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Dendroidal sets

IEKE MOERDIJK

ITTAY WEISS

We introduce the concept of a dendroidal set. This is a generalization of the notion of
a simplicial set, specially suited to the study of (coloured) operads in the context of
homotopy theory. We define a category of trees, which extends the category � used in
simplicial sets, whose presheaf category is the category of dendroidal sets. We show
that there is a closed monoidal structure on dendroidal sets which is closely related
to the Boardman–Vogt tensor product of (coloured) operads. Furthermore, we show
that each (coloured) operad in a suitable model category has a coherent homotopy
nerve which is a dendroidal set, extending another construction of Boardman and
Vogt. We also define a notion of an inner Kan dendroidal set, which is closely related
to simplicial Kan complexes. Finally, we briefly indicate the theory of dendroidal
objects in more general monoidal categories, and outline several of the applications
and further theory of dendroidal sets.

55P48, 55U10, 55U40; 18D50, 18D10, 18G30

1 Introduction

There is an intimate relation between simplicial sets and categories (and, more generally,
between simplicial objects and enriched categories), which plays a fundamental role in
many parts of homotopy theory. The goal of this paper is to introduce an extension of
the category of simplicial sets, suitable for studying operads. We call the objects of
this larger category “dendroidal sets”, and denote the inclusion functor by

i!W .simplicial sets/! .dendroidal sets/:

The pair of adjoint functors

� W .simplicial sets/ // .categories/ WNoo

where N denotes the nerve and � its left adjoint, will be seen to extend to a pair

�d W .dendroidal sets/ // .operads/ WNdoo

having similar properties.
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1442 Ieke Moerdijk and Ittay Weiss

Many other properties and constructions of simplicial sets also extend to dendroidal sets.
In particular, we will show that the cartesian closed monoidal structure on simplicial
sets extends to a (non-cartesian!) closed monoidal structure on dendroidal sets. Here
“extends” means that there is a natural isomorphism

i!.X �Y /Š i!.X /˝ i!.Y /

for any two simplicial sets X and Y . This tensor product of dendroidal sets is closely
related to the Boardman–Vogt tensor product of operads. In fact, the latter can be
defined in terms of the former by the isomorphism

P˝BV QŠ �d .NdP˝NdQ/

for any two operads P and Q.

We will also define a notion of inner (or weak) Kan complex for dendroidal sets,
extending the simplicial one in the sense that for any simplicial set X , one has that
X is an inner Kan complex if, and only if, i!.X / is. The nerve of an operad always
satisfies this dendroidal inner Kan condition, just like the nerve of a category satisfies
the simplicial inner Kan condition. Moreover, this inner Kan condition has various basic
properties related to the monoidal structure on dendroidal sets, the most significant
one being that, under some conditions on a dendroidal set X , Hom.X;K/ is an inner
Kan complex whenever K is. The analogous property for simplicial sets was recently
proved by Joyal, and forms one of the basic steps in the proof of the existence of the
closed model structure on simplicial sets in which the inner Kan complexes are exactly
the fibrant objects. Joyal calls these inner Kan complexes quasi-categories, and one
might call a dendroidal set a quasi-operad if it satisfies our dendroidal version of the
inner Kan condition. We expect that there is a closed model structure on dendroidal
sets in which the quasi-operads are the fibrant objects. Dendroidal sets also seem to be
useful in the theory of homotopy-P –algebras for an operad P and weak maps between
such algebras. As an illustration of this point, we will give an inductive definition of
weak higher categories and weak functors between these, based on the theory of inner
Kan complexes.

The results in this paper were first presented at the Mac Lane Memorial conference
in Chicago (April 2006). We would like to thank C Berger, J Gutiérrez, A Joyal, A
Lukacs, and M Shulman for useful comments on early versions. We also thank the
anonymous referee for her useful comments.
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2 Operads

In this paper, operad means coloured symmetric operad. (In the literature such operads
are also referred to as symmetric multi-categories, see Leinster [20].) We briefly
recall the basic definitions, and refer to Berger and Moerdijk [3] for a more extensive
discussion. An operad P is given by a set of colours C , and for each n� 0 and each
sequence of colours c1; : : : ; cn; c a set P.c1; : : : ; cnI c/ (to be thought of as operations
taking n inputs of colours c1; : : : ; cn respectively to an output of colour c ). Moreover,
there are structure maps for units and composition. If we write IDf�g for the one-point
set, there is for each colour c a unit map

uW I ! P.cI c/

taking � to 1c . The composition operations are maps

P.c1; : : : ; cnI c/�P.d1
1 ; : : : ; d

1
k1
I c1/�� � ��P.dn

1 ; : : : ; d
n
kn
I cn/!P.d1

1 ; : : : ; d
n
kn
I c/

which we denote p; q1; : : : ; qn 7! p.q1; : : : ; qn/. These operations should satisfy the
usual associativity and unitary conditions. Furthermore, for each � 2†n and colours
c1; : : : ; cn; c 2 C there is a map ��W P.c1; : : : ; cnI c/!P.c�.1/; : : : ; c�.n/I c/. These
maps define a right action of †n in the sense that .��/� D ���� , and the composition
operations should be equivariant in some natural sense. The definition can equivalently
be cast in terms of the units and the “ıi –operations”

P.c1; : : : ; cnI c/�P.d1; : : : ; dk I ci/
ıi
�! P.c1; : : : ; ci�1; d1; : : : ; dk ; ciC1; : : : ; cnI c/:

A coloured operad P with set C of colours will also be referred to as an operad
coloured by C , or an operad over C . For such an operad P , a P –algebra consists of a
family of sets fAcgc2C together with arrows P.c1; : : : ; cnI c/�Ac1

�� � ��Acn
!Ac ,

satisfying the usual compatibility conditions for unit, compositions, and symmetry.

The same definitions of operad and algebra still make sense if we replace Set by
an arbitrary cocomplete symmetric monoidal category E . In particular, the strong
monoidal functor Set! E , which sends a set S to the S –fold coproduct of copies of
the unit I of E , maps every operad P over C in Set to an operad in E , which we
denote by PE , or sometimes again by P .

If P is an operad over C and f W D! C is a map of sets, then there is an evident
induced operad f �.P/ over D , given by

f �.P/.d1; : : : ; dnI d/D P.fd1; : : : ; fdnIfd/:

Algebraic & Geometric Topology, Volume 7 (2007)



1444 Ieke Moerdijk and Ittay Weiss

If P and Q are operads, a map Q f

�! P is given by a map of sets f W D! C , and
for each d1; : : : ; dn; d a map

fd1;:::;dn;d W Q.d1; : : : ; dnI d/! P.f .d1/; : : : ; f .dn/If .d//

which commutes with all the operations and the †n –actions. If DDC and f W D!C

is the identity, we will call f a map of operads over C . For a fixed symmetric monoidal
category E , we denote by Operad.E/ the category of all coloured operads in E . When
E D Set we will simply write Operad instead of Operad.Set/.

