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Rational blow-down along Wahl type plumbing trees of
spheres

MARIA MICHALOGIORGAKI

In this article, we construct smooth 4–manifolds homeomorphic but not diffeomorphic
to CP2#kCP2 , for k 2 f6; 7; 8; 9g , using the technique of rational blow-down along
Wahl type plumbing trees of spheres (see Wahl [17]).

57R55, 57R57; 14J26, 53D05

1 Introduction

Over the past three years, and due to examples constructed by Park [13], Fintushel
and Stern [2], Stipsicz and Szabó [16], Park, Stipsicz and Szabó [14], and Ozsváth
and Szabó [12], there has been renewed interest in the problem of finding the smallest
k for which CP2#kCP2 admits an exotic smooth structure. All these examples are
constructed using the rational blow-down operation along lens spaces.

In this paper, we study a more generalized rational blow-down operation along certain
Seifert fibered 3–manifolds. This technique, for the case of Wahl type plumbing trees of
spheres, together with knot surgery along a regular fiber in a double node neighborhood
(see [2]), are then used to construct manifolds homeomorphic but not diffeomorphic to
CP2#kCP2 , for k 2 f6; 7; 8; 9g.
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2 Seiberg–Witten invariants and surgery along monopole L–
spaces

In this section, we provide a very brief review of the Seiberg–Witten theory of 4–
manifolds in general as well as in the special case bC

2
D 1 and we study the effect of

surgery along monopole L–spaces on Seiberg–Witten invariants, using monopole Floer
homology. These will be the main tools for our constructions in the next sections. For
more details, we refer the reader to Morgan [10], Scorpan [15], Fintushel and Stern [1],
Kronheimer, Mrowka, Ozsváth and Szabó [9] and Kronheimer and Mrowka [8].

2.1 Seiberg–Witten invariants

Let X be an oriented, closed, Riemannian 4–manifold and s a spinc structure on
X . Suppose that W Cs and W �s are the associated U.2/ spinor bundles and L!X

with L' det W Cs ' det W �s is the associated determinant line bundle. Given a pair
.A; ‰/ 2 AX .L/� �.W

C
s /, where AX .L/ denotes the space of connections on L,

and a g–self-dual 2–form � 2�Cg .X;R/, the perturbed Seiberg–Witten equations are

(1) DA‰ D 0; FC
A
D i.‰˝‰�/oC i�

where DAW �.W
C
s /! �.W �s / is the Dirac operator and .‰˝‰�/o is the trace free

part of the ednomorphism ‰˝‰� .

The quotient of the solution space to the equations above under the action of the gauge
group Aut.L/DMap.X;S1/, denoted here by MX .L/, has formal dimension

(2) dim MX .L/D
1
4
.c1.L/

2
� .3 sign.X /C 2e.X ///

Under the additional assumption that bC
2
> 0 and for generic form �, MX .L/ is a

smooth compact manifold, since when bC
2
> 0 there are no reducible solutions, that is,

no singularities in the quotient space.

The Seiberg–Witten invariant for X is a function SWX W Spinc.X /! Z defined as
follows:

� If dim MX .L/ < 0 or odd, then SWX .L/D 0:

� If dim MX .L/D 0, then SWX .L/Dnumber of points in MX .L/, counted with
sign.

� If dim MX .L/D 2n> 0, then SWX .L/D h�
n; ŒMX .L/�i, where the element

� 2H 2.MX .L/IZ/ is the Euler class of the basepoint map�MX .L/D fsolutions.A; ‰/g=Auto.L/!MX .L/;
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Rational blow-down along Wahl type plumbing trees of spheres 1329

which is an S1 fibration if there are no reducible solutions. Here,

Auto.L/D fgauge transformations which are the identity
on the fiber of L over a fixed basepoint on X g:

SWX is independent of g and � provided that bC
2
> 1. In the case bC

2
.X /D 1, there

is a codimension-one submanifold of metrics for which there are reducible solutions
and this must be excluded. Then the SW invariant of a given spinc structure has two
values, depending on the metric, and the wall-crossing formula describes the relation
between these values.

