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Connective Im(J)-theory for cyclic groups

KARLHEINZ KNAPP

We study connective Im(J)—theory for the classifying space BZ/ p® of a finite cyclic
p—group and compute the Im(J)—cohomology groups completely. We also compute
the Im(J)—homology groups, with the exception of a finite range of dimensions.

55N35, 19L64; 19D99, 19L.20

1 Introduction

Im(J)—theory A is a generalized homology theory appearing both in homotopy theory
and algebraic K —theory. It is (sometimes) a fairly good first approximation to stable
homotopy capturing v; —periodic phenomena, and is closely related to the classical
J —homomorphism and the e—invariant. Let p be an odd prime, k& be an integer
which generates (Z/ p?)* and wk be the (stable) Adams operation in p—local complex
K —theory. Then the spectrum of nonconnected Im(J)—theory Ad may be defined by
the cofiber sequence:
k
SAad B kS kS sad—

See Knapp [13] and Crabb and Knapp [5]. Connective Im(J)—theory A is then defined
as the (—1)—connected cover of Ad. More importantly, A appears as the p-localization
of the K —theory of a finite field. If k is chosen as a prime power, then

A~ (K [Fk)( »)
where KTy is the algebraic K—theory spectrum of the finite field Fy .

Since Ad and A are not complex orientable, the computation of Im(J)—groups even
of rather simple spaces is not obvious. But due to the close relationship of K*(BG)
to the representation ring of G, the computation of the nonconnected Im(J)—groups
of the classifying space of a finite group BG turned out to be surprisingly simple [12].
For example, for the cyclic group G = Z/ p® we have

(Zpe)? i=-1,-2,
Adi(BZ/p®*) = { @i=, Z/pI T i =2n—1,neZ—{0},
0 otherwise,
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798 Karlheinz Knapp

) i=0,1,
and Ad'(BZ/p*) = Di=,Z/p'tr™ i=2n+1, nez—{0},
0 otherwise.

Here v, (n) denotes the power of p in n and Zz/v\ are the p—adic integers.

The noticeable duality results form a universal coefficient formula which is satisfied by
nonconnected Im(J)—theory (but not by A) [13].

In this paper we compute the connective Im(J)—groups of the classifying spaces of
cyclic groups with the exception of a finite dimension range in homology. More pre-
cisely, we determine A*(BZ/p?) and A,,(BZ/p?) for n>ngy(a) and p an odd prime.
Here ng(a) is a constant which is roughly (@ + 1) p?. The groups A,,—1(BZ/ p?) for
n > ng(a) are given by Ady,—1(BZ/p?) [12]. Determining A,,—1(BZ/p?) from
Asp—1(PsoC) for n < ng(a) is carried out in [10], but the result is difficult to describe
explicitly. The main results of this paper are as follows:

Theorem 1.1

Ad’(BZ/p*) j<l,
-2
a69 Z/pa—i+vp(n)EBZ/pl+vp(n)—a ] =2n+1>1,
; =0 vp(n)>a—1=>0,
AV (BZ/p?) = a . P

b z/ptrm j=2n+1>1,

it vp(n) <a—1,
0 otherwise.

Theorem 1.2 A5, »(BZ/p?%) = A*"T1(BZ/p?) for n > ny(a).

The case @ = 1 was known before:

Azn_1(BZ/p) = Ada,_1(BZ/p) = 7/ p'Tor®™
Aon—2(BZ/p) =7/p"™ (n > 0)

A direct computation of A,,_,(BZ/p?) via the K—theory of lens spaces seems to
be inaccessible. Our method is therefore to find at first a lift of the problem to a
torsion free situation. We achieve this by showing that A,,_,(BZ/p?) is isomorphic
to A?"T1(BZ/p?) for n > ny(a). This isomorphism is a consequence of Anderson
duality for connective Im(J)—theory [14], but we give a direct approach via the universal
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Connective Im(J)—theory for cyclic groups 799

coefficient formula for Ad-theory. Now by definition we have with B = BZ/p?
A2n+1(B) — Im Ad2n+1 (B, an) SN Ad2n+1(B’ an—l)
= Im A" (T (nH)) — A" (T (nH))

where H is the Hopfline bundle on B, T'(n H) is the Thom space of n H and T (nH)=
T(nH)/S?" is the reduced Thom space. This is a lift to characteristic zero, since
the group Ad2”+1(T(nH)) is the cokernel of Y% — 1 on Kzn(f(nH)) ~ K?"(B).
Now the action of ¥* on K 2”(T"(nH )) is much more complicated than the one on
K?"(B), but nevertheless we have the following:

Theorem 1.3 There exists a ¥* —equivariant isomorphism K°(T (nH)) =~ K°(B).

We prove this for n with v,(n) > a—1 by an explicit construction, whereas for n with
vp(n) <a—1 we only have an existence proof. An immediate consequence is that the
localizations of B and T(nH ) with respect to K —theory are equivalent. This is not
true for 7T(nH) itself or reduced Thom spectra of other bundles (eg H? on BZ/p?).
The groups A2"+1(B) are related to Ad>"*! (T (nH)) via the group extension

0—7/p® - A" TN (T (nH)) - A*"T1(B) > 0.

For n with v,(n) > a—1 the explicit wk—isomorphism KO(T(nH)) ~ K%(B) allows
us to solve this extension problem, whereas for the other values of n we need to know
which multiples of H are orientable with respect to Ad*(—; Fp).

The paper is organized as follows. In Section 2 we investigate the wk—module
KO(T(nH)) and construct for n with v,(n) > a — 1 a Thom class of nH with
good invariance properties under the action of . The existence proof for a ¥k —
isomorphism KO(T(nH)) =~ K9(B) for n # 0 mod p®~! is postponed to Section 4.
We first show that Ko(f(nH); Fp) is a w* —permutation representation, which is
Yk —isomorphic to K°(B; [p), and then lift this to integral K—theory. In Section 3
we relate A,,_»(B) to A>"T1(B) and solve the extension problem which leads to
the computation of A2"T1(B). A few applications are contained in Section 5. We
give the proof for the equivalence of the K -localizations of B and T(nH), complete
the calculation of A;(BZ/p?) in the range not covered by Theorem 1.2 and derive
the formula of [15] for the group order of J(L"(p?)), the J—group of the lens space
Ln(pa) — BZn—H .

We shall use the following notation throughout. We abbreviate BZ/p® by B and its
m—skeleton by B™. H is the Hopf line bundle on B, T'(nH) is the Thom spectrum
of nH,neZ,and T(nH) = T(nH)/S?" is the associated reduced Thom spectrum.
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800 Karlheinz Knapp

We assume that p is an odd prime and k € Z is chosen to reduce to a generator of
Z/p**.

All (co)homology theories are taken as reduced.

2 Nonconnective Im(J)-theory of T (nH)

In this section we investigate the nonconnective Im(J)—groups Ad*(T (nH)) of the
reduced Thom spectra T (nH) of multiples of the Hopf line bundle H# on B = BZ/ p“.
As explained in Section 1, these results will be used to compute A*(B) later on. In
order to determine Ad*(T(nH )) we must study K *(T(nH )) as a module over the
Adams operation wk. As preparation for this, we collect in the first part of this section
some standard material and notation which we shall use throughout the paper.

We begin by recalling some standard cofiber sequences.

It is well known that for n > 0 the Thom space 7' (nH) is homeomorphic to the stunted
lens space B/B?"~!, hence we have a cofiber sequence

(1) B B r(nH) — £ B!

which may be identified with the middle row in the commutative diagram of standard
cofiber sequences:

S2n—1 S2n Zs2n—1
¥ ¥ v
B**~! — B — B/B* ! — xmp"!
¥ [ ¥ I

B — B — B/B>® — XB?"