Example 2.1 Let E be a symmetric monoidal category. Then E gives rise to a coloured
operad E , whose colours are the objects of E . For a sequence X1; : : : ;Xn;X of such
objects, E.X1; : : : ;XnIX / is the set of arrows X1˝ � � � ˝Xn! X in E . If E is a
symmetric closed monoidal category, then E may be viewed as an operad E in E , with
the objects of E as colours again, and with E.X1; : : : ;XnIX / the internal Hom–object
HomE.X1˝ � � �˝Xn;X /.

Note that, in general, the objects of E form a proper class and not a set. However, in
this paper, we will largely ignore such set-theoretic issues, and interpret “small” or
“set” in terms of a suitable universe. In this context, let us point out that for any set S

of objects of E , there are operads ES and ES obtained by restricting E and E to the
colours in S (If i W S!Objects.E/ is the inclusion, then ES D i�.E/; etc). In general,
we will often identify a monoidal category with the corresponding operad, and simply
write E for E or E .

Example 2.2 Any category C can be considered as an operad PC in the following way.
The colours of PC are the objects of C , and for any sequence of colours c1; : : : ; cn; c

we set

PC.c1; : : : ; cnI c/D

�
C.c1; c/; if nD 1

�; if n¤ 1

the compositions and units are as in C and the symmetric actions are all trivial. In this
way we obtain a functor j!W Cat! Operad from the category Cat of small categories
to the category of operads. This functor has an evident right adjoint j �W Operad!Cat ,
sending an operad P to the category given by the colours and unary operations of P .
In exactly the same way, any E –enriched category can be seen as an operad in E and

we thus obtain adjoint functors Cat.E/
j! // Operad.E/:
j�

oo

Remark 2.3 There is also the notion of a non-symmetric (also called planar) operad.
A planar operad is exactly the same structure as an operad except that there are
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no symmetric actions involved. The resulting category of planar operads with their
obvious notion of maps is denoted by Operad�.E/. There is an evident forgetful
functor Operad.E/! Operad.E/� which maps an operad to the same operad with
the symmetric actions forgotten. This functor has a left adjoint SymmW Operad.E/� !
Operad.E/, which we call the symmetrization functor. This functor is useful in the
construction of operads, since sometimes it is easier to directly describe the non-
symmetric operad whose algebras are the desired structures in a given context.

Example 2.4 Let S be a set. We describe now a planar operad BS whose algebras
are categories having S as set of objects. The set of colours of BS is S �S , and for
any sequence of colours of the form .s1; s2/; .s2; s3/; : : : ; .sn�1; sn/ there is exactly
one operation in BS ..s1; s2/; : : : ; .sn�1; sn/I .s1; sn//. There are no other operations
except those just given, which then completely determine the operadic structure. We
thus have a planar operad in Set whose symmetrization we denote by AS . For any
cocomplete monoidal category E we obtain an operad in E (still) denoted AS which is
the image of the original AS under the functor Operad.Set/! Operad.E/ described
above. It is easy to verify that an AS –algebra in E is the same as an E –enriched
category having S as set of objects. For the special case where S is a one-point set,
AS is the familiar operad Ass.

We refer the reader to Berger and Moerdijk [3] for more examples of coloured operads.

3 A category of trees

The trees we will consider are finite, non-empty (non-planar) trees with a designated
root. As is common in the theory of operads (see Getzler and Kapranov [13], Ginzburg
and Kapranov [14] and Markl, Shnider and Stashef [23]) we allow some edges to have
a vertex only on one side. These edges are called outer (or external) edges, while those
having vertices on both sides are called inner (or internal) edges. By a designated root
we mean a choice of one of the outer edges. The root defines an up-down direction
in the tree (towards the root) and thus each vertex has a number of incoming edges
(the number is the valence of the vertex) and one edge going out of it. We also allow
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vertices of valence 0. For example, the tree

?????????

���������

�

????????

�������� �

qqqqqqqqqqqq

�

has three vertices, of valence 2, 3, and 0, and three input edges. A tree with no vertices

whose input edge (e say) coincides with its output edge will be denoted by �e , or
simply by �.

When we draw a tree we will always put the root at the bottom. One drawback of
drawing a tree on the plane is that it immediately becomes a planar tree; we thus have
many different ’pictures’ for the same tree. For instance the two trees

a ?????????

b��������

d

�����������������

�

c >>>>>>>>

�

e

and
d

?????????????????

b ?????????

a
��������

�

c
��������

�

e

are different planar representations of the same tree.

Any tree T can be viewed as generating an operad �.T /, whose colours are the edges
of the tree, while the vertices of the tree are the generators of the operations. More
explicitly, if we choose a planar representation of T then each vertex v with input
edges e1; : : : ; en and output edge e defines an operation v 2�.T /.e1; : : : ; enI e/. The
other operations are the unit operations and the operations obtained by compositions
and by permutations, so as to obtain an operad in which every Hom set has at most
one object. For example, in the same tree T pictured above, let us name the edges and
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vertices a; b; : : : ; f and r; v; w:

e @@@@@@@@@

f���������

v �

b ????????
c

~~~~~~~~~ w �

dooooooooooooo

�

a

r

Then v 2 �.T /.e; f I b/; w 2 �.T /. I d/ and r 2 �.b; c; d I a// are the generators,
while the other operations are the units 1a; 1b; 1c � � � 1f , the operations obtained by
compositions r ı1 v 2�.T /.e; f; c; d I a/, r ı3w 2�.T /.b; cI a/ and r.v; 1c ; w/D

.r ı1 v/ ı4w D .r ı3w/ ı1 v 2�.T /.e; f; cI a/, and permutations of these. This is a
complete description of the operad �.T /.

Viewing trees as coloured operads as above enables us to define the category �, whose
objects are trees, and whose arrows T ! T 0 are operad maps �.T /!�.T 0/. The
category � extends the simplicial category �. Indeed, any n� 0 defines a linear tree

0

v1 �

1

v2 �

2

vn �

n

on nC 1 edges and n vertices v1; : : : ; vn . We denote this tree by Œn�. Any order
preserving map f0; : : : ; ng ! f0; : : : ;mg defines an arrow Œn�! Œm� in the category
�. In this way, we obtain an embedding

�
i // �

This embedding is fully faithful. Moreover, it describes � as a sieve (or ideal) in �,
in the sense that for any arrow S ! T in �, if T is linear then so is S .
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With a tree T one can associate certain maps in � as follows. If b is an inner edge in
T , let T=b be the tree obtained from T by contracting b . Then there is a natural map
@bW T=b! T in �, called the inner face map associated with b , which locally in the
tree looks like this:

e OOOOOOOOOOOOOO
f

@@@@@@@@@
c

�������� w �

dqqqqqqqqqqqq

u
�

a

@b //
e @@@@@@@@@

f���������

v �

b ????????
c

~~~~~~~~~ w �

dooooooooooooo

�

a

r

Let v be a vertex in T with the property that all but one of the edges incident to v are
outer. We call such a vertex an outer cluster. Let T=v be the tree obtained from T by
removing the vertex v and all of the outer edges incident to it. Then there is a map
@v W T=v! T in � called the outer face associated with v . For example, the maps

@@@@@@@@@

f���������

v �

????????

~~~~~~~~~ w �

dooooooooooooo

� r

@v
??~~~~~~~

@w

aaBBBBBBBB

@@@@@@@@

c

w�

d��������

r �
@@@@@@@@@

f���������

v �

????????

