Volume 7, issue 2 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Noncompact Fuchsian and quasi-Fuchsian surfaces in hyperbolic 3–manifolds

Colin Adams

Algebraic & Geometric Topology 7 (2007) 565–582
Abstract

Given a noncompact quasi-Fuchsian surface in a finite volume hyperbolic 3–manifold, we introduce a new invariant called the cusp thickness, that measures how far the surface is from being totally geodesic. We relate this new invariant to the width of a surface, which allows us to extend and generalize results known for totally geodesic surfaces. We also show that checkerboard surfaces provide examples of such surfaces in alternating knot complements and give examples of how the bounds apply to particular classes of knots. We then utilize the results to generate closed immersed essential surfaces.

Keywords
hyperbolic 3–manifold, quasi-Fuchsian surface, totally geodesic surface
Mathematical Subject Classification 2000
Primary: 57M50
Secondary: 20H10
References
Publication
Received: 10 October 2006
Accepted: 24 January 2007
Published: 10 May 2007
Authors
Colin Adams
Department of Mathematics and Statistics
Williams College
Williamstown, MA 01267