Simple degree considerations show that the map S2” — B/B?*"~! = T(nH) in this
diagram represents the generator in 75, (7 (nH)), hence we may identify B/B?" with
T(nH )= T(mH)/S?". The inclusion B?" < B?"*! then induces the commutative
diagram

B — B l% TwmH) — B

¥ (. \ ¥

) B+l s B 2 T(n+1)H) — T B!
18 \J

S2n+1 S2n+2 N 2S2n+1
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giving the cofiber sequence

F(nH) L T((n+ 1) H) =5 §2+2,

Since the degree of § in dimension 2n + 2 is p? we finally obtain the commutative
diagram of cofiber sequences

- - 5 i
s TmH) L T+ 1)H) 5 w22y, 2

[ ) 1
3) s FH) L T+ DH) 2> s M
1i 1 pe
g2n+2 — gant2

with My = S®Upa e! the Moore spectrum for Z/ p?.

The action of ¥* on K°(T(nH)) is the one on K°(B.) but twisted by the Bott
characteristic class ,ok which describes the action of wk on the Thom class. We
therefore recall some simple properties of ,ok and identify the kernel of the map
j* K9T(nH))— K°(B). If n is divisible by p?~! this will be sufficient to identify
the Y% —module K°(T (nH)).

Let reg := f :uo_l H' € K°(B_) be the element defined by the regular representation
of Z/ p®. Then the ideal generated by reg is the kernel of the map K°(By) — K°(B)
defined by multiplication with x = H — 1. Since multiplication by x is injective on
KO%(B), (reg) is also the kernel of multiplication by x” or by any power series in x
beginning with x”. Moreover reg -z = 0 for any z € K°(B), since any such z is
divisible by x.

Lemma 2.1 For n > 0 the kernel of j*: K%(T(nH)) — K°(B) is generated by
reg- U, where U is any Thom class for nH .

Proof The commutative diagram

KT (nH)) AR K°(B)

Pr= |

. H
KBy U gocp)

with ¢ the Thom isomorphism defined by U and e(nH) the Euler class belonging to
U shows that ker j* is generated by reg- U, since e(nH) = x" +---. O
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Let now xjs be any complex orientation of p—local complex K—theory. This defines
a multiplicative Thom class Ups(E) for complex vector bundles E [2]. Associated to
this is an exponential Bott class ,ojlfl (E) € K°(X) defined by the equation

v UM(E) = o (E) - Up (E).
Lemma 2.2 wl,olrw(E)-pgw(E) = p]’\,'ll(E).
Proof This follows directly from the definition writing ¥’/ = v/ oy’ |
Corollary 2.3 pX (E +y*E 4+ y¥ 7 E) = pk1(E).

Let Ug (E) denote the standard K —theory Thom class with Euler class L — 1 for
E = L acomplex line bundle. The exponential Bott class associated to this choice
of complex orientation will simply be denoted by pk . It satisfies in addition ,ol (L) =
14+ L+L%+---+ L' for a line bundle L.

The Adams summand G of p-local K-theory will be used in several places, we
therefore recall the splitting of p—local K—theory (see Adams [1] and Jankowski [8]).
Let w = (k,kp,kpz, ...) €Z) =1limZ/p", then w is a primitive (p — 1)—root of
unity in Zl/,\ satisfying w = k? ~'mod p?. The idempotents
1
dD,-:z—l w "ty for0<i<p-2
p f—

r=1
with ¥© a p-adic Adams operation are defined p—locally and split M = K°(X) into
p — 1 pieces:
M=0,(M)dP(M)S--®Pp2(M).

Then ®o(M)=G°(X) and from ®; (u-x) =u-®;_;(x) we get u~ ®; (M) =G?* (X).
Moreover

p—2

K~\/z¥G

i=0

with G4(S?) = Zpylv1s vl_l], vy =uPl,

Since the splitting maps commute with wk , wk restricts to a self map of G and
Im(J)—theory may equally well be defined by replacing K in the definition of Ad by
G [13]:

D k_1 A
—>Ad—>Gw—> G— YAd—
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The Adams summand G is a multiplicative complex orientable cohomology theory.
We now choose a fixed complex orientation xg for G'. This defines a multiplicative
Thom class Ug (§) for complex vector bundles £ on X and an exponential Bott class
P(£) € GO(X4) as above.

For convenience we recall now the computation of Ad*(B4) [12; 11]. The key
observation is that K°(B,) is a permutation representation of wk which results in
an easy computation of Ad*(By). The different wk_—orbits in K°(B.) are generated
by H?' withi € {0,1,...,a—1}. Let L = H?' and s; := (p — 1)p? ! then
Wk [ = L and the ¥* invariant subspace W; := (L, vk L, w**L,... y* "L} of
KO9(B4) has rank s; . It is then elementary to determine ker(y% —1) and coker(¥k —1)
on W;. In dimension 0 we have coker (Y% —1) = Z’\ generated by A(L) = A(wk/ L)
and keryk — 1 = Z’\ generated by ZS’_lwkjL In dimension 2n # 0 the map
k" w(’)‘ — 1 (which is the stable Adams operation ¥ —1 on K2"(B) by definition,
with Iﬁ(’)‘ the classical Adams operation on K°(B)) has determinant ki —1 on W;,
and since coker(wk — 1), must again be cyclic we get

ker(y* — )y, =0 and coker (V¥ — 1)y, = Zp /(K" —1)- A(L).

Note that v, (k™" —1) =a —i 4 v,(n). Hence we conclude the following:

Proposition 2.4
(ZI’,\)“ i=0,1,
Ad'(B) =1 @Pf_,z/p/t»™ i=2n+1, neZ—-{0},
0 otherwise.

Using Z/ p? with b =a + vp(n) as coefficients, we see that p’ - ZS’_I k= L* s
in ker(k~ ”wo —1) on W; ® Z/ p®. This describes the elements in Ad2”+1(B)
Ad*"(B;Z/ p®) as elements in kerwk 1 c K2"(B:Z/pb).

After these preparations we now turn to Ad*(T(n H)).

Now the simplest method to compute Ad* (7 (nH)) would be to use a Thom isomor-
phism. The orientability conditions for Im(J)—theory are well known [5, Section 5]: A
complex vector bundle £” on X has a Thom class Uy (£) € Ad*" (T (nH)), or equiva-
lently a y* —invariant Thom class in K —theory, if and only if A([£]) =0 in Ad!(X).
Here [£] € K°(X) is the class defined by £ and A: K°(X) — Ad!(X) the map ap-
pearing in the definition of Im(J)—theory. As we have seen above A(H —1) € Ad'(B)
is of infinite order, hence no multiple of H can be Ad*—orientable.
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Our main goal in this section will be to derive a ¥ —equivariant isomorphism
@ g: KU(T (i) — K°(B)

allowing a computation of Ad*(?(nH )) along the lines as for Ad’(B) above. In
particular it follows that K°(7 (nH)) is a YK —permutation representation.

Although there is no Thom isomorphism between Ad*(T (nH)) and Ad*(B4) the
map g is related to a relative Thom isomorphism as follows.

For n of the form n = m(p — 1) p*~! we shall explicitly construct a Thom class
U'(nH) € K°(T (nH)) which is nearly invariant under wk, giving g as in (4) directly.
The rest of the argument is much more technical. For 7 still divisible by p¢~! but not
necessarily by p — 1, this is extended by using the Adams summand G . For the other
values of n we only have an existence proof which is postponed to Section 4.