Wall-crossing formula Suppose that X is a closed, oriented 4–manifold which has
bC

2
.X /D1, H1.X IZ/D0 and a fixed orientation for H 2

C.X IR/, s is a spinc structure
on X such that c1.L/¤ 0, R is the space of Riemannian metrics g on X , !C.g/ is
the g–self-dual harmonic form of norm one which lies in the positive component of
HC

2
.X IR/ as measured by the given orientation and RCDfg2R=!C.g/�c1.L/>0g,

R� D fg 2 R=!C.g/ � c1.L/ < 0g. Then for all g 2 RC
F

R� , SWg.s/ is defined
and assuming that d.s/D dim MX .L/� 0 and even

(3) SWC.s/D SW�.s/� .�1/d.s/=2:

Here, SWC.�/.s/ denotes the constant value of SWg.s/ on RC.�/ respectively.

2.2 Monopole Floer homology

We now provide a very brief review of monopole Floer homology as constructed by
P Kronheimer and T Mrowka. We refer the reader to Kronheimer, Mrowka, Ozsváth
and Szabó [9] and to Kronheimer and Mrowka [8] for more details and point out that
this version of Floer homology is conjectured to be isomorphic to Heegaard Floer
homology.

Let Y be a smooth, oriented, compact, connected 3–manifold without boundary. To it,
there are associated three vector spaces over a field F, namely zHM �.Y /, bHM �.Y /

and HM �.Y /. These spaces, called Floer homology groups, come equipped with
linear maps i�; j� and p� which form a long exact sequence

(4) � � �
i�
�! zHM �.Y /

j�
�! bHM �.Y /

p�
��!HM �.Y /

i�
�! zHM �.Y /

j�
�! � � �

and with an endomorphism u of degree �2 that makes the three spaces modules over
the polynomial ring FŒu�.
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In addition, to each cobordism W W Y0! Y1 , there are associated maps

zHM .W /W zHM �.Y0/! zHM �.Y1/;

bHM .W /W bHM �.Y0/! bHM �.Y1/;

HM .W /W HM �.Y0/!HM �.Y1/

for which i�; j�;p� give natural transformations. These maps respect the module
structure of the Floer groups.

In this setting, we have the following

Definition 1 A rational homology 3–sphere Y for which j�W zHM �.Y /! bHM �.Y /

is trivial is called a monopole L–space.

2.3 Using monopole Floer homology to compute Seiberg–Witten invari-
ants after surgery along monopole L–spaces

After recalling some basics of Seiberg–Witten theory and Monopole Floer homology,
we move on to compute how SW invariants change under surgery along monopole
L–spaces.

Suppose X is a 4–manifold decomposed into two pieces Z and P along a monopole
L–space Y , with P negative definite, and s 2 Spinc.X / (See Figure 1). Consider
B another negative definite 4–manifold bounded by Y such that sjZ extends to B

and replace P with B in X to get X 0 DZ
S

Y B (See Figure 2). Denote the spinc

structure on X 0 by s0 . We would like to compute the change in SW invariants after
such an operation. To this end, we study these configurations, using properties of
monopole Floer homology. Most of the statements we make here are discussed in [8]
and [9].

Remark 2 Note that our constructions in this paper (see next section) are special
cases of the above, for B rational balls and P Wahl-type plumbing trees of spheres.
The boundaries of the latter were proven to be monopole L–spaces in [9].

Our goal in this subsection is to prove that

Theorem 3 Suppose Y is a monopole L–space, H1.Y / is finite, P and B are
negative definite 4–manifolds with b1 D 0 and X D Z

S
Y P , X 0 D Z

S
Y B , for

some 4–manifold Z . If s2Spinc.X /, s0 2Spinc.X 0/, d.s/; d.s0/� 0 and sjZ D s0jZ ,
then SWX .s/D SWX 0.s

0/.

