3.5 are explicitly given.
This will be different for the values of n with �p.n/ < a � 1, to which we turn
now. Despite the fact that Corollary 2.13 gives Ad1C2n. zT .nH // only abstractly, it
is possible to determine the group extension (18). For this we need to know which
complex vector bundles on B are orientable with respect to Ad�.�I Fp/. Note also,
that by simple connectivity reasons, any Ad�.�I Fp/–Thom class also gives a Thom
class for connective Im.J /–theory A�.�I Fp/ with mod p coefficients.

The fundamental relation for Ad�.�I Fp/–orientability is given by the following propo-
sition.

Proposition 3.7 The virtual bundle pz�� pz� on X is Ad�. I Fp/–orientable for any
complex vector bundle � , in particular,  pz� is Ad�. I Fp/–orientable if and only if pz�

is Ad�. I Fp/–orientable.

Proof Let U D UK .pz� � 
pz�/, z� D � � dim � , then  kU D �k.pz� � pz�/U with

�k.pz� � pz�/D �k.pz�/=�k. pz�/� �k.z�/p= p�k.z�/� 1

since  pyDyp mod p . Therefore U DD.U 0/ for some U 02Ad0.T .pz�� pz�/I Fp/

and U 0 is an Ad�.�I Fp/–Thom class for pz� � pz� .

Therefore paH has an Ad�.�I Fp/–Thom class on B , since H pa

D 1. We also need
the reverse statement, which is harder to obtain. From [10] we shall use:

Theorem 3.8 The vector bundle H pr

is Ad�.�I Fp/–orientable on the complex
projective space PnC (of real dimension 2n) if an only if n< prC1� 1.

Corollary 3.9 The line bundles H;H p; : : : ;H pa�1

are not Ad�.�I Fp/–orientable
on B D BZ=pa .

Proof We have K0.BI Fp/D Fphx;x
2; : : : ;xpa�1i with x DH � 1 since xpa

� 0

mod p . Hence with mD pa� 1,

K0.BI Fp/ŠK0.B2mC1
I Fp/

��

 �
Š

K0.PmCI Fp/ :
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But as in the integral case one can reformulate the orientability condition as follows:
The vector bundle � is Ad�.�I Fp/–orientable if and only if there exists a unit e 2

K0.XCI Fp/ with

�k.z�/D
 ke

e
in K0.XCI Fp/:

Given such e , then e�1 � UK .z�/ will be  k –invariant and vice versa. Hence the
Ad�.�I Fp/–orientability condition for H pa�1

on B , B2mC1 or PmC are all equiva-
lent.

Corollary 3.10 nH on B is Ad�.�I Fp/–orientable if an only if �p.n/� a.

Proof Write n D n1pc with n1 6� 0 mod p , assume c < a and choose s; b with
s � n1Cpa�cb D 1, then s � n1H pc

C b �pa�cH pc

DH pc

. If nH is orientable, then
H pc

is orientable, hence c � a, contradicting c < a.

Assume now �p.n/ < a and consider the commutative diagram:

Ad2n.T .nH // �! Ad2n.S2n/
ı
�! Ad1C2n. zT .nH // !

# # #red

Ad2n.T .nH /I Fp/
i�

�! Ad2n.S2nI Fp/ �! Ad1C2n. zT .nH /I Fp/ !

The restriction map i�W Ad2n.T .nH /I Fp/! Ad2n.S2nI Fp/ is zero, since nH is not
Ad�.�I Fp/–orientable. Hence ı.1/, with 1 2Ad2n.S2n/ as generator, is not divisible
by p in Ad1C2n. zT .nH //. Also tor Ad1C2n.T .nH // has only a�1 cyclic summands.
From Corollary 2.13 we have

Ad1C2n. zT .nH //Š

aM
iD1

Z=piC�p.n/ :

Clearly we then may take ı.1/ as a generator for the cyclic summand with iDa��p.n/.
Hence the following theorems hold.