Case 1 We assume n = m - (p — 1)p®~'. To construct this nearly v —invariant
Thom class, observe first that for i % 0 mod p the map given by x —> x®? on fibers
defines a p—local fiber homotopy equivalence between H and H'. The join of such
maps gives a p-local fiber homotopy equivalence f between m -& and n- H where
E=H+H+.. + H*™" and si=(p—1)p* 17 Define

(5) U'nH) :=d™ ' f*Ux(mg) € KO(T(nH))

where Uk (FE) is the standard K—theory Thom class and d is the degree of f on
fibers. Since two Thom classes for the same bundle differ by a unit ¢ we may write
U'(mH) =e-Ug(nH) with e € K°(B). It is not hard to see

so—1

e= 1_[ ,oki(mH—m) .
i=0

Proposition 2.5 For the Thom class U’ defined in (5) we have
YkU = U + ¢ -reg-U’
in KO(T(nH)), ie U’ is invariant mod ker j*.
Proof By definition, naturality and Corollary 2.3,
ViU = ) U= o mH) - U
But k(P=Dr"7 | = cip®and p"(H) =14 H +---+ H"~! immediately give

PFUH)=14croreg and P (mH) = (14¢1reg)” = 1+coreg. O
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If we restrict now the Thom isomorphism with U’ to classes z of virtual dimension
zero, ie to K%(B) c K°(B4), we have

Yk U =gz y U = ykz. (U 4+ ¢-reg-U') = (ykz)- U’
since YKz -reg = 0. Hence we have the following theorem.

a—1

Theorem 2.6 For n=m-(p—1)p®~!, multiplication by U’ defines a ¥¥ —equivariant

relative Thom isomorphism

¢: K°(B) = KO(T (nH)) .

Corollary 2.7 For r,t € Z, multiplication by U’ gives a wk —equivariant Thom
isomorphism
KT ((t +rso)H)) = KYT(tH)) .

By the five lemma there is an induced isomorphism in Im(J)-theory:

Corollary 2.8 Forn=m-(p—1)p*!,
Ad (T (nH)) = Ad'(B),

andif | = j mod s, s .
Ad(T(IH)) = Ad (T (jH)).

This shows that the groups Ad’ (T (jH)) are periodic in j, so, in principle, we are left
with finitely many cases.

Note however that there is no dimension shift as it would be in case of a standard Thom
isomorphism. The reason is that we view U’ as an element in K°(7'(nH)) and not
in K2"(T(nH)), and so the action of ¥ is different. We shall call this the modified
Thom isomorphism.

Case 2 We next turn to n = m- p*~!, that is without the factor p — 1. In this case we
shall choose the Thom class U’ in G*(T'(nH)). This is less explicit than for n = 0
mod (p — 1) p?~1, but it will be sufficient to obtain an explicit description for the
elements in Ad* (T (nH)). This will be important later on in Section 3 for determining
the group extension between Ad* (f‘(n H)) and Ad*(T'(nH)). To determine the action
of wk on U’ we shall use Lemma 2.1. We therefore first collect some information on
G%/(B) and the action of ¥* on these groups.

Setting M = K°(B,), the minimal polynomial Py of vk is

a—1

py(t) = L0 D) 2 |
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a—1

(since k(P~DP"" _1 =0 mod p? and HP" = 1). This splits as

—1 a—1 a—1

pl//(t)=(tpa _1)([17 _CU)"'(lp _a)p—Z)

with @ as above. To describe G2/ (B) we can proceed % —orbit wise. Let L := H p’ o
0<b<a—1,and W = (L,ykL,...) the orbit generated by L. Then y®L = Lk
with ¢ =a—1—5b. Hence

1 . C.p
Li=&;(L) = — Y oL

Then

(a) wkch,- =w'L;, and

(b) E;:= {L,-, kai, e wkp('_lL,-} gives a cyclic basis for ®; ().

The first claim follows directly from the definition of ®;. For (b) one uses
Lo+oLi+-+oP L, 5 =L

to see that Eq U Ey U...U E,_, is a generating set for W. Since it is a mllmmal
generating set it must be a basis. On ®;(M) the Adams operation 1/fk acts
as multiplication by @’. Thus the Adams splitting of K°(B) is nothing but the
splitting into generalized eigenspaces or the primary decomposition for v* . From
G?(B) = u~'®;(M) we see that

a—1

(6) wkp acts on G2/(B) as multiplication by (w/k)" .

For later use we digress for a moment and work out the Jordan decomposition of vk
on K%(B)®F,. Since py = (t — )P (1 —w)?*" -+ (t —0?"2)?*"" mod p, the
minimal polynomial py, of wk on M ® [, splits into linear factors and wk has a
Jordan canonical form. Note that w = k mod p. Recall that if v, wkv, ey wkm_lv
with %" v = Av is a cyclic basis, then z™ = v, z) = (yk —)"=J(v), (V) =
(vk —2)™=1(v) will be a Jordan basis. Hence the basis sets E; described above give
that on ®; (W) the matrix of ¥¥ is just the Jordan block J i (P°).

Corollary 2.9 G?(B;F,) = G°(B;F,) as v* —modules.

Proof With G%/(B) = u='®;(M) and (w/k)" =1 mod p we see that the Jordan
matrix of ¥ on G2/(B;F,) has the Jordan blocks

Ji(p°). Ji(p)..... Ji(p*h)
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independently of i. Here J; () denotes an m x m—Jordan block associated to the
eigenvalue A. a

Returning to KO(T (nH)), let now n = mp?~! > 0, set

k(p”_lfl)

E=H+y"H+--+vy H

and let U’ := f*Ug(mé&) with f the obvious p—local fiber homotopy equivalence
between mé and nH . Then

plmg) = o (mH)

as in Corollary 2.3. Hence

a—1
YU = pEm&U' = pg (mH)U’

a—1 a—1
and wkp UG(mH):,ol&p (mH)-Ug(mH)

- (k%)m Usmt) = (7)" Ugmt)

mod ker j*: G?"(T(nH)) — G*"(B) by (6). Therefore
7 ykU = (%)" U' mod ker j*  in G¥(T(nH)) C K (T(nH)).

As above we have that reg- U’ generates ker j* and z-reg = 0 for z of dimension 0.
Multiplication by k" puts the Thom class U’ into K°(T'(nH)) and shows

Proposition 2.10 For n = mp®~! the y* —module K°(T (nH)) is a permutation
representation of 1//k with permutation basis

{(Hpckl . 1)a)nl 'U/ ‘ O S c fél— 1’ 0 El S Se = (p_ l)p(l—c—l}
and is thus y* —equivariantly isomorphic to K°(B).
Since " =1 mod p? we can get a wk—equivariant relative Thom isomorphism by
introducing Z/ p? coefficients (if n % 0 mod (p—1) ). Note that Proposition 2.10 gives

explicit formulas for the elements in Ad* (T (nH)). For example, Ad* (T (nH);7/ pb )
for b = a 4 vp(n) is generated by the elements

Se—1

®) e=p 3 (D) @y vy, 0sesa-t
i=0
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Case 3 We now return to general values for n > 0 and discuss first what can be
said about Ad*(T (nH)) without knowing that K°(T (nH)) is a wk—permutation
representation.

The short exact sequence
) 0—> KT (nH)) - K°(B) > K°(B*") > 0

shows that this is true rationally, ie K O(T(nH )) ® Q is a permutation representation
of ¥ isomorphic to K°(B) ® Q, simply since K°(B2") is finite. As a consequence
we know the rank of Ad?’ (T(nH )) = ker wk — 1. This must be the same as the rank
of Ad*(B). Hence

0 i#0,

(10) AP (T (nH)) = { @27 i =0
" .

The number of elements in Ad? ! (T(nH )), i # 0, can be computed from (9). The
cofiber sequence B?" — B — T (nH) induces the exact sequence of finite groups
0 — Ad% (B*") > A TH(T (nH)) — Ad*T1(B) > Ad*T1(B*") >0

for i # 0. The groups Ad>'*! (T(nH)) and Ad*T1(B) will have the same number
of elements if this is true for Ad* (B?") and Ad*'*!(B2"). But this follows from the
exact sequence

. . k_ . .
0 — AdZZ(an) — KZZ(BZH) 1/,_>1 Kzl(an) —>Ad2l+l(an) — O
and the fact that K°(B2") is finite. Hence for all 7,
vp| AT NT (nH))| = vy | AP H(B)) .