In the case bC
2
.X / D 1, SWX ;a1

.s/ D SWX 0;a2
.s0/, where a1 2 H2.X IZ/; a2 2

H2.X
0IZ/, a1jP D a2jB D 0 and a1jZ D a2jZ .
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Rational blow-down along Wahl type plumbing trees of spheres 1331

Y S3
S3

P �B4

Z �B4

Figure 1: X DZ
S

Y P

YS3

Z �B4

S3

B �B4

Figure 2: X 0 DZ
S

Y B

Proof Denote by W , W1 and W2 the cobordisms Z�B4W S3!Y , P�B4W Y !S3 ,
B �B4W Y ! S3 respectively and s1 D sjW1

, s2 D s0jW2
.

According to [9, Proposition 2.6], the fact that Y is a rational homology sphere implies
that

(5) HM �.Y; sjY /' FŒu�1;uK as topological FJuK modules:

Here FŒu�1;uK denotes Laurent series finite in the negative direction. In addition, the
long exact sequence (4) gives the exact sequence

(6) 0! bHM �.Y /
p�
��!HM �.Y /

i�
�! zHM �.Y /! 0

for Y monopole L–space (see Definition 1). Combining (5) and (6), we get that the
sequences

0! bHM �.Y; sjY /
p�
��!HM �.Y; sjY /

i�
�! zHM �.Y; sjY /! 0

and
0! FJuK! FŒu�1;uK! FŒu�1;uK=FJuK! 0

are isomorphic as sequences of topological FJuK modules. The corresponding isomor-
phism of short exact sequences holds if we consider S3 instead of Y , because S3 is a
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monopole L–space as a 3–manifold with positive scalar curvature. Such 3–manifolds
were proven to be monopole L–spaces in [9].

We will now use
��!
HM � as defined in [8]: For Y0;Y1 compact, connected, oriented

3–manifolds and W isomorphism class of connected cobordisms equipped with an
homology orientation,

��!
HM �.W /W bHM �.Y0/! zHM �.Y1/ is a (canonical choice

of) map such that the diagram

HM �.Y0/
i� //

��

zHM �.Y0/
j� //

��

bHM �.Y0/
p� //

��!
HM�.W /

qqq
q

xxqqq
q

��

HM �.Y0/

��

HM �.Y1/
i� // zHM �.Y1/

j� // bHM �.Y1/
p� // HM �.Y1/

commutes. For the special case of a cobordism where W is the complement of two
disjoint balls in a closed, oriented manifold X viewed as a cobordism W W S3! S3 ,
[8, Proposition 3.6.1] states that the sum of the SW invariants of the 4–manifold X is
determined by the map

��!
HM �.W /. Even more, using local coefficients, it can be proven

that the individual SW invariants are determined by the same map [8, Proposition 3.8.1].
Applying the composition laws that

��!
HM � satisfies according to [8] to our cobordisms

W;W1 and W2 gives that
��!
HM �.Wi ıW /D zHM �.Wi/ı

��!
HM �.W /, i 2 f1; 2g. In a

more refined version, for our fixed spinc structures s and si on W and Wi respectively,
we have that

(7)
X

s0
i
2Spinc.W

S
Wi /

s0
i
jWi
Dsi ; s0

i
jW Ds

��!
HM �.Wi ıW; s0i/D

zHM �.Wi ; si/ ı
��!
HM �.W; s/

This sum contains precisely one term, since Y is a rational homology 3–sphere and so,
(7) gives that

(8)
��!
HM �.W1 ıW; s/D zHM �.W1; s1/ ı

��!
HM �.W; s/

and

(9)
��!
HM �.W2 ıW; s0/D zHM �.W2; s2/ ı

��!
HM �.W; s/:

Taking into account that
��!
HM �.W1 ıW; s/,

��!
HM �.W2 ıW; s0/ determine SWX .s/

and SWX 0.s
0/ respectively, it suffices to show that the maps zHM �.W1; s1/ and

zHM �.W2; s2/ are isomorphisms in the range of
��!
HM �.W; s/ to finish the proof.
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Rational blow-down along Wahl type plumbing trees of spheres 1333

To see this, consider the diagram

(10)