Theorem 3.11 For n with �p.n/ < a and n� n0.a/ we have

A2n�2.BZ=pa/Š

aM
iD1

i¤a��p.n/

Z=piC�p.n/ :
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Theorem 3.12 For n> 0 with �p.n/ < a we have

A2nC1.BZ=pa/Š

aM
iD1

i¤a��p.n/

Z=piC�p.n/ :

As already mentioned the Im.J /–cohomology groups in positive dimensions are
uninteresting with respect to stable cohomotopy. For homology the situation is as
roughly as follows. For any a there is a constant n1.a/� n0.a/ such that the Hurewicz
map

hAW �
S
2n�1.B/ �!A2n�1.B/

is split onto [12]. In the range n< n1.a/ there are usually (for a> 2) some elements
in cokerhA . In even dimensions there is no such bound. The case aD 1 is investigated
in [9].

4 The  k–module K 0. zT .nH /I Fp/

In this section we prove Theorem 2.12, that is show that there exists a  k –equivariant
isomorphism hW K0.B/!K0. zT .nH //. This is done in three steps. We first show that
G0. zT .nH /I Fp/ is isomorphic to G0.BI Fp/ as  k –module, extend this isomorphism
to K0. zT .nH /I Fp/ Š K0.BI Fp/ and lift this  k –isomorphism in the last step to
a  k –isomorphism hW K0.B/! K0. zT .nH //. In virtue of Corollary 2.7 we shall
assume n� 0.

Step 1 The  k –isomorphism G0. zT .nH /I Fp/ŠG0.BI Fp/

Theorem 4.1 There is a  k –equivariant isomorphism G0. zT .nH /I Fp/ŠG0.BI Fp/.

We shall prove this inductively using the commutative diagram of exact sequences
induced by (3). Abbreviate zT .mH / by zTm and T .mH / by Tm .

(20)

G0.S2nC2I Fp/ D G0.S2nC2I Fp/

"i� "pa

0  G0. zTnI Fp/
j�

 G0.TnC1I Fp/
ı�

 G0.S2nC2I Fp/

k " "Š

0 G�2n�1.MaI Fp/
xh�

 G0. zTnI Fp/
xj�

 G0. zTnC1I Fp/  G�2n�2.MaI Fp/  0

Note first the following elementary facts.

(1) We may assume nC 1� 0 mod p� 1 , since otherwise xj � is an isomorphism.
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(2) The composition

xh� ı j � ı .i�/�1
W G0.S2nC2

I Fp/ �!G�2n�1.MaI Fp/

is an isomorphism, ie xh�.z/¤ 0 for z 2G0. zTnI Fp/ implies that (j �/�1.z/ is
a Thom class for .nC 1/H .

(3) If U is a Thom class for .nC 1/H and unC1 2 G0.S2nC2I Fp/ a generator,
then ı�.unC1/D c0 � reg �U with c0 ¤ 0 in Fp . This follows from Lemma 2.1
since the kernel of j �W G0.TnC1I Fp/ �!G0. zTnI Fp/ is the same as the kernel
of j �

2
W G2nC2. zTnC1I Fp/ �! G2nC2.BI Fp/ because j1W B ! zTn induces a

monomorphism and j ı j1 D j2 (see (2)).

(4) We shall abbreviate c0 � reg �U D ı�.unC1/ by w0: Clearly . k � 1/.w0/D 0.

(5) We have  kpa�1

D 1 on G0. zTmI Fp/ for all m. This follows from the corre-
sponding statement (6) for G0.B/ using the monomorphism j �

1
W G2i. zTm/!

G2i.B/.

Denote  k � 1 by T . Then by (5) T acts nilpotently on G0. zTmI Fp/. We shall
determine the Jordan canonical form of T inductively using (20).

Let S.m/ abbreviate the statement:

There are elements b0; b1; : : : ; ba�1 in G0. zTmI Fp/ with bi generating a string of
length pi under T , ie T pi

bi D 0, T pi�1bi ¤ 0 such that
˚
T j bi

	
is a Jordan basis

for T on G0. zTmI Fp/.

Note that S.0/ was proved in Corollary 2.9. Assume now nC 1 � 0 mod p � 1,
�p.nC 1/D b < a and set c D a� 1� b . We shall prove below:

Proposition 4.2 There is a Thom class U for .nC 1/H with

T pc

U D c0 �w0

where c0 6� 0 mod p and w0 as in (4).

Proposition 4.3 For any Thom class U1 of .nC 1/H in G0.TnC1I Fp/ we have
T pc

U1 6D 0, in particular, there is no Thom class U2 for .nC 1/H with T j U2 D 0

and j � pc .