Also the exponent of Ad?it! (T (nH)) can be determined quite easily. From

so—1

(X v¥)owr—n=y -1
j=0

we have y** = k%0 on K*(T(nH)) C K*(T(nH)) ® Q) = K°(B) ® Q) and
V(K70 —1) = a 4+ vp(i) it follows that for any z € K?/(T (nH)) we must have
A(patvr® . z) = 0. Hence

pa-i-vp(i) 'Ad2i+1 (T(}’ZH)) =0.

It is also possible to show that the number of cyclic summands in Ad?*! (T (nH))
is a. We indicate only the main steps. The first step is to show that Ad' (T (nH)) is
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torsion free (and hence isomorphic to (Zl’,\)"). This can be done by showing that the
boundary map in the exact sequence

(1) 0— A (F(nH)) — Ad*(B) — Ad*(B2") —> Ad' (F(nH)) — Ad' (B) —

is always zero. This is proved by showing that the restriction maps Ad®(B?") —
Ad®(B?"~2) are all onto and using that 3 = 0 for n = m - p*~! which follows from
Corollary 2.8. Then one knows Adi(f(nH); Fp)=(Fp)¢ foralln and all i =0, 1 mod
2(p—1) by Adams periodicity. Using the Thom isomorphism for p? H in Ad*(—;F,)
(see Section 2, Section 3 and the proof of Corollary 4.5), one gets the same conclusion
for the other values of 7.

The Thom isomorphism transforms (9) into a relative Gysin sequence of nH
0— K°%(B) = K°(B) — K°(B*") -0

with x" = (H —1)" the Euler class of nH. Hence to find a wk —permutation basis for
KO(T (nH)) is the same as to find one for x” - K%(B) c K°(B). This is possible for
small values of 7, but becomes seemingly intractable for larger .

Example 2.11 (n=1) For simplicity we take a = 2, the general case is similar. Let
A=(H-1)2and B=(H? —1)= Y22 J(HF"™" — 1), then

(Ayka, kT A B YR B, y* T B)

is a permutation basis of x - K°(B).

Instead of trying to construct an explicit permutation basis of K°(7 (nH)) for the
values of 7 not divisible by p?~! we shall give in Section 4 only an existence proof.
Using this, we have:

Theorem 2.12 There exists a wk —equivariant isomorphism

g: KO(T(nH)) —> K°%B).

Corollary 2.13 Forall j and n,
Ad/ (T (nH)) = Ad’ (B) .
In particular, AP (T (nH)) =~ ®?=ll/pi+“"(”) (n #0).
Remark The paper [7] contains a very short computation of the Im(J)—groups

Ad¥t1(B/ By = Ad*"™ (T (nH)), but the proof given there is, at least for a > 2,
in contradiction with Corollary 3.9.
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3 The connective Im(J)—groups of BZ/p*

In this section we compute the connective Im(J)—groups of B = BZ/p? using the
results of Section 2 and Section 4.

Let k denote the p—local connective complex K —theory spectrum, then for p # 2
connective Im(J)—theory 4 may also be defined by the cofiber sequence

D A
(12) A2k L Asa

where Q satisfies - Q = ¥¥ — 1. This gives A4(B) as kernel and cokernel of Q:

(13) 0— Az,—1(B) 2, kan—1(B) 2 kan—3(B) 2, Azp—2(B)—0

The groups ks,—1(B) = K1 (B*") = K°(B?"~1) are known, even a set of (relation
free) generators [15]. Nevertheless the action of O on these generators seems to be
too involved for a direct computation (except for p =2 and a = 2 [16]).

Define the spectrum E as the fiber of (wk —1): k — k, then the resulting commutative
diagram

0 0
\ i\

0 — Azp—1(B) — kan—1(B) LN kon—3(B) — Azp—2(B) — 0
= | ’ du !

0 — Ezp—1(B) — kop—1(B) Al kop—1(B) — Ezp2(B) — 0
leho \:

Hyy—1(B) = Hyu—1(B)

shows |Ey,—1(B)| = | E2n—2(B)| since ky,—1(B) is finite. Because ¢/ is onto we
therefore get:

Proposition 3.1 v, |42,-2(B)| =vp |A2p—1(B)|—a.

The facts that one may in (12) replace k by /, the Adams summand of connective
p-local K—theory, and that /5,1 (BZ/ p) is cyclic, give the computation for a = 1:
Azn—2(BZ/p) =2/ p"®™

(from A2u—1(BZ/p) =Z/p'+"r™).

Instead of a direct computation via (13) we reduce the determination of A4(B) to a
computation of nonconnected Im(J)—groups. The nonconnected Im(J)—groups of
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BG, G afinite group, are known [12; 13]. The case of a cyclic group is particularly
simple. Since K (B) is a X —permutation representation, the computation of Ad*(B)
in Section 2 may be copied to give

(Zpoo)? i=—1,-2,
Adi(B)=1{ @i_,Z/p/ ™ i=2n—1,n#0,
0 otherwise.

Alternatively one may use duality; see (15).
In [12] it is shown that for every finite group G the canonical map
d: Azp—1(BG) — Adzp—1(BG)

is onto for n > ny(G), with the constant 7¢(G) depending only on G. Since for a
cyclic group G = Z/ p? the map d is always injective, we have

Azn—1(BZ/ p®) = Adyp—1(BZ/ p*) for n > no(2/ p?).

A bound for ng(a) :=nyg(BZ/p?), which is easy to write down is (¢ + 1) - p?, this
can be proved using the results of [10, Appendix]. A way to determine A;,—;(B) in
the range n < ng(a) using results on A,,—1(PooC) is given in [10]. For the relation
to PooC see also [12].

In the range n > ng(a) we shall use the following approach to A4,,_,(B), which
describes this group as the cokernel of wk — 1 on a group of infinite order:

By definition of A, as the (—1)—connected cover of Ad, we have
Azp—r(B) =Im(ix: Adpy—2(B*" %) = Adzy—p(B*" 1)) .

The Ad,—theory exact sequence of the pair (B?"~!, B>"~2) then shows

(14) Azn—2(B) = tor Adyy—(B*"™)

(and Adp,—»(B*"" 1) =Z(,) ® A24—2(B)).

Simply for convenience reasons we now pass to Ad—cohomology at this point. The
universal coefficient formula of Im(J)—theory [13]

0 — Ext(Ada,—2 (B> 1), Z(,))

(15)

— Ad*"(B*"™") - Hom(Adzy—1 (B*" ™). Z()) — 0
then gives
(16) Azp—2(B) = tor Ad*"(B*"1) .
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Using the exact sequence induced by the cofiber sequence (1)
0 — Ad*"(B*" 1) - Ad*" TN (T (nH))

{17 L*)Adzn+1(3)i_*)Ad2n+1(an—1) 0

and the easily verified fact that i *: Ad*"T!(B) — Ad*"*T!1(B?"~1) is injective if

and only if d: A,—1(B) — Ad,,—1(B) is onto, we arrive at the following:

Proposition 3.2 A,,_,(B) = tor Ad*" T (T'(nH)) for n > ny(a).

The advantage of this description is that Ad?"+1(T'(n H)) is the cokernel of %K —1 on
K*"(T(nH)) = K°(B.), ie we have a lift of our problem to a torsion free situation.
Remark A variant of the above is obtained by S-duality D. We have
Azp—2(B) = Azy_a(B* ") = App_o(BF"!
D ~ ~
~ Al ((BZH—I)V) o~ tOI'Adl ((BZH—I)V)

with ¥ = —n(H — 1) the stable normal bundle of the manifold B>"~!. Again for
n > ng(a) we get

Azp—z(B) = tor Ad" (B*"™")) =~ tor Ad' ~2"(T (—n H)).

As already mentioned the reduced Thom spectra 7' (nH) = T'(nH)/S*" have simpler
¥k —modules than T'(nH)), so we divide the computation of tor Ad>" T (T'(nH)) into
two parts. We first determine Ad* (T(n H)) and then solve the extension which leads
to tor Ad>"T1(T'(nH)). From the exact sequence

AP (T (nH)) - Ad2"(S27) — A2 (T (n H))

S AT (nH)) — A2 (S21)
and degree(i*) = p? (to be proved below) we arrive at
(18) 0— 7/ p* — A" (T (nH)) — tor Ad*" (T (nH)) — 0 .