� � � ����! HM �.Y; sjY /
i�
����! zHM �.Y; sjY / ����! 0

HM�.Wi ;si /

??y zHM �.Wi ;si /

??y
� � � ����! HM �.S

3; si jS3/
i�
����! zHM �.S

3; si jS3/ ����! 0

where i 2 f1; 2g. We have assumed that b1.Wi/D 0 and Wi is negative definite and
under these assumptions the map HM .Wi ; si/W HMj0i

.Y /!HMj1i
.S3/, i 2f1; 2g,

where j0i
2 J.Y; si jY / Dfhomotopy classes of oriented 2-plane fields on Y that

determine the spinc structure si jY on Y g, j1i
2 J.S3; si jS

3/ and j0i

si
�j1i

, is an
isomorphism, as was proven in [9]. This implies that zHM �.Wi ; si/ is an isomorphism
on the range of

��!
HM �.W; s/ in the case where d.s/; d.s0/� 0.

In the case bC
2
.X / D 1, the SW invariants depend on the choice of metric g and

perturbation �. If bC
2
.W / D 1, then a choice of g and � for W determines the

chamber that will be used for our computations.

3 The topological constructions

To construct our 4–manifolds, we will blow-down certain Wahl type plumbing trees of
spheres in rational surfaces. In order to locate these configurations in such surfaces, we
use specific elliptic fibrations of E.1/ in each case. Proofs for the existence of such
fibrations are postponed until the last section of our article.

3.1 An exotic smooth structure on CP2#9CP2

Our first construction relies on the following existence result.

Proposition 4 There is an elliptic fibration of E.1/! CP1 with a singular I3 fiber,
9 fishtail fibers and one section.

Proof An outline of the proof of this proposition is provided in the appendix.

Consider the plumbing tree of spheres s
�3

s
�4

s
�3

s�3

P1 D

Algebraic & Geometric Topology, Volume 7 (2007)



1334 Maria Michalogiorgaki

where dots represent disk bundles over S2 , numbers assigned to them refer to the
corresponding Euler numbers and edges stand for plumbing connections and call Y1

the boundary of P1 , that is, Y1 D @P1 . Proposition 5 below provides an embedding of
P1 into CP2#13CP2 .

Proposition 5 P1 embeds into CP2#13CP2 .

Proof We use the fibration of Proposition 4 and in particular the I3 fiber and one
fishtail fiber, call it F1 , together with the section E3 . We blow up the double point of
F1 and denote the exceptional sphere by E10 . We further blow up at three points of
the I3 fiber, two of them on the �2 sphere intersecting the section (E12 and E13 ) and
the third at the intersection of the remaining �2 spheres (E11 ). Finally, we smooth the
transverse intersection of F1 with E3 . The above procedure, the outcome of which is
depicted in Figure 3, provides the desired embedding.

E3

E12

E13

E1�E2�E11

3H � 2E1�E2�
P9

4 Ei �E11

E10

E11

C2�
P9

1 Ei � 2E10

E2�E3�E12�E13

Figure 3: P1 in CP2#13CP2

Remark 6 It is not hard to see that Y1 bounds a rational homology ball B1 . To this
end, we can use the fact that P1 embeds in #4CP2 (See Figure 4). The closure of the
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Rational blow-down along Wahl type plumbing trees of spheres 1335

complement of this embedding with reversed orientation is a rational ball. Alternatively,
we can use Neumann [11] and construct such a rational ball explicitly.

�

�E1

C

�
E4

�

E1�E3CE4

C

E3

C

C

E2

E1�E2CE3

C
C

E1CE2�E4

Figure 4: P1 in #4CP2

Theorem 7 X 0
1
D .CP2#13CP2� int.P1//

S
Y1

B1 is homeomorphic to CP2#9CP2 .