~~~~~~~~~

dooooooooooooo

� r

are two outer faces. We will use the term face map to refer to an inner or outer face map.
One more type of map is a map that can be associated with a unary vertex v in T as
follows. Let T=v be the tree obtained from T by removing the vertex v and merging
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the two edges incident to it into one edge e . Then there is a map �vW T ! T=v in �
called the degeneracy map associated with v , which sends the vertex v to the identity
1e; and which can be pictured like this:

?????????

���������

�

e1 ????????

?????????

��������

�

e2 ????????v �

��������

�

�v //

@@@@@@@@@

~~~~~~~~~

�

?????????????????

?????????

��������

e �

��������

�

The following lemma is the generalization to � of the well known fact that in � each
arrow can be written as a composition of degeneracy maps followed by face maps. We
omit the proof.

Lemma 3.1 Any arrow f W A! B in � decomposes as

A
f //

�

��

B

A0
' // B0

ı

OO

where � W A!A0 is a composition of degeneracy maps, 'W A0!B0 is an isomorphism,
and ıW B0! B is a composition of face maps.

4 Dendroidal sets

We now define the category dSet of dendroidal sets and discuss its relation to the
category sSet of simplicial sets.

Definition 4.1 A dendroidal set is a functor �op! Set . A map between dendroidal
sets is a natural transformation. The category of dendroidal sets thus defined is denoted
dSet .

Thus, a dendroidal set X is given by a set XT for each tree T , and a map ˛�W XT!XS

for each map of trees (arrow in �) ˛W S! T ; and these maps have to be functorial in
˛ , in the sense that id�D id and .˛ˇ/�D ˇ�˛� for R

ˇ

�!S
˛

�!T in �. A morphism
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Y
f

�!X of dendroidal sets is given by maps (all denoted) f W YT !XT for each tree
T , commuting with the structure maps (that is, f .˛�y/D ˛�f .y/ for any y 2 YT and
any ˛W S ! T ). An element of XT is called a dendrex (plural dendrices) of shape T

(This terminology is analogous to simplex, simplices). The dendrices of shape � will
be referred to as vertices. As for simplicial sets, we call a dendrex x 2 XT degenerate
if there exists a degeneracy � W T � S and a dendrex y 2XS with ��.y/D x .

Every tree T defines a representable dendroidal set �ŒT � as follows:

�ŒT �S D�.S;T /

By the Yoneda Lemma each dendrex x of shape T in a dendroidal set X corresponds
bijectively to a map yxW �ŒT � ! X of dendroidal sets. If @x W T ! R is a face
map associated to an inner edge or an outer cluster x we use the same notation
@x W �ŒT �!�ŒR� for the induced map of dendroidal sets.

The inclusion functor i W �!� defines an obvious restriction functor

i�W dSet! sSet:

This functor has both a left adjoint i! and a right adjoint i� , given by left and right Kan
extension. The functor i!W sSet! dSet is “extension by zero”,

i!.X /T D

�
Xn; if T is linear with n vertices
�; otherwise

(This is clear from the fact that ��� is a sieve). It follows that i! is full and faithful,
and that i�i! is the identity functor on simplicial sets. The pair .i�; i�/ defines a
morphism of toposes i W sSet! dSet , which is in fact an open embedding.

Example 4.2 If P is an operad, then the dendroidal nerve of P is the dendroidal set
Nd .P/ given by

Nd .P/T D HomOperad.�.T /;P/;

This construction defines a fully faithful functor

Nd W Operad! dSet;

which has various nice properties as we will see. As already noted, any monoidal
category E defines an operad E . The corresponding dendroidal set Nd .E/ will simply
be written Nd .E/ and will be called the dendroidal nerve of E . Note that this extends
the usual (simplicial) nerve of E , in the sense that

i�.NdE/DN.E/:
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The functor Nd W Operad! dSet has a left adjoint

�d W dSet! Operad

defined by Kan extension. For a dendroidal set X , we refer to �d .X / as the operad
generated by X . This functor �d extends the functor � from simplicial sets to categories,
left adjoint to N W Cat! sSet . In particular, we obtain a diagram of functors

sSet
i! //

�

��

dSet
i�

oo

�d

��
Cat

N

OO

j! // Operad

Nd

OO

j�
oo

(with left adjoints on the top or on the left), in which the following commutation
relations hold up to natural isomorphisms

�N D id; �dNd D id; i�i! D id; j �j! D id

and
j!� D �d i!; Nj � D i�Nd ; i!N DNdj!:

The canonical map � i�.X /! j ��d .X / is in general not an isomorphism. (For an
example, consider the representable dendroidal set �ŒT � where T is the tree with three
edges, one binary and one nullary vertex.)

Remark 4.3 For an arbitrary category E , one can also consider the category dE of
dendroidal objects in E , that is, contra-variant functors from � to E . In particular,
if one takes for E the category Top of compactly generated topological spaces, one
obtains in this way the category dTop of dendroidal spaces. Many constructions extend
to this more general context. For example, if P is a topological operad, its dendroidal
nerve Nd .P/ is naturally a dendroidal space, with the special property that its space
Nd .P/� of vertices is discrete. Conversely, from such a dendroidal space X with this
property, one can construct a topological operad, �d .X /.

4.1 Diagrams of dendroidal sets

If X W Sop! sSet is a diagram of simplicial sets (contravariantly) indexed by a small
category S, one can construct a “total” simplicial set

R
S

X as follows. An n–simplex
of
R

S
X is a pair .s;x/ where sD.s0

˛1
�!s1

˛2
�!� � �

˛n
�!sn/ is an n–simplex in the nerve

of S, and x is a function assigning to each map uW Œk�! Œn� in � a k –simplex xk

in X.su.0//, functorial in the following way. If w D uvW Œl �
v

�! Œk�
u

�! Œn�, then
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u.0/ � w.0/ so there is a composition of ˛i ’s from su.0/ to sw.0/ in S, denoted
˛w;u D ˛w.0/ ı˛w.0/�1 ı � � � ı˛u.0/C1 . Then the functorial condition on the x˛ ’s is

˛�w;u.xw/D v
�.xu/:

Here ˛�w;uW X.sw.0// ! X.su.0//, and this is an identity between l –simplices in
X.su.0//. Notice that in the special case where we start with a diagram CW Sop! Cat
of small categories, the diagram N.C/W Sop! sSet , obtained by composing with the
nerve functor, satisfies the identityZ

S

.N.C//DN.

Z
S

C/;

where
R

S
C on the right is the Grothendieck construction.

We shall now give a similar construction for diagrams of dendroidal sets. This construc-
tion will play a role in our definition of weak higher categories in Section 8. For this,
we assume that the indexing category S has finite products. So, let X W Sop! dSet be