The results of Section 2 and Section 4 give Ad>"T! (f(nH )), so we are left with
determining the group extension.

Before doing this, we pause to discuss the Im(J)—cohomology groups of B. By
definition we have

41(B) = Im(Ad*(B. B™") — Ad'(B. B'2))
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hence for n > 0,
APH(B) = Im(AP" TN (T (nH)) — A" (T (nH))) = tor Ad*" T (T (nH))
and A?"(B) = Im(Ad*" (T (nH)) — A" (T (n—1)H))) =0

by (10), whereas for n <1,

A" (B) = Ad"(B)
by connectivity reasons. So the computation of tor Ad>" ™1 (T (nH)) will also give
A2n+1 ( B) .

Corollary 3.3 For n > ng(a), A*"*1(B) = A5,_>(B).

Note also that for n > ng(a) the canonical map
d: A2n+1 (B) N Ad2n+1 (B)

is zero, since it is induced by the homomorphism j* of (17), and this vanishes. This
also shows that the complex e—invariant of Adams (defined with periodic K —theory) is
Zero on né"“ (B) (see Crabb and Knapp [5] for the relation between the e—invariant
and Im(J)-theory). But, of course, né”“ (B) =0 for n > 0 by the Segal conjecture.
Hence this is merely an example for the different behavior of Im(J)—theory and stable
cohomotopy on spaces like B. With respect to stable homotopy Im(J)—homology is

more interesting.

We first compute the degree of i *: Ad*"(T (nH)) — Ad*"(S?").
Proposition 3.4 i*: Ad>" (T (nH)) — Ad*"(S?") is a multiplication by p®.

Proof Let z be a generator of Ad*"(T (nH)) = Z(py- Then Ad?"(B) = 0 implies
that z is in the image of §: Ad*"~!(B?"~1) — Ad*"(T'(nH)), where we are using (1).
Hence D(z) is in ker j*: K*"(T(nH)) — K*"(B). From Lemma 2.1 we then have
D(z) = y; -reg-Ug(nH). On the other hand wk(reg-UK(nH)) =reg-Ug(nH),
hence reg- Ug (nH) = y, - D(z) for suitable constants y; and y,. Thus reg- Ug (nH)
generates Im(D: Ad*" (T (nH)) — K*"(T'(nH))) and i*(reg- Ux (nH)) = p* im-
plies the statement. |

We now solve the group extension (18) for n with v,(n) >a—1. Let U’ e K> (T (nH))
be the Thom class constructed in equation (7) of Section 2 which satisfies 1//" U =
(w/k)"U" mod ker j* and set Q = (w/k)", b =a+v,(n). Then by (8) the elements
se—1 ]
Xe=p° Y QUHTF —1)-U), cef{0,1,....a—1}
i=0
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generate cyclic subgroups whose direct sum is Ad**(T'(nH); Z/ p?). We change this
basis by changing the generator x,_; into

Xa—1 = Xgq—1 +p'xa—2+"'+pa_l + X0 -

Note that
pi-1

(19) pv,,(n)—a-i-l 'fa—l — pv,,(n) . Z (H_] _ 1) . U/ — pl)p(l’l)’r?g’. U/
j=1

with Teg = Zfi;l(Hj —1) since 2 =1 mod p%.

Consider now the commutative diagram of exact sequences built up by Bockstein and
cofiber sequences (7, = T (nH), T, = T(nH))

AT Z/p%) L AP(Tu; 7/ pb) — Ad?(S?":Z/pb)

0 Tred . 1
ART) > ARYT,) S ARMSY) > AdTA(T)
0 T 1 p? 1
S Ad(sy S AdT(T)
1 18

AP"(Tu37/pb)
Well known relations between the two connecting homomorphisms § and 8 give

6(1) = B(w)

with w = (j*) ! oredo (i*)"1(p? - 1) € AA* (T (nH);Z/p®) (for a proof see
Crabb and Knapp [5, Section 7]). But we have (i*)~!1(p?-1) = p®~4reg-U’ in
Ad*" (T (nH)) C K**(T(nH)). Hence

W= (j*)—lpb—a reg - U = pb—ai:gg' U’
with Teg =reg — p? in Ad*"(T (nH): Z/ p®). From (19) we see that w is a multiple of
X,4_1, the generator of the cyclic summand of order p!*» () This shows that J* maps

the cyclic summands generated by x;, 0 <i <a—2, injectively into Ad'*2"(T'(nH))
whereas j*(X,_1) has only order p'T¥»~=¢ Hence we have:

Theorem 3.5 For n > ng(a) with vy(n) >a—1>1 we have

a—2

Azp2(B) = @ Z)p*~ it gz pttvem—a
i=0
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Theorem 3.6 Forn > 0 with v,(n) >a—1>1 we have
a—2
A2n+1 (B) ~ @Z/pa—i+vp(n) ® Z/p1+vp(n)—a )
i=0

Note that the elements generating A;,—»(B) in Theorem 3.5 are explicitly given.
This will be different for the values of n with v,(n) < a — 1, to which we turn
now. Despite the fact that Corollary 2.13 gives Ad!*2"(T (nH)) only abstractly, it
is possible to determine the group extension (18). For this we need to know which
complex vector bundles on B are orientable with respect to Ad*(—; F,). Note also,
that by simple connectivity reasons, any Ad*(—; F,)—Thom class also gives a Thom
class for connective Im(J)—theory A*(—;F,) with mod p coefficients.

The fundamental relation for Ad* (—; F)—-orientability is given by the following propo-

sition.

Proposition 3.7 The virtual bundle pé wpé on X is Ad*(;F,)-orientable for any
complex vector bundle &, in particular, P 5 is Ad*( ; F)—orientable if and only if péj
is Ad*(;F,)—orientable.

Proof Let U = Uy (pE —yPE), £ = £ —dimé, then XU = pk (p& — Y PE)U with
P (pE—yPE) = p* (pE)/p* (W PE) = p* )P /7 E) =1

since Y# y = yP mod p. Therefore U = D(U’) for some U’ e Ad*(T (pE—y PE); Fp)
and U’ is an Ad*(—;F,)—Thom class for p& —yP§&. O

Therefore p? H has an Ad*(—;F,)-Thom class on B, since H P“ = 1. We also need
the reverse statement, which is harder to obtain. From [10] we shall use:

Theorem 3.8 The vector bundle HP" is Ad*(—;[F,)—orientable on the complex
projective space P,C (of real dimension 2n ) if an only if n < p"+t1 —1.

Corollary 3.9 The line bundles H, H?, ..., H P! are not Ad* (—; Fp)—orientable
on B= BZ/p®.

Proof We have K°(B;Fp) = F,(x,x2,... ,xP1y with x = H — 1 since x?“ =0
mod p. Hence with m = p% —1,

K°(B;Fp) = KO (B F,) &= KO(PuC;Fp) .
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But as in the integral case one can reformulate the orientability condition as follows:
The vector bundle & is Ad*(—; Fp)-orientable if and only if there exists a unit e €
K°(X4;Fp) with

~ wke .
B =" inK'(Xy:Fp).

Given such e, then ¢! - Ug (5) will be wk—invariant and vice versa. Hence the
Ad* (—; Fp)—orientability condition for H """ on B, B*m*! or P,,C are all equiva-
lent. |

Corollary 3.10 nH on B is Ad*(—; F,)—orientable if an only if v,(n) > a.