Proof First, we will prove that X 0
1

is simply connected. The embedding of P1 into
CP2#13CP2 constructed above has a simply connected complement since the circles in
the boundary Y1 of the complement are homotopically trivial in the complement(here
we are using the fact that rational surfaces are simply connected). In fact, it suffices to
prove this for the normal circles to the �3 framed spheres C2�E1�E2�

P9
4 Ei�2E10

and 3H�2E1�E2�
P9

4 Ei�E11 and this can be done easily using disks in one fishtail
fiber and E7 respectively. In addition, the map �1.@B1/! �1.B1/ induced by the
natural embedding is surjective, as one can see applying Van Kampen’s Theorem for the
decomposition #4CP2DP1

S
Y1
.#4CP2nP1/DP1

S
@B1

xB1 , where xB1 denotes B1

with opposite orientation. Thus, X 0
1

is indeed simply connected. Now the statement
of the theorem follows from Freedman’s Theorem [3], after computing the Euler
characteristic and the signature of the two manifolds.

3.2 An exotic smooth structure on CP2#8CP2 .

For our second construction, we will make use of the existence result stated in Proposi-
tion 8:

Algebraic & Geometric Topology, Volume 7 (2007)
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Proposition 8 There is an elliptic fibration of E.1/! CP1 with a singular I5 fiber,
7 fishtail fibers and one section.

See Appendix A for a brief discussion of this.

Let P2 denote the plumbing tree of spheress
�5

s
�4

s
�2

s
�2

s
�3

s�3

P2 D

and call Y2 the boundary of P2 . It is not hard to see that

Proposition 9 P2 embeds into CP2#14CP2 .

Proof Consider the fibration of Proposition 8. Blow up two double points in two
of the fishtail fibers. Then perform three further blow-ups at the I5 fiber, one at the
intersection point of two �2 spheres and the other two on the �2 sphere intersecting
the section. Finally, smooth out the intersections of the two fishtails with the section to
get the desired embedding.

Remark 10 To prove that P2 bounds a rational homology ball, we will once again
use an appropriate embedding of this manifold, that is, the embedding of P2 in #6CP2 .

Theorem 11 X 0
2
D .CP2#14CP2�int.P2//

S
Y2

B2 is homeomorphic to CP2#8CP2 .

Proof Simple connectivity of the complement of P2 in CP2#14CP2 can be proven
using disks in a fishtail fiber and some of the exceptional spheres. In addition to that,
surjectivity of the map �1.@B2/! �1.B2/ induced by the natural embedding follows
from an application of Van Kampen’s theorem for #6CP2 , completely analogous to
the one in Claim 2 in the proof of Theorem 7. These facts, together with Freedman’s
classification theorem, lead to the proof of the theorem.

We would here like to point out that the plumbing trees of spheres we have used so
far, that is, P1 and P2 , belong in the category of manifolds studied by Neumann
in [11]. In his notation P1 �M.0I .1; 1/; .3; 2/; .3; 2/; .3; 2// (p D q D r D 2) and
P2�M.0I .1; 1/; .3; 2/; .5; 4/; .5; 2// (pD qD 2, r D 4). In addition, note that using
Neumann’s results in this paper, one can find rational balls bounded by @Pi , i D 1; 2,
with known handlebody decompositions.

For our next two constructions, we will need to combine the techniques used above
with knot surgery in a double node neighborhood, as it was introduced in [2] by R
Fintushel and R Stern.

Algebraic & Geometric Topology, Volume 7 (2007)



Rational blow-down along Wahl type plumbing trees of spheres 1337

3.3 An exotic smooth structure on CP2#7CP2 .

Here, we will use the fibration for E.1/ described in construction 2. We will also use
a double node neighborhood D containing two of the fishtails of our fibration which
have the same monodromy and we will perform knot surgery along a regular fiber in
this neighborhood with a knot K having the properties listed in [2]. The result of knot
surgery will be to remove a smaller disk from the disk E5 , which is a section in our
original picture, and to replace it with the Seifert surface of K . This will give us a
pseudo-section, that is a disk with a positive double point in H2.Dk ; @IZ/ and, after 4
blow-ups as indicated in Figure 5, an embedding of P2 in CP2#13CP2 (see Figure
6). Our claim is that after blowing down we will get a manifold X 0

3
homeomorphic to

CP2#7CP2 . Using disks on a fishtail fiber and on the exceptional spheres E10 and
E12 , one can prove that �1.CP2#13CP2 �P2/ is trivial. The rest of the argument
is very similar to the proofs of Theorems 7 and 11 above and is therefore left as an
exercise for the reader.