Assume S.n/ is true and choose elements bi as in S.n/. We now construct elements
xbi 2G0. zTnC1I Fp/ with the properties stated in S.nC1/. We begin with G0.TnC1I Fp/.
In this group the Thom class U provided by Proposition 4.2 generates a string of length
pc C 1. Since T pc

U D c0 �w0 2 ker j � , the element j �.U / generates a string of
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length pc in G0. zTnI Fp/. Write j �.U / as a linear combination of the Jordan basis in
G0. zTnI Fp/:

j �.U /D ˛0b0C˛1b1C � � �C˛cbc C elements in im.T / :

Then 0¤ xh� ı j �.U /D ˛0
xh�.b0/C˛1

xh�.b1/C � � �C˛c
xh�.bc/ ;

since xh� ı T D 0. If xh�.bi/ ¤ 0 for i < c than any preimage z of bi under j �

satisfies i�z ¤ 0 by (1) and therefore z is a Thom class for .nC 1/H . But then
T piC1.z/D 0 with piC 1� pc contradicting Proposition 4.3. Hence xh�.bi/D 0 for
i < c , xh�.bc/¤ 0 and ˛c ¤ 0. We now change the basis in G0. zTnI Fp/ by replacing
bc with j �.U /. Since xh�.bi/D 0 for i < c , we can choose preimages xbi for bi under
xj � . For xj ��1.bc/ we take T .U /. If i > c then xh�.bi/ may be nonzero. In such
a case we change bi into b0i by adding a suitable multiple of j �.U / in order to get
xh�.b0i/ D 0. Then b0i has the same string length as bi and we can choose xbi with
xj �.xbi/D b0i .

It is clear that the elements xb0; xb1; : : : ; xba�1 generate G0. zTnC1I Fp/ as T –module. We
now check their string length. For xbcDT .U / we have T pc

.xbc/D 0 and T pc�1.xbc/D

w0 (up to a nonzero constant). If T pi

.xbi/D
iw0 for i<c with 
i¤0 we change xbi by
adding a suitable multiple of T pc�pi�1.xbc/ in order to achieve T pi

.xbi/D0. For j > c

we must have T pj .xbj /D 0. If not, then T pj .xbj /Dw0 (up to a nonzero constant) and
we may change in G0.TnC1I Fp/ the original Thom class U by adding T pj�pc

.xbj /

to get a Thom class U1 with T pc

.U1/D 0. This contradicts Proposition 4.3. Hence
we may assume that for all j the element xbj generates a string of length pj and
fT pi

.xbj /g will be a Jordan basis for G0. zTnC1I Fp/. This proves S.nC 1/ and shows
that S.n/ is true for all n. But this means that T has the same Jordan canonical form
on G0. zT .nH /I Fp/ for all n, and this implies that G0. zT .nH /I Fp/ and G0.BI Fp/

are  k –equivariantly isomorphic, proving Theorem 4.1.

We now prove Proposition 4.2 and Proposition 4.3 (recall the assumption nC 1� 0

mod p� 1 , �p.nC 1/D b < a and c D a� 1� b/:

We begin with the case nC 1D s � .p � 1/pa�1 , s 6� 0 mod p . Set U D ˆ0.U
0/ 2

G0.T ..nC 1/H /I Fp/, where U 0 is the Thom class from (5). From Proposition 2.5
we have

T .U /D c0 �w0 for some c0 2 Fp :

Let U1 be any Thom class for .nC 1/H . We must have T .U1/¤ 0, since .nC 1/H

is not Ad�.�I Fp/–orientable (Corollary 3.10). In particular c0 ¤ 0. This proves
Proposition 4.2 and Proposition 4.3 for nC 1 with �p.nC 1/D a� 1.
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Let now nC1Dm �pb; m� 0 mod .p�1/, m 6� 0 mod p , b � a�1, c WD a�1�b

set LDH kc

, L0 DH and consider

� Dm.L0
CL1

CL2
C � � �CLpb�1/ :

Then � is p–locally fiber homotopy equivalent to .nC 1/H .

Lemma 4.4 �kc

G
.m.L0CL1CL2C � � �CLpb�1//D �ka�1

G
.mH /.

