Volume 7, issue 3 (2007)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Dendroidal sets

Ieke Moerdijk and Ittay Weiss

Algebraic & Geometric Topology 7 (2007) 1441–1470

arXiv: math.AT/0701293

Abstract

We introduce the concept of a dendroidal set. This is a generalization of the notion of a simplicial set, specially suited to the study of (coloured) operads in the context of homotopy theory. We define a category of trees, which extends the category Δ used in simplicial sets, whose presheaf category is the category of dendroidal sets. We show that there is a closed monoidal structure on dendroidal sets which is closely related to the Boardman–Vogt tensor product of (coloured) operads. Furthermore, we show that each (coloured) operad in a suitable model category has a coherent homotopy nerve which is a dendroidal set, extending another construction of Boardman and Vogt. We also define a notion of an inner Kan dendroidal set, which is closely related to simplicial Kan complexes. Finally, we briefly indicate the theory of dendroidal objects in more general monoidal categories, and outline several of the applications and further theory of dendroidal sets.

Keywords
operad, homotopy coherent nerve, Kan complex, tensor product of operads, weak $n$–categories, algebras up to homotopy
Mathematical Subject Classification 2000
Primary: 55P48, 55U10, 55U40
Secondary: 18D50, 18D10, 18G30
References
Publication
Received: 16 May 2007
Accepted: 15 June 2007
Published: 14 November 2007
Authors
Ieke Moerdijk
Department of Mathematics
Utrecht University
P O Box 80010
3508 TA Utrecht
The Netherlands
http://www.math.uu.nl/people/moerdijk/
Ittay Weiss
Department of Mathematics
Utrecht University
P O Box 80010
3508 TA Utrecht
The Netherlands