a diagram of dendroidal sets. We define a dendroidal set

R
S

X as follows. For a tree
T , an element of

R
S

XT is again a pair .t;x/. Here t 2Nd .S/T is an element of the
dendroidal nerve of S (where S is viewed as an operad via the cartesian structure).
Such an element determines an object in.t/ 2 S, defined by in.t/D t.e1/� � � � � t.en/

where e1; : : : ; en are the input edges of T (in some fixed arbitrary order). Note that
for any arrow uW S ! T in �, the dendrex t determines a map in.t/! in.tu/ in S

(defined by projections, the maps given by t , and the coherence maps in S). Now x

is a function which assigns to each such u an element xu 2 X.in.tu//S , functorial
in the following way: if w D u ı v as in R

v

�!S
u

�!T then there is an induced map
in.tu/

˛u;v

�!in.tw/ in S, and we require

˛�u;v.xv/D v
�.xu/

The set
R

S
XT of such pairs .t;x/ is contravariant in T , and defines the dendroidal

set
R

S
X .

Note that this construction for dendroidal sets truly extends the one for simplicial sets,
in the sense that for a diagram X W Sop! sSet of simplicial sets where S is cartesian,
there is a canonical isomorphism

i!

Z
S

X D

Z
S

i!X:

Algebraic & Geometric Topology, Volume 7 (2007)



Dendroidal sets 1453

5 The tensor product of dendroidal sets

Like any other category of presheaves of sets, the category dSet has a closed cartesian
structure. There is, however, another more interesting monoidal structure on the
category of dendroidal sets, which we aim to describe in this section. To begin with, we
will recall the tensor product for operads from Boardman and Vogt [5, Definition 2.14,
page 41].

5.1 The Boardman–Vogt tensor product

Let P be an operad in Set over C and Q one over D . Their tensor product P˝BV Q is
an operad coloured by the product set C�D . The operations in P˝BV Q are generated
by the following. Any p 2 P.c1; : : : ; cnI c/ and any d 2D define an operation

p˝ d 2 P˝BV Q..c1; d/; : : : ; .cn; d/I .c; d//:

These operations compose in P˝BV Q in a way to make p 7!p˝d a map of operads.
Similarly, each operation q 2Q.d1; : : : ; dn; d/ and each c 2 C define an operation

c˝ q 2 P˝BV Q..c; d1/; : : : ; .c; dn/I .c; d//;

and these compose as in Q. Furthermore, the operations from P and Q distribute over
each other, in the sense that for p 2 P.c1; : : : ; cnI c/ and q 2Q.d1; : : : ; dmI d/;

��n;m..p˝ d/.c1˝ q; : : : ; cn˝ q//D .c˝ q/.p˝ d1; : : : ;p˝ dm/

where �n;m 2†n�m is the permutation described as follows. Consider †n�m as the set
of bijections of the set f0; 1; : : : ; n �m� 1g. Each number in this set can be written
uniquely in the form k �nC j where 0� k <m and 0� j < n as well as in the form
k �mC j where 0� k < n and 0� j <m. The permutation �n;m is then defined by
�n;m.k � nC j /D j �mC k . This tensor product makes the category of operads into a
symmetric monoidal category.

This Boardman–Vogt tensor product preserves colimits in each variable separately.
In fact, there is a corresponding internal Hom, making the category Operad into a
symmetric closed monoidal category. For two operads P and Q as above, Hom.P;Q/
is the operad whose colours are the maps P!Q, and whose operations are suitably
defined multi-natural transformations. (Explicitly, for ˛1; : : : ; ˛n; ˇW P!Q, elements
of Hom.P;Q/.˛1; : : : ; ˛nIˇ/ are maps f assigning to each colour c 2 C of P
an element fc 2 Q.˛1c; : : : ; ˛ncIˇc/: These fc should be natural with respect to
all operations in P . For example, if p 2 P.c1; c2I c/ is a binary operation, then
ˇ.p/.fc1

; fc2
/ 2Q.˛1c1; : : : ; ˛nc1; ˛1c2; : : : ; ˛nc2Iˇc/ is the image under a suitable

permutation of fc.˛1.p/; : : : ; ˛n.p// 2Q.˛1c1; ˛1c2; : : : ; ˛nc1; ˛nc2Iˇc/).

Algebraic & Geometric Topology, Volume 7 (2007)



1454 Ieke Moerdijk and Ittay Weiss

For a symmetric monoidal category E , the Boardman–Vogt tensor product of coloured
operads in E still makes sense for Hopf operads P and Q. For such operads, the
categories AlgE.P/ and AlgE.Q/ are again symmetric monoidal, and a .P˝BV Q/–
algebra in E is the same thing as a P –algebra in AlgE.Q/, and is also the same thing
as a Q–algebra in AlgE.P/.

5.2 The tensor product of dendroidal sets

We now define a tensor product

˝W dSet� dSet! dSet

which is to preserve colimits in each variable separately. Since each dendroidal set
is a colimit of representables, this tensor is completely determined by its effect on
representable dendroidal sets �ŒS � and �ŒT �, which we define as

�ŒS �˝�ŒT �DNd .�.S/˝BV �.T //;

that is, as the dendroidal nerve of the Boardman–Vogt tensor product of the operads
�.S/ and �.T /. It follows by general category theory (see Day [8] and Kelly [17])
that there exists an internal Hom for this tensor, defined for two dendroidal sets X and
Y and an object T of � by

Hom.X;Y /T D HomdSet.�ŒT �˝X;Y /

We summarise this discussion in the following proposition:

Proposition 5.1 There exists a unique (up to natural isomorphism) symmetric closed
monoidal structure on dSet , with the property that there is a natural isomorphism
�ŒS �˝�ŒT �ŠNd .�.S/˝BV �.T // for any two objects S;T of �.

More generally, for suitable symmetric monoidal categories E , there is such a monoidal
structure on the category dE of dendroidal objects. See the Appendix for a discussion
of dendroidal objects.

We mention some basic properties of the tensor product on dSet , in relation to the
tensor product of operads, and to the product of simplicial sets.

Proposition 5.2 The following properties hold.

(i) For any two dendroidal sets X and Y , there is a natural isomorphism

�d .X ˝Y /Š �d .X /˝BV �d .Y /:
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(ii) For any two operads P and Q, there is a natural isomorphism

�d .Nd .P/˝Nd .Q//Š P˝BV Q:

Proof It suffices to check (i) for representable X and Y , in which case it follows
from the identity �dNd Š id : By the same identity, (ii) follows from (i).

Proposition 5.3 For any two simplicial sets X and Y , and any dendroidal set D ,
there are natural isomorphisms

(i) i!.X �Y /Š i!.X /˝ i!.Y /,

(ii) i�Hom.i!.X /;D/Š i�.D/X ,

(iii) i�Hom.i!.X /; i!.Y //Š Y X .

Proof The isomorphisms of type (ii) and (iii) are deduced from those of type (i), using
the fact that i! is fully faithful. For (i), it suffices again to check this for representable
simplicial sets �Œn� and �Œm�. Observe first that, more generally, for any two small
categories C and B,

j!.C�B/Š j!.C/˝BV j!.B/ .1/

This holds in particular for the linear orders Œn� and Œm� viewed as categories, so

i!.�Œn���Œm�/Š i!.N.Œn�/�N.Œm�//

Š i!.N.Œn�� Œm�//

ŠNdj!.Œn�� Œm�/