Proof This follows from

�r i

G .H /D �r i�1

G .H / � r i�1

.�r
G.H //D �r i�1

G .H / � �r
G.H

r i�1

/;

the exponential property of �G and induction as in Corollary 2.3.

Define now U D f �UG.�/ with f a suitable fiber homotopy equivalence between �
and .nC 1/H . Then

 
kpc

.U /D f � kpc

.UG.�//D �
kpc

G .�/ �f �.UG.�//D �
kpa�1

G .mH / �U :

But �kpa�1

G
.mH /�1Dc0�reg since  kpa�1

D1 on G0.B/ implies  kpa�1

UG.mH /�

UG.mH / 2ker j �
1
W G0.T .mH //!G0.B/ and ker j �

1
is generated by reg �UG.mH /

Lemma 2.1. To see c0 6� 0 mod p , we may use Lemma 4.4 with c D 0 in the reverse
direction: If �kpa�1

G
.mH /D 1 then

�kpa�1

G .mH /D �k
G.m.H CH k

C � � �CH kpa�1�1

//D 1 ;

but then m.H CH k C � � �CH kpa�1�1

/, which is p–locally J –equivalent to the line
bundle .pa�1m/H , would have a  k –invariant Thom class in G0.�I Fp/, contradict-
ing the fact that pa�1mH is not Ad�.�I Fp/–orientable. This proves Proposition 4.2.

Let now U2 be any Thom class for ! D .n C 1/H with m, b and c as above.
Then U2.!/ D e � UG.!/ for a unit e 2 G0.BC/. Define �k

2
.!/ by the equation

 kU2 D �
k
2
�U2 . Then

�ki

2 .!/D . 
ki

.e/=e/ � �ki

G .!/

(and �kpc

2
.!/D . kpc

.e/=e/��kpc

G
.!/). Assume  kpc

U2.!/DU2.!/, ie �kpc

2
.!/D

1. We derive a contradiction by showing that there exists a Thom class U3 for � D
! C k! C � � � C kpc�1

! with  kU3 D U3 . But � is p–locally fiber homotopy
equivalent to pc! D pa�1mH , hence � can not have a mod p  k –invariant Thom
class by Corollary 3.10.
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Note that U2. 
ki

!/ WD  ki

U2.!/ is a Thom class for  ki

! since  ki

may be
induced by the map mki W B! B which represents multiplication by ki in the H –
space structure of B . Then

U3 WD U2.!/[U2. 
k!/[ : : :[U2. 

kpc�1

!/

is a mod p Thom class for � D !C k!C � � �C kpc�1

! and we have

 kU3 D �
k
2
.!/ � �k

2
. k!/ � � � �k

2
. kpc�1

!/ �U3

D �k
2
.!/ � k.�k

2
.!// � � � kpc�1

.�k
2
.!// �U3

D
 ke

e
� �k

G
.!/ �  

k2
e

 ke
� k.�k

G
.!// � � �  

kpc

e

 kpc�1
e
� kpc�1

.�k
G
.!// �U3

D
 kpc

e
e
� �k

G
.!/ � k.�k

G
.!// � � � kpc�1

.�k
G
.!// �U3

D
 kpc

e
e
� �kpc

G
.!/ �U3 by Corollary 2.3 for �G

D �kpc

2
.!/ �U3 D U3:

This finishes the proof of Proposition 4.3.

Step 2 The  k –equivariant isomorphism K0. zT .nH /I Fp/ŠK0.BI Fp/

Corollary 4.5 For all n there is a  k –equivariant isomorphism

K0. zT .nH /I Fp/ŠK0.BI Fp/:

Proof Consider G2i. zT .mH /I Fp/ for i 6� 0 mod p and write i D tpaC s.p � 1/.
Then

G2i. zT .mH /I Fp/
�
ŠG2.i�tpa/. zT ..m� tpa/H /I Fp/

Bs

Š G0. zT ..m� tpa/H /I Fp/

as  –modules. Here � is the Thom isomorphism with a mod p  k –invariant Thom
class of tpaH (see Proposition 3.7) and Bs is Adams periodicity, ie multiplication
by vs

