Volume 7, issue 3 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Classification of braids which give rise to interchange

Stefan Forcey and Felita Humes

Algebraic & Geometric Topology 7 (2007) 1233–1274

arXiv: math/0512165


It is well known that the existence of a braiding in a monoidal category V allows many higher structures to be built upon that foundation. These include a monoidal 2–category V–Cat of enriched categories and functors over V, a monoidal bicategory V–Mod of enriched categories and modules, a category of operads in V and a 2–fold monoidal category structure on V. These all rely on the braiding to provide the existence of an interchange morphism η necessary for either their structure or its properties. We ask, given a braiding on V, what non-equal structures of a given kind from this list exist which are based upon the braiding. For example, what non-equal monoidal structures are available on V–Cat, or what non-equal operad structures are available which base their associative structure on the braiding in V. The basic question is the same as asking what non-equal 2–fold monoidal structures exist on a given braided category. The main results are that the possible 2–fold monoidal structures are classified by a particular set of four strand braids which we completely characterize, and that these 2–fold monoidal categories are divided into two equivalence classes by the relation of 2–fold monoidal equivalence.

iterated monoidal categories, enriched categories, braided categories
Mathematical Subject Classification 2000
Primary: 57M99
Received: 17 January 2007
Revised: 12 July 2007
Published: 24 September 2007
Stefan Forcey
Department of Physics and Mathematics
Tennessee State University
Nashville TN 37209
Felita Humes
Department of Mathematics
College of the Bahamas
P O Box N4912 Nassau