ŠNd .j!Œn�˝BV j!Œm�/ (by (1))

ŠNd .�.n/˝BV �.m//

Š�Œn�˝�Œm�

Š i!.�Œn�/˝ i!.�Œm�/:

This shows that (i) holds for representables �Œn� and �Œm�; as said, this completes the
proof.

6 The homotopy coherent nerve

In this section we introduce the homotopy coherent dendroidal nerve of an operad
P . This construction plays a crucial role in the definition of homotopy P –algebras
and weak higher categories, in Section 8. We begin by recalling the Boardman–Vogt
resolution of operads [5] and its generalization (see Berger and Moerdijk [4]).
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Let P D .C;P / be an operad in the category of compactly generated topological
spaces, and let H D Œ0; 1� be the unit interval. One can construct a (cofibrant) reso-
lution W .P/! P as follows. W .P/ is again an operad coloured by C . The space
W .P/.c1; : : : ; cnI c/ is a quotient of a space of labelled planar trees. The edges of such
a tree are labelled by elements of C , where in particular the input edges are labelled by
the given c1; : : : ; cn and the output by c . Moreover, the inner edges carry a label t 2H

(a “length”), and each vertex v with input edges labelled b1; : : : ; bn 2 C (in the planar
order) and output edge labelled b 2 C , is labelled by an element p 2P.b1; : : : ; bnI b/.
For example,

c1 ????????

c2��������

p �
b

????????

t

c3

��������

q �

c

where p 2 P.c1; c2I b/, q 2 P.b; c3I c/, t 2 Œ0; 1�. There is a natural (product) topol-
ogy on these trees, coming from the topology on P and that on H . The space
W .P/.c1; : : : ; cnI c/ is now the quotient space, obtained (by identifying isomorphic
planar trees with the same labelling and) the following two relations (illustrated by the
pictures below):

(i) Vertices labelled by an identity can be deleted, taking the maximum of the two
adjacent lengths (or forgetting the lengths altogether if one of the adjacent edges
is outer).

(ii) Edges of length zero can be contracted, using the ıi form of the operad compo-
sition of P .

The operad structure of W .P/ is given by grafting of trees, giving the newly arising
inner edges length 1. The map W .P/! P is given by setting all lengths to zero (that
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is, forget the lengths and compose in P ).

?????????

���������

?????????

��������

�

t

�

========= �

s

���������1c �

=========

���������
maxfs;tg

� �

?????????

���������

========= �

0 c

���������p

NNNNNNNNNNNNNN

=========

���������

qqqqqqqqqqqqqq

� q � � qıi p

In the article [4] by Berger and Moerdijk it is explained in detail how the above
construction can be performed and studied in the more general context of operads in any
symmetric monoidal category .E ;˝; I/, where Œ0; 1� is replaced by a suitable “interval”
H in E . This is an object H equipped with two “points” 0; 1W I

//// H , an
augmentation �W H!I satisfying �0D idD�1, and a binary operation _W H˝H!H

(playing the role of max ) which is associative, and for which 0 is unital and 1 is
absorbing (0_ x D x D x _ 0 and 1_ x D 1D x _ 1). This defines for any operad
P in E a new operad WH .P/ in E mapping to P . The algebras for this operad are
up-to-homotopy P –algebras.

For example, one can take for E the category Cat of small categories which admits the
following model category structure. The weak equivalences are categorical equivalences,
the cofibrations are functors that are injective on objects, and the fibrations are those
functors having the right lifting property with respect to the functor 0!H , where
H is the groupoid 0$ 1 with two objects and one isomorphism between them. The
groupoid H also plays the role of the interval. We examine this possibility below,
when we consider weak n–categories.

Example 6.1 Let Œn� be the linear tree, viewed as a (discrete) topological operad.
So an Œn�–algebra consists of a sequence of spaces X0; : : : ;Xn; together with maps
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fji W Xi!Xj for i � j , such that fii D id and

(1) fkj ıfji D fki

if i � j � k . A W .Œn�/–algebra consists of such a sequence of spaces and maps,
for which (1) holds only up to specified coherent higher homotopies. Since W .Œn�/

is an operad with unary operations only, one can also think of it as a topological
category: it has objects 0; 1; : : : ; n, and an arrow i ! j in W Œn� is a sequence
of “times” tiC1; : : : ; tj�1 (each tk 2 Œ0; 1�). In other words, W Œn�.i; j / is the cube
Œ0; 1�j�i�1 for iC1� j , a point for i D j , and the empty set for i > j . Composition
is given by juxtaposing two such sequences, putting an extra time 1 in the middle:
.tiC1; : : : ; tj�1/W i ! j and .tjC1; : : : ; tk�1/W j ! k compose to give

.tiC1; : : : ; tj�1; 1; tjC1; : : : ; tk�1/:

If C is a category enriched in Top (that is, a topological category with a discrete set of
objects), then the sets of continuous functors

Top.W Œn�; C/

for varying n define a simplicial set, which is exactly the homotopy coherent nerve of
C , described by Vogt [27].

More generally, if E is a symmetric monoidal category with interval H , one can
construct an E –enriched category WH Œn� with

WH Œn�.i; j /DH j̋�i�1

and define for each E –enriched category C its homotopy coherent nerve hcN.C/ as
the simplicial set given by

hcN.C/n D E-Cat.WH Œn�; C/;

that is, the set of all E –enriched functors from WH Œn� to C . For example, if E D Cat
and H D 0$ 1 as above, then an element of hcN.C/2 is given by a triangle

x0 //

!!BBBBBBBB
x1

��
'

x2

which composes up to a specified invertible 2–cell in C .

The above generalizes in a completely straightforward way to operads. Suppose E
and H are as above. Each tree T defines an operad �.T / in Set , which we can
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view as an operad in E (via the functor Operad! Operad.E/). Applying the general-
ized Boardman–Vogt construction yields an operad WH .T / in E . This construction
produces a functor �! Operad.E/, which induces an adjunction

Operad.E/
hcNd // dSet
j�jH

oo

by Kan extension. For an operad Q in E the dendroidal set hcNd .Q/ is called the
homotopy coherent dendroidal nerve of Q, and is given explicitly by

hcNd .Q/T D HomOperad.E/.WH .T /;Q/:

Remark 6.2 The functor j � jH is closely related to the W –construction for operads.
In fact, if P is an operad in Set , then the Boardman–Vogt resolution WH .PE/, of
P viewed as an operad in E , is isomorphic to the operad jNd .P/jH ; as follows by
direct inspection of the explicit construction of WH .PE/ in the article by Berger and
Moerdijk [4]. In particular, for an operad P in Set and an operad Q in E , there is a