1
, which is  k –invariant mod p . From Theorem 4.1, with n D m� tpa and

the Jordan decomposition of  k on G0.BI Fp/ (Corollary 2.9) we get that the Jordan
canonical form of  k on G2i. zT .mH /I Fp/ has exactly one Jordan block J1.p

i/ for
iD0; : : : ; a�1. Going backwards from the decomposition

Lp�2
iD0

uiG2i. zT .mH /I Fp/

to K0. zT .mH /I Fp/ (see Section 2), we see that  k has the same Jordan canonical
form on both of K0. zT .mH /I Fp/ and K0.BI Fp/.
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Remark Since piH �H pi

is Ad�.�I Fp/–orientable (Proposition 3.7), we have a
 k –equivariant relative Thom isomorphism

K0. zT
� rL

iD0

niH
pi
�
I Fp/ŠK0. zT

� rL
iD0

nip
iH
�
I Fp/ ;

hence the statement of Corollary 4.5 is true for every complex vector bundle � on B .

Step 3 Lifting mod p isomorphisms

In the rest of this section we show how to lift a  k –map K0.BI Fp/!K0. zT .nH /I Fp/

to integral K–theory. Denote K0.B/ by M and K0. zT .mH // by M 0 . Additively
M D .Z^p /

pa�1 , M 0D .Z^p /
pa�1 . Then M=pDM ˝Fp DK0.BI Fp/ and similarly

for M 0 .

Let now M1;M2 be two Z^p –modules with  k –action. Denote by Hom�.M1;M2/

the Z^p –submodule of  k –commuting homomorphisms in HomZ^p
.M1;M2/. If

M1;M2 are free and of finite rank, then Hom�.M1;M2/�HomZ^p
.M1;M2/ is also

free and of finite rank. Define

b.M1;M2/D rank Hom�.M1;M2/ :

Reducing mod p we consider the Fp –vector spaces M1=p , M2=p and define

c.M1;M2/D dimFp
Hom�.M1=p;M2=p/ :

There is a canonical map

(21) �W
Hom�.M1;M2/

p �Hom�.M1;M2/
�! Hom�.M1=p;M2=p/

which is trivially injective for M1;M2 as above. From the commutative diagram

(22)

Hom�.M1;M2/Š .Z
^
p /

b.M1;M2/

#p

Hom�.M1;M2/Š .Z
^
p /

b.M1;M2/

#

Hom�.M1;M2/
p�Hom�.M1;M2/

Š .Fp /
b.M1;M2/

�
�! Hom�.M1=p;M2=p/

it is clear that b.M1;M2/� c.M1;M2/. There are examples where this inequality is
strict, however it is an equality in the following circumstance.
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Proposition 4.6 Suppose N DM1 DM2 D .Z
^
p /

b is a permutation representation
of  k , then b.N;N /D c.N;N /, ie the canonical map

�W
Hom�.N;N /

p �Hom�.N;N /
�! Hom�.N=p;N=p/

is an isomorphism.

Proof If we let  k act on HomZ^p
.M1;M2/ by  k.f / D  k ı f ı . k/�1 , then

Hom�.M1;M2/ is the fixed submodule HomZ^p
.M1;M2/

 k

. For M1;M2 as above,
we have HomZ^p

.M1;M2/ ŠM �
1
˝M2 and therefore

Hom�.M1;M2/Š ker. k
� 1W M �

1 ˝M2!M �
1 ˝M2/:

Similarly

Hom�.M1=p;M2=p/Š ker. k
� 1W M �

1 =p˝M2=p!M �
1 =p˝M2=p/:

If N is a permutation representation of  k , then N � and N �˝N are permutation
representations of  k too. For a permutation representation V of  k which is free
over Z^p of finite rank, V =p is a  k –permutation representation over Fp and we have

dimFp
ker. k

� 1W V =p �! V =p/D rank ker. k
� 1W V �! V /

as one easily sees by considering each  k –orbit separately. With V DN �˝N the
conclusion follows. Note that the equality above is equivalent to the statement that
coker. k � 1W V �! V / is torsion free.