Proof Write n = nq p¢ with ny # 0 mod p, assume ¢ < a and choose s,b with
s-ny+p?¢b=1,then s-ny HP" +b-p® ¢ HP* = HP" If nH is orientable, then
HP is orientable, hence ¢ > a, contradicting ¢ < a. O

Assume now v, (n) < a and consider the commutative diagram:

APNTnH) — Ad(S2) - AdY(FaH) —
l, ' \L \Lred
AdP"(T(nH);F,) — Ad*(S?":F,) — Ad'T2"(T(nH);F,) —

The restriction map i*: Ad*"(T'(nH); F,) — Ad*"(S?";F,) is zero, since nH is not
Ad*(—; Fp)—orientable. Hence §(1), with 1 € Ad?"(S2%) as generator, is not divisible
by p in Ad' 2" (T (nH)). Also tor Ad'2"(T'(nH)) has only a—1 cyclic summands.
From Corollary 2.13 we have

a
Ad"P(T (nH)) = @ z/pttr™

i=1

Clearly we then may take 6(1) as a generator for the cyclic summand with i =a—v,(n).
Hence the following theorems hold.

Theorem 3.11 For n with v,(n) <a and n > ng(a) we have

a

Axn—2(BZ/ p?) = @ 7] pite@

i=1
i#a—vp(n)
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Theorem 3.12 For n > 0 with v,(n) < a we have

a

A2n+1(BZ/pa) ~ @ Z/pi—i-v,,(n) )
i;é;'—:vi; (n)
As already mentioned the Im(J)-cohomology groups in positive dimensions are
uninteresting with respect to stable cohomotopy. For homology the situation is as
roughly as follows. For any « there is a constant 71 (a) > ng(a) such that the Hurewicz
map
ha 3y (B) —> Az—1(B)

is split onto [12]. In the range n < n(a) there are usually (for ¢ > 2) some elements

in coker/4. In even dimensions there is no such bound. The case ¢ = 1 is investigated
in [9].

4 The y*-module K°(T (nH);F,)

In this section we prove Theorem 2.12, that is show that there exists a wk —equivariant
isomorphism 4: K°(B) — K O(T“(nH )). This is done in three steps. We first show that
GO(T(nH ); Fp) is isomorphic to G°(B;F,) as ¥* —module, extend this isomorphism
to KT (nH):;F,) = K°(B;F,) and lift this ¥ —isomorphism in the last step to
a Y¥ —isomorphism h: K°(B) — K°%(T'(nH)). In virtue of Corollary 2.7 we shall
assume n > 0.

Step 1 The y*—isomorphism GO(T (nH); F,) = G°(B;F,)
Theorem 4.1 There is a X —equivariant isomorphism GO(T“(nH); Fp) = G°(B;Fp).

We shall prove this inductively using the commutative diagram of exact sequences
induced by (3). Abbreviate T'(mH) by Ty, and T (mH) by Ty,.

GO(S2H+2§[FP) — G0(52n+2;”:p)

. Ti* 1 p4
20) 0 — GUTiFp) & GUTuiriFy) © GO(SM2E,)
|| t 1=

}_t* ~ Tk _
0« G 2" Y (Mg Fp) < G¥(Ty;Fp) “ GO (Th1:Fp) «— G2"72(My:Fp) <0
Note first the following elementary facts.

(1) We may assume # + 1 =0 mod p — I , since otherwise j* is an isomorphism.
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(2) The composition
E* oj* ° (i*)_l: GO(S2n+2; ”:p) N G_zn_l(Ma; [I:p)

is an isomorphism, ie 7*(z) # 0 for z € GO(Ty; F,) implies that (j*)~!(2) is
a Thom class for (n + 1)H.

(3) If U is a Thom class for (n + 1)H and u"*! € G°(S?"*2;[,) a generator,
then §*(u" 1) = ¢y - reg U with ¢g # 0 in [, . This follows from Lemma 2.1
since the kernel of j*: GO(Ty+1;Fp) — G° (Tn, Fp) is the same as the kernel
of jf G2”+2(T,,+1 Fp) — G2"T2(B; Fp) because ji: B — T, induces a
monomorphism and j o j; = j, (see (2)).

(4) We shall abbreviate ¢q -reg-U = §*(u" 1) by wg. Clearly (¢ —1)(wg) = 0.

a—1 ~
(5) We have v*" =1 on G%(Tj; Fp) for all m. This follows from the corre-
sponding statement (6) for G°(B) using the monomorphism Ji G?* (T —
G?*'(B).

Denote % —1 by 7. Then by (5) T acts nilpotently on GO(T}y; Fp). We shall
determine the Jordan canonical form of 7" inductively using (20).
Let S(m) abbreviate the statement:

There are elements by, by,...,bs—1 in GO(Tm; Fp) with b; generating a string of
length p’ under T',ie TP b; =0, TP ~'b; # 0 such that {T/b;} is a Jordan basis
for T on GO(Tm; Fp).

Note that S(0) was proved in Corollary 2.9. Assume now 7+ 1 =0 mod p — 1,
vp(n+1) =b <a and set c =a—1—b. We shall prove below:
Proposition 4.2 There is a Thom class U for (n + 1) H with
Tpc U= Co - Wo
where ¢y # 0 mod p and wy as in (4).
Proposition 4.3 For any Thom class U of (n + 1)H in G%(T,+1;F,) we have

TP Uy # 0, in particular, there is no Thom class U, for (n + 1)H with T'U, =0
and j < p°¢.

Assume S(n) is true and choose elements b; as in S(n). We now construct elements
bi €GO (Tn+1 F,) with the properties stated in S(n+1). We begin with G%(T;,41; Fp).
In this group the Thom class U provided by Proposition 4.2 generates a string of length
p€+ 1. Since TP°U = ¢y -wg € ker j* , the element j*(U) generates a string of
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length p€ in GO(T n:Fp). Write j*(U) as a linear combination of the Jordan basis in
GO(Ty; Fp):

J*(U) = agbg +a1by + -+ acbe + elements in im(7T) .

Then 0# h* o j*(U) = agh*(bo) + a1 h* (b)) + -+ - + ach*(be)

since h* o T = 0. If h*(b;) # 0 for i < ¢ than any preimage z of b; under j*
satisfies i*z # 0 by (1) and therefore z is a Thom class for (n + 1) H. But then
TP+ (z) = 0 with p' 4+ 1 < p€ contradicting Proposition 4.3. Hence /*(b;) = 0 for
i <c, h*(be) #0 and ae # 0. We now change the basis in G° (T Fp) by replacing
b with j*(U). Since h*(b;) = 0 for i < ¢, we can choose preimages b; for b; under
J*. For j*~Y(b.) we take T(U). If i > ¢ then h*(b;) may be nonzero. In such
a case we change b; into b; by adding a suitable multiple of j*(U) in order to get
n* (b;) = 0. Then b; has the same string length as b; and we can choose b; with

7*(bi) = b).

It is clear that the elements 50, 51 Y. l;a 1 generate G (Tn_{_l, Fp) as T—module. We
now check their string length. For b, = T'(U) we have TP (b.) =0 and TP~ (b.) =
wo (up to anonzero constant). If T 4 (b;) = yiwg for i <c with y; 75 0 we change b; by
adding a suitable multiple of T’ pi=p'~1 (be) i in order to achieve T P'(b;)=0.For j >c
we must have 77’ (Ej) = 0. If not, then 77’ (Ej) = wo (up to a nonzero constant) and
we may change in G%(T;,41;F,) the original Thom class U by adding Tp —r° (Z;j)
to get a Thom class U; with T2 (U;) = 0. This contradicts Proposition 4.3. Hence
we may assume that for all j the element b j generates a string of length p’ and
{Tpi (Ej)} will be a Jordan basis for GO(T,,H; F,). This proves S(n + 1) and shows
that S(n) is true for all n. But this means that 7" has the same Jordan canonical form
on GO(T“(nH); Fp) for all n, and this implies that GO(T(nH); Fp) and G°(B;F,)
are wk —equivariantly isomorphic, proving Theorem 4.1.

