Volume 7, issue 2 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Tight contact structures and genus one fibered knots

John A Baldwin

Algebraic & Geometric Topology 7 (2007) 701–735

arXiv: math.SG/0604580

Abstract

We study contact structures compatible with genus one open book decompositions with one boundary component. Any monodromy for such an open book can be written as a product of Dehn twists around dual nonseparating curves in the once-punctured torus. Given such a product, we supply an algorithm to determine whether the corresponding contact structure is tight or overtwisted for all but a small family of reducible monodromies. We rely on Ozsváth–Szabó Heegaard Floer homology in our construction and, in particular, we completely identify the L–spaces with genus one, one boundary component, pseudo-Anosov open book decompositions. Lastly, we reveal a new infinite family of hyperbolic three-manifolds with no co-orientable taut foliations, extending the family discovered by Roberts, Shareshian, and Stein in [J. Amer. Math. Soc. 16 (2003) 639–679]

Keywords
contact structure, Floer homology, knot, fibered, taut foliation, L-space
Mathematical Subject Classification 2000
Primary: 57M27, 57R17, 57R58
Secondary: 57R30
References
Publication
Received: 4 July 2006
Revised: 21 March 2007
Accepted: 21 March 2007
Published: 30 May 2007
Authors
John A Baldwin
Department of Mathematics
Columbia University
New York, NY 10027
http://www.math.columbia.edu/~baldwin