Consider now the  k –modules M DK0.B/ and M 0 DK0. zT .mH //. On both M

and M 0 the operation of  k satisfies . k/.p�1/pa�1

� 1D 0, hence the action of
 k factorizes through the action of the finite group Z=.p � 1/pa�1 , ie we can let
�DZ=.p�1/pa�1 . From (9) we know that there exists a  k –equivariant isomorphism
M ˝Q^p ŠM 0˝Q^p . Hence

b.M;M 0/ D rank Hom�.M;M 0/

D dimQ^p
Hom� .M;M 0/˝Q^p

D dimQ^p
Hom� .M ˝Q^p ;M

0˝Q^p /

D dimQ^p
Hom� .M ˝Q^p ;M ˝Q^p /

D b.M;M /:

From Corollary 4.5 we have a  k –equivariant isomorphism h0W M=pŠM 0=p . Hence

c.M;M 0/D dimFp
Hom�.M=p;M 0=p/D dimFp

Hom�.M=p;M=p/D c.M;M / :
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Therefore b.M;M 0/D c.M;M 0/ ie the canonical map � is onto. By (22) the mod p

isomorphism h0W M=p!M 0=p can be lifted to a  k –equivariant homomorphism

hW M �!M 0 :

This map is automatically an isomorphism since its mod p reduction h0 is so. Observe
that any basis of M=p can be lifted to a basis of M by lifting the corresponding
idempotents [6]. We have proved the following.

Theorem 4.7 For n 2 Z there is a  k –equivariant isomorphism

hW K0.B/ �!K0. zT .nH // :

5 Applications

In this section we discuss some applications of the results of Section 2–Section 4.

Let LK X denote the localization of the spectrum X with respect to p–local periodic
K–theory [3]. For spectra like B or zT .nH / with trivial rational homology we simply
have

LK X 'X ^Ad :

The results in Section 2–Section 4 mean that �i.LK B/Š �i.LK
zT .nH //, but more

is true:

Corollary 5.1 The K–localizations of the spectra B and zT .nH / are equivalent:

LK B 'LK
zT .nH / :

Proof This is a simple application of the results of [4]. Since K0.X / D 0 for
X D B; zT .nH / both spectra are generalized Moore spectra in the sense of [4]. For
such spectra the Adams spectral sequence based on G�–theory

Exts;t
G�.G/

.G�.B/;G�. zT .nH ///)
�
LK B;LK

zT .nH /
�
�

is trivial and there is a canonical isomorphism

�
LK B;LK

zT .nH /
�
0
Š

2M
sD0

Exts;s
G�.G/

.G�.B/;G�. zT .nH ///

See Bousfield [4, Section 9]. Now Ext1;1
G�.G/

.G�.B/;G�. zT .nH /// D 0 because
of degree reasons and the group Ext2;2

G�.G/
.G�.B/;G�. zT .nH /// vanishes because

G�. zT .nH // is an injective abelian group [4, 7.8], hence�
LK B;LK

zT .nH /
�
0
Š HomG�.G/.G�.B/;G�.

zT .nH /// :
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With HomB. ; / denoting the morphisms in the category of  k –modules B introduced
in [4], we have

HomG�.G/.G�.B/;G�.
zT .nH //Š

2p�3M
iD0

HomB.Gi.B/;Gi. zT .nH ///

and HomB.A;B/ is the kernel of the map d1W HomZ.p/.A;B/ ! HomZ.p/.A;B/

where d1.f /D f ı 
k � k ıf: Thus any set of Z.p/–homomorphisms gi W Gi.B/!

Gi. zT .nH // , i D 0; :::; 2p� 3; which commute with the action of  k is induced by
a map xgW LK B!LK

zT .nH /:

For X 2 fB; zT .nH /g the universal coefficient formula in K–theory gives

K1.X /Š lim
�!

Hom.K0.X .n//IQ=Z/DW Homc.K
0.X / WQ=Z/ :

Now let g00W K0. zT .nH //!K0.B/ be a  k –equivariant isomorphism which exists
by Theorem 2.12. Since the p–adic topology on K0.X / for X D B , zT .nH / is the
same as the one given by the skeletal filtration, g00 will induce a continuous map
between K0. zT .nH // and K0.B/; ie we get

g0W K1.B/ �!K1. zT .nH //

by duality. Clearly g0 is a  k –equivariant isomorphism too. Using the splitting of
p–local K–theory, g0 will induce a set of  k –equivariant isomorphisms

gi W Gi.B/ �!Gi. zT .nH // :

The discussion above then shows that g is induced by a map

xgW LK B �!LK
zT .nH / ;

which is an equivalence since it induces an isomorphism in homotopy groups.