natural bijective correspondence

HomOperad.E/.WH .PE/;Q/D HomdSet.Nd .P/; hcNd .Q//:

Remark 6.3 Consider the special case where E is the category Top of compactly
generated spaces, and H is the unit interval. If P is a topological operad and T

is a tree (an object of �), then the set hcNd .P/T of maps of topological operads
WH .�.T //! P has a natural topology, as a topological sum of generalized mapping
fibrations. For example, for the tree T with edges numbered 1; : : : ; 5;

3 ?????????

4���������

�

2 ????????

5��������

�

1

hcNd .P/T is the sum, over all 5–tuples c1; : : : ; c5 of colours of P , of mapping
fibrations of the maps

P.c3; c4I c2/�P.c2; c5I c1/! P.c3; c4; c5I c1/:

Let .dTop/ı be the category of dendroidal spaces with discrete set of vertices. Then
hcNd .P/ with this topology defines a functor hcNd .�/W Operad.Top/! .dTop/ı . This
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functor again has a left adjoint j � jH ;which relates to the Boardman–Vogt resolution
of topological operads in the same way as above, by a natural isomorphism

WH .P/Š jNd .P/jH ;

where Nd and j� jH are now viewed as functors between the categories Operad.Top/
and .dTop/ı .

7 The inner Kan condition for dendroidal sets

Let us begin by recalling some well known facts for simplicial sets (see for example
Gabriel and Zisman [12]). Let ƒk Œn���Œn� be the sub-simplicial set of the standard
n–simplex, defined as the union of all the faces of �Œn� except the one opposite the k th
vertex. A simplicial set X is said to satisfy the Kan condition, or to be a Kan complex,
if for any n� 0 and any k with 0� k � n, any map ƒk Œn�!X can be extended to a
map �Œn�!X . When this is required for 0< k < n only, X is said to be an inner Kan
complex, or, to satisfy the inner Kan condition. This condition was introduced (under
the name ”restricted Kan condition”) by Boardman and Vogt in [5], while inner Kan
complexes are being studied by Joyal [16] under the name quasi-categories. Observe
that the nerve of a category is always an inner Kan complex. In this section we extend
the notion of an inner Kan complex to the context of dendroidal sets.

Consider a tree T . Recall that a face of T is a map S!T which corresponds to either
contracting an inner edge in T or pruning an outer cluster in T . Those corresponding
to an edge contraction, that is, @eW T=e! T for an inner edge e in T , are called inner
faces. Let ƒe ŒT ���ŒT � be the dendroidal subset of the representable dendroidal set
�ŒT �; generated by all the faces of T except the inner face @e . A dendroidal set X is
said to satisfy the inner Kan condition if, for any tree T and any inner edge e in T ,
any map ƒe ŒT �!X extends to a map �ŒT �!X (that is, to an element in XT ). A
dendroidal set satisfying the inner Kan condition is also called an inner Kan complex.

We now list some examples and properties of dendroidal inner Kan complexes. Some
of the proofs involved are quite technical, and we refer to a companion paper [25] for a
detailed exposition of the proofs.

Example 7.1 For any operad P 2 Operad , one can easily check that the dendroidal
nerve Nd .P/ is an inner Kan complex. In fact, any map ƒe ŒT �! Nd .P/ admits
a unique extension to a map �ŒT �! Nd .P/, and this property characterizes those
dendroidal sets that are nerves of operads.

More generally we have the following.
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Proposition 7.2 Let E be a monoidal model category with a chosen interval H . If
P 2 Operad.E/ is a fibrant operad in the sense that each P.c1; : : : ; cnI c/ is fibrant,
then the homotopy coherent nerve hcNd .P/ satisfies the inner Kan condition.

A special case of this for simplicial categories was proved by Cordier and Porter [7].

Remark 7.3 Inner Kan simplicial sets and inner Kan dendroidal sets are related as
follows. For a simplicial set X , the dendroidal set i!.X / is inner Kan if, and only if,
X is. It is also true that if Y is a dendroidal set satisfying the inner Kan condition,
then the simplicial set i�.Y / is again an inner Kan complex. The characterization of
the nerves of operads as those dendroidal sets having unique fillers, is then the direct
analogue of the well known fact that a simplicial set is the nerve of a category if, and
only if, it is inner Kan with unique fillers.

The Grothendieck construction introduced above respects the inner Kan condition in
the following sense.

Proposition 7.4 If X W Sop! dSet is a diagram of dendroidal sets, each of which is
an inner Kan complex, then the dendroidal set

R
S

X is also an inner Kan complex.

Following Cisinski [6], we call a dendroidal set X normal if, for every object T of �
and for every non-degenerate dendrex x 2 XT , the only automorphism of T which
fixes x is the identify. For example if X is any simplicial set, then i!.X / is normal.
And if P is a †–free operad (that is, each †n acts freely), then Nd .P/ is normal.

Theorem 7.5 Let K be a dendroidal set satisfying the inner Kan condition and let X

be a normal dendroidal set. Then the dendroidal set HomdSet.X;K/ satisfies the inner
Kan condition.

The proof is based on a careful analysis of shuffles of trees, together with the fact that
normal dendroidal sets admit a nice skeletal filtration. This theorem specializes to
simplicial sets. Indeed, if X and K are simplicial sets and K is inner Kan, then so
is i!.K/, and hence Hom.i!.X /; i!.K// is a dendroidal inner Kan complex. Applying
i� to it, we see that Proposition 5.3(iii) implies that Hom.X;K/ is a simplicial inner
Kan complex. This simplicial result was already proved by Joyal [16]. Our proof of
Theorem 7.5 thus provides in particular a proof of Joyal’s result, different from the one
given in [16] (and similar to the one in the thesis of Nichols-Barrer [26]).
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8 Applications and further developments

In this last, somewhat speculative section, we would like to point out some possible
further developments of the theory of dendroidal sets, related to “weak” maps between
up-to-homotopy algebras, to enriched and weak higher categories, and to Quillen model
categories.

To begin with, let P be an operad in Set . If E is a symmetric monoidal model category
with a suitable interval H , then WH .P/ is an operad in E whose algebras are homotopy
P –algebras (as mentioned in Section 6 above). The maps of WH .P/–algebras are
maps of homotopy P –algebras which strictly commute with all higher homotopies,
and this is a notion of map which for many purposes is too restrictive. It is possible to