�1

�2
�2

�2

�2

�2

Figure 5: The 4 blow-ups performed in construction 3

Another example (X 00
3

) The reader may have already noticed that it could be possible
to construct an exotic smooth structure on CP2#7CP2 by blowing down the next
plumbing tree in our family, that is M.0I .1; 1/; .3; 2/; .7; 6/; .11; 2// (p D q D 2,
r D 6) in Neumann’s notation, inside CP2#15CP2 .
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This alternative construction can indeed be carried out using a fibration of E.1/ with
an I7 fiber and five fishtail fibers. We give a short outline of this construction by
indicating that the double points of three of the fishtail fibers will be blown up so that
after smoothing out the intersection points of these fibers with the section we can get a
�7 sphere. One of the two remaining fishtail fibers will then be used in proving simple
connectivity of the complement of the plumbing tree in CP2#15CP2 .

E13

E10

E11

E3�E4

E2�E3

E12

3H � 2E1�
P4

2 Ei �
P9

6 Ei �E12

S � 2E13

E1�E2�E12

Figure 6: P2 in CP2#13CP2

Remark 12 A question most naturally arising here is whether X 00
3

is a member of the
family of X 0

3
’s or not.

3.4 An exotic smooth structure on CP2#6CP2 .

Let s
�7

s
�4

s
�2

s
�2

s
�2

s
�2

s
�3

s�3

P4 D

At this point, we only briefly note that starting with a fibration of E.1/ with one I7

fiber and five fishtail fibers and performing knot surgery along a regular fiber in a
double node neighborhood (as in 3.3) together with five appropriate blow-ups we get
an embedding of P4 in CP2#14CP2 . Along the lines of our previous arguments, it
can be proven that P4 bounds a rational homology ball and that blowing down along
@P4 gives a manifold X 0

4
homeomorphic to CP2#6CP2 .
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4 Computation of Seiberg–Witten invariants

Theorem 13 There is a characteristic cohomology class K0i 2 H 2.X 0i / such that
SWX 0

i
.K0i/¤ 0:

Corollary 14 The 4–manifold X 0i is not diffeomorphic to CP2#.10� i/CP2 .

Proof It is known that the SW invariants of CP2#.10� i/CP2; i 2 f1; 2; 3; 4g, are
trivial, because of the existence of a metric with positive scalar curvature. This,
combined with Theorem 13 and the fact that the SW invariants are diffeomorphism
invariants, leads to a proof of the corollary.

Proof of Theorem 13 We will apply Theorem 3 to all four constructions.

(i) First construction:
Denote CP2#13CP2 by X1 . Y1 is a monopole L–space (see Kronheimer,
Mrowka, Ozsváth and Szabó [9] for a proof) and jH1.Y1/j D 81. In addition,
B1 and P1 are negative definite 4–manifolds. Consider

K1 2H 2.X1IZ/;K1.H /D 3;K1.Ei/D 1; i 2 1; 2; : : : ; 13

and denote K1jX1�int.P1/ by K1j . K1j extends as a characteristic cohomology
class to X 0

1
(proved using the embedding of P1 in #4CP2 and more specifically

that K1 evaluates on the spheres of P1 in the same way that the canonical class
of #4CP2 evaluates on them). Denote this extension of K1j by K0

1
. Finally,

consider

(11) a1 D 6H � 2E1� 2E2�

9X
iD4

2Ei �E10�E12�E13:

Note that for such an a1 , the following conditions hold:
a1 2H2.CP2#13CP2IZ/; a1 �a1� 0;H �a1> 0;K1.a1/ < 0, a1 is represented
in (CP2#13CP2� int.P1/).
Now H �a1 > 0 and K1.a1/ < 0 imply the existence of a wall between PD.H /

and PD.a1/. In the chamber corresponding to PD.H /, SWX1
is trivial, since

we have a positive scalar curvature metric. The wall crossing formula implies
therefore that SWX1;a1

.K1/D˙1.
By the dimension formula (2), d.K1/ D 0 and d.K0

1
/ D 0 since d remains

unchanged by our operation. It follows from the preceding analysis that we can
apply Theorem 3 to our case and thus get that

SWX 0
1
;a1
.K01/D˙1;
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which completes the proof of Theorem 11 for our first construction.
Note that there is no ambiguity about the chambers in the blown down manifold,
since the wall crossing formula combined with the dimension formula for SW
invariants implies that for a 4–manifold M with bC

2
.M /D 1 and b�

2
.M /� 9

there is only one chamber.