We now prove Proposition 4.2 and Proposition 4.3 (recall the assumption n + 1 =0
mod p—1,vp,(n+1)=b<aandc=a—1-b):

We begin with the case n + 1 =s5-(p—1)p?~ !, s 0 mod p. Set U = &y(U’) €
GUT((n+ 1) H); Fp), where U’ is the Thom class from (5). From Proposition 2.5
we have

TU) =co-wo for some ¢g € Fp,
Let U; be any Thom class for (n 4+ 1) H. We must have T'(U;) # 0, since (n + 1) H
is not Ad*(—;F,)—orientable (Corollary 3.10). In particular ¢y # 0. This proves
Proposition 4.2 and Proposition 4.3 for n 4+ 1 with v,(n+1) =a—1.
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Letnow n+1=m-p?, m=0mod (p—1), m#£0mod p, b<a—1,c:=a—1-b
set L = HK, L° = H and consider

E=m(LO+ L'+ L2 4y L7

Then & is p-locally fiber homotopy equivalent to (n + 1) H .
Lemma 44 ok’ (m(L° + L' + L +---+ L") = ok (mH).

Proof This follows from
i—1

ph (H) = pla (H) -y (pl(H)) = pls (H)- pla(H™ ),

the exponential property of pg and induction as in Corollary 2.3. |

Define now U = f*Ug(§) with f a suitable fiber homotopy equivalence between &
and (n + 1)H . Then

c

o) = R U ©) = oK @) U ) = o i) -U

,a—l a—1 a—1

But p’(‘;' (mH)—1=c¢"-reg since y** =1 on G°(B) implies y**  Ug(mH)—
Ug(mH) €ker j: G(T(mH))— G°(B) and ker Ji is generated by reg - Ug (m H)
Lemma 2.1. To see ¢’ #0 mod p, we may use Lemma 4.4 with ¢ = 0 in the reverse
direction: If ,olép (mH) =1 then

a—1_1

a—1
pg (mH)=p(m(H+H +..+ H" ")) =1,

a—1_
but then m(H + H* + ...+ HK’ l), which is p—locally J—equivalent to the line
bundle (p?~'m)H, would have a ¥ —invariant Thom class in G°(—; Fp), contradict-
ing the fact that p*~!mH is not Ad*(—; [ )—orientable. This proves Proposition 4.2.

Let now U, be any Thom class for ® = (n + 1)H with m, b and ¢ as above.
Then Us(w) = e - Ug(w) for a unit e € G°(B4). Define p’z‘(a)) by the equation
ykU, = p& - U,. Then

oK (@) = WK (e)/e) - s ()

(and pK™ (@) = (WK™ (€)/e)-pk" (). Assume Y*" Up(@) = Us (@), ie pk”" (@) =
1. We derive a contradiction by showing that there exists a Thom class Uj for & =
o+ ko +-- 4 wkpc_la) with y*U; = Us. But £ is p—locally fiber homotopy
equivalent to pw = p?~'mH , hence £ can not have a mod p ¥ —invariant Thom
class by Corollary 3.10.
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Note that Uz(wkia)) = wki U,(w) is a Thom class for wkiw since wki may be
induced by the map m;;: B — B which represents multiplication by k' in the H—
space structure of B. Then

Us == Us(@) U Uy (¥* o) U .U U (0K ' )

is a mod p Thom class for £ = w + wka) 4.+ wkpc_la) and we have

vkU; = k() pk (ko) pk(p*" T w) - Uy
k(@) - vk (k@) - %" T (K () - Us
e ply @) Gt v (ol @) - e T ok (@))- Us

Ve k() Yk (o (@) R (o (@) - U

-p¢ ¢
wke ¢ -,olép (w)-Us by Corollary 2.3 for pg

=" (0)-Us = Us.
This finishes the proof of Proposition 4.3.

Step 2 The y ¥ —equivariant isomorphism KO(T(nH); Fp) = K%(B;Fp)

Corollary 4.5 For all n there is a y* —equivariant isomorphism

KT (nH);Fp) = K°(B: Fp).

Proof Consider Gzi(T(mH); Fp) for i #0 mod p and write i =1p? +s(p—1).
Then

BS

G (F(mH): Fp) £ G2~ (F (m — 1p® H): ) = GO(F ((m — 1p®) H): Fp)

as 1 —modules. Here ¢ is the Thom isomorphism with a mod p ¥ —invariant Thom
class of tp® H (see Proposition 3.7) and B® is Adams periodicity, ie multiplication
by v}, which is ¥k _invariant mod p. From Theorem 4.1, with n = m — tp® and
the Jordan decomposition of ¥ on G°(B:; Fp) (Corollary 2.9) we get that the Jordan
canonical form of wk on G2 (T (mH);[Fp) has exactly one Jordan block J;( p') for
i=0,...,a—1. Going backwards from the decomposition @f’;oz u! G2 (T (mH); Fp)
to KT (mH);Fp) (see Section 2), we see that ¥* has the same Jordan canonical

form on both of KO(T(mH); Fp) and KO(B; Fp). |
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Remark Since p'H — H P s Ad* (—; Fp)—orientable (Proposition 3.7), we have a
wk —equivariant relative Thom isomorphism

KO(T(l@On,HP) p)"'KO(T(lG%n,p H) Fp) .

hence the statement of Corollary 4.5 is true for every complex vector bundle £ on B.

Step 3 Lifting mod p isomorphisms

In the rest of this section we show how to lift a wk—map K°(B; Fp)— KO(T(nH); Fp)
to integral K —theory. Denote K°(B) by M and K°(T (mH)) by M'. Additively

(ZA)pa LM = (ZA)I’ ~1. Then M/p= M ®F, = K°(B;F,) and similarly
for M’

Let now M, M, be two ZA—modules with wk —action. Denote by Homp (M1, M>)
the Z’\—submodule of wk —commuting homomorphisms in Homz (M, My). If
My, Mz are free and of finite rank, then Homp (M, M») C Homgz, (Ml M) is also
free and of finite rank. Define

b(My, M) =rank Homr (M7, M>) .
Reducing mod p we consider the [F,—vector spaces M;/p, M,/ p and define
¢(My, M,) = dimg, Homp (M, /p, M>/p) .
There is a canonical map

HOH]F(MI,Mz)
21 : H M/p, M
(1) b Homp QI gy — omr(Mi/p. M2/ p)

which is trivially injective for My, M, as above. From the commutative diagram

Homp (M7, M>) = (Zﬁ )o(M1.M2)
lp

i

M ,M
BenE M) o ()P M1M2) s Homr (M, / p. Ma/ p)

it is clear that b(My, M) < c(M;, M;). There are examples where this inequality is
strict, however it is an equality in the following circumstance.
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Proposition 4.6 Suppose N = M; = M, = (Zﬁ ) isa permutation representation
of ¥, then b(N, N) = ¢(N, N), ie the canonical map

~ Homr(N, N)

" p-Homr (N, N)

—> Homr(N/p, N/ p)

is an isomorphism.

Proof If we let ¥* act on Homgz, (M1, M>) by ¥ (1) =y¥ o fo(k)~!, then
Homrp (M, M) is the fixed submodule Homz, (M, Mz)‘/’k. For M, M, as above,
we have Homgz, (My, M) = M ® M, and therefore

Homr (M, My) = ker(y* —1: M} @ My — M} @ M,).
Similarly
Homp (M1 /p. My/p) =ker(y* —1: M{/p® Ma/p — M{/p® M,/ p).

If N is a permutation representation of wk ,then N* and N* ® N are permutation
representations of 1//k too. For a permutation representation V' of wk which is free
over ZI’,\ of finite rank, V/p is a 1//" —permutation representation over [, and we have

dimg, ker(z/fk —1:V/p—V/p) =rank ker(l/fk -1:V—V)

as one easily sees by considering each 1//" —orbit separately. With V = N* ® N the
conclusion follows. Note that the equality above is equivalent to the statement that
coker (Y% —1: V — V) is torsion free. |

Consider now the ¥* —modules M = K°(B) and M’ = KO(T(mH)). On both M
and M’ the operation of Y& satisfies (wk)(p_l)ﬂ_1 — 1 =0, hence the action of
wk factorizes through the action of the finite group Z/(p — 1) p®~!, ie we can let
I'=7/(p—1)p® . From (9) we know that there exists a ¥ —equivariant isomorphism

M®@;,\’=VM’®@1/,\. Hence

b(M,M'") = rank Homp (M, M")
= dimgy Homr (M, M) ® Q)
= dimg, Homr (M ® @, M’ ® Q)
= dimg, Homr MROQY, M @2)
— b(M, M).