define a weaker notion of map between homotopy P –algebras, but then the question
arises to what extent these weak maps form a category.

Boardman and Vogt [5] construct a “quasi-category” of weak maps in the context
of topological spaces; in Berger and Moerdijk [4, Theorem 6.9] a kind of Segal
category of weak maps is constructed in the context of left proper monoidal model
categories; in Hess, Parent and Scott [15] this question is approached via bimodules.
The theory of dendroidal sets is relevant here. Indeed, WH .P/–algebras in E are the
same thing as operad maps WH .P/! E , or equivalently, as maps of dendroidal sets
Nd .P/! hcNd .E/ (see Remark 6.2 above). They thus arise as the vertices of the
dendroidal set

(2) HomdSet.Nd .P/; hcNd .E//:

Dendrices of shape i Œ1� (where i W �! �) encode a suitable notion of weak map,
and such weak maps can be composed (in an up-to-homotopy way) whenever this
dendroidal set (2) is an inner Kan complex. This is the case, for example, when P is
†–free and every object in E is fibrant, cf Proposition 7.2.

Notice that, more generally, one might consider (weak) P –algebras with values in any
dendroidal set X , as vertices of the dendroidal Hom–set

HomdSet.Nd .P/;X /:

If P is †–free then this dendroidal set is an inner Kan complex whenever X is
(Theorem 7.5), in which case maps between P –algebras (again defined as dendrices
of shape i Œ1�) can be composed. The case X D hcNd .E/ is the one discussed before.
It is also possible to iterate this construction, and consider for another operad Q the
dendroidal set

HomdSet.NdQ;HomdSet.NdP;X //
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which is of course isomorphic to

HomdSet.Nd .P/˝Nd .Q/;X /:

This dendroidal set admits a map from

HomdSet.Nd .P˝BV Q/;X /

but is in general not isomorphic to it, unless X is (the dendroidal nerve of) an operad.
In particular, for the case X D hcNd .E/, one has a map

Hom.WH .P˝BV Q/; E/! Hom.jNd .P/˝Nd .Q/jH ; E/

which gives different but related notions of iterated weak algebras in E . It would
be interesting to compare this to the work of Dunn, Fiedorowicz, and Vogt on the
tensor product of operads (see, for example, Dunn [9] and Fiedorowicz [10]) . (In this
context, we should point out that, up to now, P and Q have been operads in Set , but
the same applies to topological operads. Indeed, for the category Top of compactly
generated spaces, the homotopy coherent dendroidal nerve hcNd .Top/ with respect
to the usual unit interval is naturally a (large) dendroidal space. If P is an operad
in Top, then homotopy P –algebras in Top are the vertices of the dendroidal space
Hom.Nd .P/; hcNd .Top//, etc. We expect that (under suitable cofibrancy conditions
on P ) this dendroidal space satisfies the inner Kan condition.

We would like to consider the special case of the operad AS whose algebras are
categories with a given set S as objects (Example 2.4). Note that this operad is †–free
(like any operad obtained by symmetrization, cf. Remark 2.3). For a fixed dendroidal
set X , one can consider the dendroidal set

Hom.Nd .AS /;X /:

By definition, we call its vertices X –enriched categories over S . Its dendrices of
shape i Œ1� provide an interpretation of the notion of “functor” between X –enriched
categories over S . By varying S , one obtains a Set–indexed diagram of dendroidal
sets, which the dendroidal Grothendieck construction (see Section 4.1) assembles into
a single dendroidal set

Cat.X / WD
Z

Set
Hom.Nd .AS/;X /:

By definition, its vertices are categories enriched in X , while its dendrices of shape i Œ1�

are functors between such categories. In this context, it is relevant to observe that by
Theorem 7.5 and Proposition 7.4, Cat.X / is a dendroidal inner Kan complex whenever
X is, so that a composition of functors between X –enriched categories exists. We
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also note that the construction can be iterated, so as to form the dendroidal inner Kan
complex

Cat2.X /D Cat.Cat.X //

of X –enriched bicategories, and so on.

Let us consider a few special cases of this construction. First of all, if E is a symmetric
monoidal category, one can construct its dendroidal nerve Nd .E/. The dendroidal
set Cat.Nd .E// then captures the usual notion of E –enriched categories and functors.
More precisely, it is isomorphic to the dendroidal nerve of the usual monoidal category
Cat.E/ of E –enriched categories,

Cat.Nd .E//ŠNd .Cat.E//;

where Cat.E/ is considered as an operad via the usual tensor product of enriched
categories. As a particular case, consider the category Cat of small categories with
its cartesian monoidal structure. Then the dendroidal set Catn.Nd .Cat//; obtained by
iterating the construction n times, is the dendroidal nerve of the category of strict .nC1/–
categories. It also encodes all higher structure of functors, natural transformations,
modifications, and so on.

If E is a monoidal model category with a suitable interval H , one can consider
categories enriched in the homotopy coherent nerve hcNd .E/ (defined in terms of H ).
For example, if E is the category of chain complexes over a ring R (with the projective
model structure and the usual interval H of normalized chains on the standard 1–
simplex), then Cat.hcNd .E// is a dendroidal inner Kan complex whose vertices are
precisely A1–categories (see Fukaya [11], Lefèvre-Hasegawa [18] and Lyubashenko
[22]). As another example, let E D Top with the unit interval, and consider for the
one-point set � the operad AssDA� and the dendroidal inner Kan complex

A1 D Hom.Nd .Ass/; hcNd .E//:

The vertices of this dendroidal set are precisely A1–spaces, while dendrices of more
general shapes encode operations between A1–spaces. Again, the construction can be
iterated to form dendroidal inner Kan complexes A

.1/
1 DA1 and

A
.nC1/
1 D Hom.Nd .Ass/;A.n/1 /:

It would be interesting to study the relation between A
.n/
1 and n–fold loop spaces in

topology (see Dunn [9] and May [24]). In this context, it is important to note that,
although Ass˝BV AssD Comm, the dendroidal tensor product Nd .Ass/˝Nd .Ass/
is considerably larger than Nd .Comm/, and in fact cannot be the nerve of an operad.
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Finally, the category Cat of small categories itself is a monoidal model category with
interval H as in Section 6 above, and

Hom.Nd .AS /; hcNd .Cat//

is a dendroidal inner Kan complex capturing the notion of a bicategory with S as set of
objects (see Bénabou [2]) or rather the notion of an unbiased bicategory (see Leinster
