Volume 7, issue 2 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Matching theorems for systems of a finitely generated Coxeter group

Michael L Mihalik, John G Ratcliffe and Steven T Tschantz

Algebraic & Geometric Topology 7 (2007) 919–956

arXiv: math.GR/0501075

Abstract

We study the relationship between two sets S and S of Coxeter generators of a finitely generated Coxeter group W by proving a series of theorems that identify common features of S and S. We describe an algorithm for constructing from any set of Coxeter generators S of W a set of Coxeter generators R of maximum rank for W.

A subset C of S is called complete if any two elements of C generate a finite group. We prove that if S and S have maximum rank, then there is a bijection between the complete subsets of S and the complete subsets of S so that corresponding subsets generate isomorphic Coxeter systems. In particular, the Coxeter matrices of (W,S) and (W,S) have the same multiset of entries.

Keywords
Coxeter groups
References
Publication
Received: 31 March 2006
Published: 20 June 2007
Authors
Michael L Mihalik
Mathematics Department
Vanderbilt University
Nashville TN 37240
USA
John G Ratcliffe
Mathematics Department
Vanderbilt University
Nashville TN 37240
USA
Steven T Tschantz
Mathematics Department
Vanderbilt University
Nashville TN 37240
USA