The computation of A2n�2.BZ=pa/ was only done for n � n0.a/ in Section 2–
Section 4. For aD 2 it is not hard to complete the computation. Instead of giving all
the details of the computation, we only explain the method and state the result. First of all
the constant n0.2/ is smaller than 3p2: Next the order of A2n�1.BZ=p2/ as a subgroup
of Ad2n�1.BZ=p2/D Z=p2C�p.n/˚Z=p1C�p.n/ has to be computed. The subgroup
Z=p2C�p.n/ of Ad2n�1.BZ=p2/ can always be chosen to be in A2n�1.BZ=p2/ [12].
So it is only necessary to compute the skeleton filtration of the elements in the second
summand Z=p1C�p.n/: The necessary information for doing this in [10, Appendix].
The result is that the skeleton filtration of an element of order p1Cb in this summand
is 2.rp� 1C bp.p� 1// where nD r C t.p� 1/ with 1� r � p� 1: This gives the
groups A2n�1.BZ=p2/ and is carried out in detail by Weth [17].
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The order of A2n�2.BZ=p2/ is given by �p
ˇ̌
A2n�1.BZ=p2/

ˇ̌
�2: For �p.n/� 1 the

groups A2n�1.BZ=p2/ are cyclic, hence we are done. Only the cases n D p2 and
2p2 remain. From [12] we have that the transfer map

trW A2n�3.P1CC/!A2n�2.BZ=p2
C/

is onto. The groups A2n�3.P1CC/ for n D spr ; s < p; are computed in [10]. It
turns out that for nD p2; 2p2 the transfer map is an isomorphism, since in these cases
jA2n�3.P1CC/j D jA2n�2.BZ=p2

C/j.

Proposition 5.2

n A2n�1.BZ=p2/ A2n�2.BZ=p2/

2p2 Z=p4CZ=p2 Z=p3CZ=p

p2 Z=p4CZ=p Z=p2CZ=p

p; 2p; : : : ; .p� 1/p Z=p3 Z=p

.pC 1/p; : : : ; .2p� 2/p Z=p3CZ=p Z=p2

n¤ ip� j 6� 0 .p/ for 2� i � 3p; 1� j < i Z=p2 0

For the other values of n > 0 we have A2n�1.BZ=p2/ D Ad2n�1.BZ=p2/ and the
group A2n�2.BZ=p2/ ŠA2nC1.BZ=p2/ is given by Theorem 1.1.

Our last application is a proof for the formula for the order of the J –group of lens
spaces.

Corollary 5.3 [15] The order of the J –group of the lens space Ln.pa/ is given by:

�pjJ.L
n.pa//j D

a�1X
sD0

� n

ps.p� 1/

�

Proof Consider the long exact sequence of the pair .B2m;B2m�2/ :

0 �! Ad0.B2m=B2m�2/ �! Ad0.B2m/ �! Ad0.B2m�2/

@
�! Ad1.B2m=B2m�2/ �! Ad1.B2m/ �! Ad1.B2m�2/ �! 0
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From the commutative diagram

Ad0.B2m�2/
@
�! Ad1.B2m=B2m�2/

k "i�

Ad0.B2m�2/
@1
�! Ad1.B=B2m�2/

and @1D 0; since Ad1.B=B2m�2/DAd1. zT ..n�1/H //ŠAd1.B/ by Corollary 2.13
is torsion free, we get @D 0: Hence

�p
ˇ̌
Ad1.B2m/

ˇ̌
D

mX
iD1

�p
ˇ̌
Ad1.B2i=B2i�2/

ˇ̌
:

Now B2i=B2i�2 D S2i�1 [pa e2i is a Moore space and an easy computation givesPa�1
sD0.n=p

s.p� 1// as value for this sum. From [5] we have Ad1.B2m/Š J.B2m/

and this is isomorphic to J.Lm.pa//.

Remark Since for nD s.p� 1/pa�1 the generators in Ad0. zT .nH // are explicitly
given Theorem 2.6 one may actually compute Ad0.B2n/ and Ad1.B2n/D J.Ln.pa//

using (11).
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