From Corollary 4.5 we have a % —equivariant isomorphism /#’: M/p =~ M’/ p. Hence
¢(M, M') = dimg, Homp(M/p, M'/ p) = dimg, Homp(M/p, M/p) = c(M, M) .
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Therefore b(M, M') = ¢(M, M) ie the canonical map ¢ is onto. By (22) the mod p
isomorphism A’: M/p — M’/ p can be lifted to a % —equivariant homomorphism

h M — M.

This map is automatically an isomorphism since its mod p reduction /2’ is so. Observe
that any basis of M/ p can be lifted to a basis of M by lifting the corresponding
idempotents [6]. We have proved the following.

Theorem 4.7 For n € Z there is a wk —equivariant isomorphism

h: K°B) — K%(T(nH)) .

5 Applications

In this section we discuss some applications of the results of Section 2—Section 4.

Let Lx X denote the localization of the spectrum X with respect to p—local periodic
K —theory [3]. For spectra like B or T (nH) with trivial rational homology we simply
have

L X ~XAAd.
The results in Section 2-Section 4 mean that 7; (Lg B) =~ 7; (L xT (nH)), but more
is true:

Corollary 5.1 The K —localizations of the spectra B and T(nH ) are equivalent:
LxkB~LgT(nH).

Proof This is a simple application of the results of [4]. Since Ko(X) = 0 for
X = B, T(nH) both spectra are generalized Moore spectra in the sense of [4]. For

such spectra the Adams spectral sequence based on G, —theory
EthGt 6)(Gx(B). G«(T(nH))) = [Lx B, Ly T (nH)],

is trivial and there is a canonical isomorphism

[LgxB.LxT(nH)], = @ExtG (G)(G*(B),G*(T(nﬂ)))
s=0

See Bousfield [4, Section 9]. Now ExtG ) (G*(B) G*(T(nH))) = 0 because
of degree reasons and the group Exth(G)(G*(B) G*(T(nH))) vanishes because
G«(T (nH)) is an injective abelian group [4, 7.8], hence

[Lg B, Lx T (nH)], = Homg, (G)(G«(B). G+(T (nH))) .
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With Homg(, ) denoting the morphisms in the category of ¥¥ —modules B introduced
in [4], we have

2p-3

Homg, (6)(Gx(B), G«(T (nH)) = @ Homs(Gi(B), Gi(T (nH)))

i=0
and Homp(4, B) is the kernel of the map d;: Homgz, (4, B) — Homgz,, (4, B)
where d;(f) = foy* —y¥*o f. Thus any set of Zpy~homomorphisms g;: G;(B) —
G,—(T(nH)) ,i=0,...,2p—3, which commute with the action of ¥* is induced by
amap g: Lx B — LxT(nH).

For X € {B, T(nH )} the universal coefficient formula in K —theory gives
KjLY)g}EEHom(KOLYmU;Q/Z)::Honk(KOLX):@/Z).

Now let g”: KO(T'(nH)) — K°(B) be a y* —equivariant isomorphism which exists
by Theorem 2.12. Since the p—adic topology on K°(X) for X = B, T(nH) is the
same as the one given by the skeletal filtration, g’ will induce a continuous map
between KO(T(nH)) and K°(B), ie we get

¢ Ki(B) — K((T(nH))

by duality. Clearly g’ is a wk—equivariant isomorphism too. Using the splitting of
p-local K—theory, g’ will induce a set of 1/fk —equivariant isomorphisms

gi: Gi(B) — Gi(T (nH)) .
The discussion above then shows that g is induced by a map
g LxB— LxT(nH),

which is an equivalence since it induces an isomorphism in homotopy groups. O

The computation of A,,_»(BZ/p?) was only done for n > ng(a) in Section 2—
Section 4. For a = 2 it is not hard to complete the computation. Instead of giving all
the details of the computation, we only explain the method and state the result. First of all
the constant 71¢(2) is smaller than 3p2. Next the order of A5,_1(BZ/ p?) as a subgroup
of Adyp—1(BZ/p?) =7/ p?T»™ @ 7/p' ™ has to be computed. The subgroup
7] p?tvr ™ of Ady,_; (BZ/ p?) can always be chosen to be in A,,_1(BZ/p?) [12].
So it is only necessary to compute the skeleton filtration of the elements in the second
summand Z/p'+" (" The necessary information for doing this in [10, Appendix].
The result is that the skeleton filtration of an element of order pH'b in this summand
is2(rp—1+bp(p—1)) where n =r +t(p—1) with | <r < p—1. This gives the
groups A,,_1(BZ/p?) and is carried out in detail by Weth [17].
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The order of A,,—»(BZ/p?) is given by v, }AZn_l(BZ/pz){ —2. For v,(n) <1 the
groups As,_1(BZ/p?) are cyclic, hence we are done. Only the cases n = p? and
2p? remain. From [12] we have that the transfer map

tr: A2p—3(PooCoy) = A2n—2(BZ/p%)

is onto. The groups A,,—3(PecCy) for n = sp”,s < p, are computed in [10]. It
turns out that for n = p2,2p? the transfer map is an isomorphism, since in these cases

|A2n—3(PooCy)| = |A24—2(BZ/ p?).

Proposition 5.2
n Appn—1(BZ/p*)| Apn—2(BZ/ p*)
2p? Z/p*+2/p* | Z/p’+Z/p
p? Z/p*+2Z/p | Z/p*+Z/p
p.2p,....(p=Dp z/p’ Z/p
(p+Dp.....2p=2)p Z/p*+27/p z/p*
n#£ip—j#£0(p)for2<i<3p, 1<j<i 7/ p? 0

For the other values of n > 0 we have A,_1(BZ/p?) = Ady,—;(BZ/ p?) and the
group As,_»(BZ/ p?) = A*"*T1(BZ/ p?) is given by Theorem 1.1.

Our last application is a proof for the formula for the order of the J—group of lens

spaces.

Corollary 5.3 [15]

a—1

vl (L (p* )l =Y (

s=0

n
ps(p—l))

The order of the J —group of the lens space L"(p?) is given by:

Proof Consider the long exact sequence of the pair (B>™, B>™~2) :

0— Ad°(B*"/B*" %) — Ad*(B*") — Ad°(B*"7?)

a
— Ad'(B*™/B*" %) — Ad'(B*") — Ad' (B*" %) — 0

Algebraic € Geometric Topology, Volume 7 (2007)




Connective Im(J)—theory for cyclic groups 827

From the commutative diagram

AdO(B2m~2) N Ad!(B2m/B2m=2)
I tir
a
Ad®(B?"~%) —  Ad'(B/B*"7?)

and 9; =0, since Ad! (B/B2"2)=Ad" (T ((n—1)H)) = Ad" (B) by Corollary 2.13
is torsion free, we get d = 0. Hence

m . .

vp| Ad'(B2™)| =) "vp| Ad'(B¥ /B 7).

i=1
Now B?'/B?=2 = §2=1 U,a ¢?' is a Moore space and an easy computation gives
S48 (n/ p*(p —1)) as value for this sum. From [5] we have Ad'(B>™) = J(B>™)
and this is isomorphic to J(L™(p%)). ad

Remark Since for n = s(p — 1) p?~! the generators in AdO(T (nH)) are explicitly
given Theorem 2.6 one may actually compute Ad®(B2") and Ad'(B?") = J(L"(p?))
using (11).
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