Volume 7, issue 2 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Some results on vector bundle monomorphisms

Daciberg L Gonçalves, Alice K M Libardi and Oziride Manzoli Neto

Algebraic & Geometric Topology 7 (2007) 829–843

arXiv: math.AW/0611679

Abstract

In this paper we use the singularity method of Koschorke [Lecture Notes in Math. 847 (1981)] to study the question of how many different nonstable homotopy classes of monomorphisms of vector bundles lie in a stable class and the percentage of stable monomorphisms which are not homotopic to stabilized nonstable monomorphisms. Particular attention is paid to tangent vector fields. This work complements some results of Koschorke [Lecture Notes in Math. 1350, 1988, Topology Appl. 75 (1997)], Libardi–Rossini [Proc. of the XI Brazil. Top. Meeting 2000] and Libardi–do Nascimento–Rossini [Revesita de Mátematica e Estatística 21 (2003)].

Keywords
bordism, normal bordism, stable and nonstable monomorphisms
Mathematical Subject Classification 2000
Primary: 57R90
Secondary: 57R25
References
Publication
Received: 13 November 2006
Revised: 23 March 2007
Accepted: 28 March 2007
Published: 20 June 2007
Authors
Daciberg L Gonçalves
Departamento de Matemática
IME – Universidade de São Paulo
Caixa Postal 66281–Agê ncia Cidade de São Paulo
05311–970
São Paulo–SP
Brazil
Alice K M Libardi
Departamento de Matemática
IGCE – Universidade Estadual Paulista Júlio de Mesquita Filho
Av. 24A, 1515
13506–700
Rio Claro – SP
Brazil
Oziride Manzoli Neto
Departamento de Matemática
ICMC – Universidade de São Paulo
Av. Trabalhador Sãocarlense, 400 – Caixa Postal 668
13560–970
São Carlos – SP
Brazil