(ii) Second construction:
Asking for the analogous to the above conditions to be fullfilled, one can easily
compute that

(12) a2 D 7h� 3e1� 2

9X
2

ei � e12� e13� 2e14

is a cohomology class that can be used for the computation of the Seiberg–Witten
invariants in this case.

(iii)–(iv) In a similar fashion, one can carry out the computations for the remaining cases.

Note 15 D Gay and A Stipsicz recently proved in [4] that Wahl type diagrams provide
examples of plumbing trees that can be symplectically blown down. Making use of
their results, it follows immediately that the manifolds X 0

1
;X 0

2
and X 00

3
constructed

above are symplectic.

Appendix A Elliptic fibrations of E.1/

We give explicit constructions for some of the elliptic fibrations E.1/! CP1 used
in the paper. Note that the existence of such fibrations can also be verified using the
monodromies of the singular fibers.

A.1 A fibration of E.1/ with a singular fiber of type I3 and nine fishtail
fibers

Let C1 and C2 be two complex curves in the complex projective plane, such that :
C2 D fŒx W y W z� 2 CP2

jp2.x;y; z/D x3C zx2 � zy2 D 0g or any curve isotopic to
this so that it will give rise to a fishtail fiber in E.1/, C1 is the union of three lines –
L1;L2;L3 – defined by an equation of the form p1.x;y; z/D 0 and C1;C2 intersect
as indicated in Figure 7.

Algebraic & Geometric Topology, Volume 7 (2007)



Rational blow-down along Wahl type plumbing trees of spheres 1341

L2 L1

L3

C2

P

Q

R

S

T

U

V

Figure 7: Curves generating the pencil

Perform three infinitely close blow-ups at the base point P and six further blow-ups at
the base points Q, R, S , T , U , V . After doing so, the curves C1 and C2 get locally
separated and the pencil of elliptic curves

Ct D CŒt1Wt2� D f.t1p1C t2p2/
�1.0/g; Œt1 W t2� 2 CP1

provides a well defined map CP2#9CP2! CP1 . It is easy to check that starting with
the curves C1;C2 and performing the nine blow-ups as described above, one can detect
an I3 singular fiber, a fishtail fiber and E3 as a section (See also Figure 8). Using the
equations defining C1 and C2 , the remaining singular fibers can be determined as well.

E3

E1�E2

E2�E3

C2�
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3H � 2E1�E2�
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Figure 8: A section, a fishtail and an I3 fiber in E.1/

A.2 A fibration of E.1/ with a singular I5 .I7/ fiber and seven (five)
fishtail fibers.

Such fibrations can also be easily constructed starting with appropriate generating
curves for the pencil.
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Even more easily, one can verify the existence of such fibrations combinatorially, using
their monodromy. We will do so for one of the two cases.

According to Kodaira [5; 6; 7], the monodromies of our singular fibers are as follows:

The monodromy of the fishtail fiber I1 is aD
�

1 1
0 1

�
and the monodromy of the singular

fiber Ik is
�

1 k
0 1

�
. If b D

�
1 0
�1 1

�
, then b D .ab/a.ab/�1 , and so b also represents the

monodromy of a fishtail fiber.

In addition, .a3b/3 D I , a5.a�2ba2/abaaab D I , which means that the fibration
with an I5 and seven fishtail fibers over the disk extends to a fibration over S2 . The
classification of genus–1 Lefschetz fibrations shows that the resulting fibration is an
elliptic fibration on E.1/.
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