[20]). This construction can again be iterated. For example, the dendroidal inner
Kan complex Hom.Nd .Ass/;Hom.Nd .Ass/; hcNd .Cat/// captures braided monoidal
categories (and all higher maps between them). The above construction of categories
enriched in E yields, by considering E D Cat , an inductive definition of weak n–
categories. More precisely, let WCat1 D Cat and for n> 1 let

WCatn D Catn�1.hcNd .Cat//:

For each n � 1, WCatn is a dendroidal inner Kan complex. Its vertices are weak
n–categories of a special kind. (They have an underlying strict category of 1–cells,
and for any two objects x and y , the same is true at level n� 1 for the dendroidal set
Hom.x;y/). There are many alternative notions of weak n–categories in the literature
(see Leinster [19] for a survey of 10 such definitions and Baez and Dolan [1] for a
more general discussion of weak n–categories), and we expect that for any reasonable
notion, a weak n–category can be “strictified” to a weak n–category in our sense.

Finally, we would like to say a few words about possible Quillen model structures on
dendroidal Sets. Recall from Joyal [16] and Lurie [21] that there is a Quillen model
structure on simplicial sets, in which the inner Kan complexes are exactly the fibrant
objects. This model structure is related to the “folk” monoidal model structure on
Cat already mentioned above, in which the weak equivalences are the equivalences of
categories and the cofibrations are the functors which are injective on objects. Indeed,
a map X ! Y between simplicial sets is a weak equivalence in Joyal’s model structure
if, and only if, for every simplicial inner Kan complex K , the map �.KY /! �.KX /

is an equivalence of categories (here � W sSet! Cat is the functor discussed in Section
4). The analog of Theorem 7.5 for simplicial sets, which states that KX and KY are
again inner Kan complexes, plays an important role in Joyal’s model structure.

The folk model structure on Cat generalizes without much effort to one on (coloured)
operads, in which a map f W Q! P , from an operad Q on D to an operad P on
C (as in Section 2) is a weak equivalence if, and only if, j �.f /W j �Q! j �P is an
equivalence of categories, and moreover f induces a bijection

Q.d1; : : : ; dnI d/! P.fd1; : : : ; fdnIfd/
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for any sequence d1; : : : ; dn; d of colours in D . We conjecture that the inner Kan
complexes are the fibrant objects in a model structure on dendroidal sets in which
a map X ! Y is a weak equivalence if, and only if, for any dendroidal inner Kan
complex K , the map

�d .HomdSet.Y;K//! �d .HomdSet.X;K//

is a weak equivalence of operads. Theorem 7.5 should be a substantial step towards a
proof of this conjecture.

Appendix A The tensor product of dendroidal objects

Let E be a symmetric monoidal category. The category of dendroidal objects in E is the
functor category E�op

, which we denote by dE . This category has a Boardman–Vogt
style tensor product, and a corresponding internal Hom whenever E itself is closed.
The construction and its basic properties are explained most easily after recalling some
basic facts about “enriched Kan extensions”, so we’ll do that first. None of the material
in Section A.1 is really new, and we refer the reader to Kelly [17] for more background.

A.1 Enriched Kan extensions

We begin by developing a bit of formalism similar to the language of rings and bimodules.
Let E be a symmetric monoidal category, and let S be any E –enriched category.
Suppose S is tensored over E . (This means that one can construct an object E˝S

in S for E in E and S in S , with the property that there is a natural Hom–tensor
correspondence between maps E˝S!T in S and E!Hom.S;T / in E ; see Kelly
[17] for a formal definition. For small categories A and B (in Set), we write

AEB D EBop�A

for the category of functors Bop �A! E . For objects X 2A EB and A in A , B in B,
we write

AXB DX.B;A/ 2 E
for the value at .B;A/. Also, if A or B is the trivial category ? we delete it from the
notation. So

AE? D AE D EA; ?EB D EB D EBop
:

Now assume E has small limits and S has small colimits. There is a tensor product
functor

(3) ˝B D CEB � BSA! CSA
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defined for E in CEB and S in BSA , by the usual coequalizer

C .E˝B S/A
`

B.C EB/˝ .BSA/oo
`

B!B0.C EB0/˝ .BSA/oo oo

for any two objects C 2 C, A 2 A . This tensor product has a corresponding internal
Hom,

(4) HomAW BSA � CSA! CEB;

satisfying the usual adjunction property stating a bijective correspondence between
maps

E˝B S ! T in CSA

and maps
E! HomA.S;T / in CEB:

We point out two special cases of this Hom–tensor correspondence. First, if F is an
element of BSA , that is, F W B! SA; then we obtain adjoint functors

f!W EB
// SA Wf

�oo

defined in terms of the previous functors for the special case ?D C, by

f!.E/DE˝B F f �.S/D HomA.F;S/D Hom.F;S/:

These functors f � and f! are the right and left Kan extensions along F . Secondly,
there are “external” tensor and Hom functors

(5) ˝W EC �SA! SC�A

(6) HomAW SA �SC�A! EC

for which there is a natural correspondence between maps

X˝Y !Z in SC�A

and
X ! HomA.Y;Z/ in EC

Indeed, this is the special case where BD ? while C is replaces by Cop , so that (3)
and (4) can be rewritten as ˝W CopE � EA! CopEA and HomAW SA � CopSA! CopE ,
defining (5) and (6).

Now consider a functor F W A�A! SA , that is, F 2A�A SA . Then by Kan extension
we have a functor

EA �SA

˝
// SA�A

f! // SA
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which we write as ˝.F / ; so

E˝.F / S D f!.E˝S/D .E˝S/˝A�A F:

The above discussion also yields a corresponding Hom–functor, denoted

Hom.F /W SA �SA! EA;

for which there is a bijective correspondence between maps

E˝.F / S ! T (in SA )

and maps
E! Hom.F /.S;T / (in EA ).

Indeed, one can simply define Hom.F / in terms of the earlier Hom and the right adjoint
f � , as

Hom.F /.S;T /D HomA.S; f �T /

A.2 Monoidal closed structure of dE

Let us now consider a complete and cocomplete symmetric closed monoidal category
E , and the category dE of dendroidal object in E . Let A D �, let S D E , and let
F D BV be the Boardman–Vogt tensor product of Hopf operads in E , restricted to
operads coming from �:

BV W ��� // Operad.E/
Nd // dE

Then the last construction of Section A.1 yields a functor

˝
.BV /
W dE � dE! dE

and a corresponding Hom–functor

Hom.BV /
W dE � dE! dE

satisfying the usual properties, and making dE into a closed symmetric monoidal
category.
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