Volume 8, issue 1 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24, 1 issue

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On non fundamental group equivalent surfaces

Mina Teicher and Michael Friedman

Algebraic & Geometric Topology 8 (2008) 397–433
Bibliography
1 M Amram, C Ciliberto, R Miranda, M Teicher, Braid monodromy factorization for a non-prime $K3$ surface branch curve
2 M Amram, M Friedman, M Teicher, The fundamental group of complement of a branch curve of a Hirzebruch surface $F_{2,(2,2)}$
3 M Amram, M Teicher, The fundamental group of the complement of the branch curve of the double torus, Journal of Mathematics 40 (2003) 587
4 D Auroux, S K Donaldson, L Katzarkov, M Yotov, Fundamental groups of complements of plane curves and symplectic invariants, Topology 43 (2004) 1285 MR2081427
5 C Ciliberto, R Miranda, On the Gaussian map for canonical curves of low genus, Duke Math. J. 61 (1990) 417 MR1074304
6 C Ciliberto, R Miranda, M Teicher, Pillow degenerations of $K3$ surfaces, from: "Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001)", NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer Acad. Publ. (2001) 53 MR1866895
7 M Friedman, M Teicher, On the fundamental group related to the Hirzebruch surface $F_1$
8 V S Kulikov, M Teicher, Braid monodromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000) 89 MR1770673
9 E Liberman, M Teicher, The Hurwitz equivalence problem is undecidable arXiv:math.LO/0511153
10 C Liedtke, On fundamental groups of Galois closures of generic projections, Bonner Mathematische Schriften [Bonn Mathematical Publications], 367, Universität Bonn Mathematisches Institut (2004) MR2206239
11 B Moishezon, On cuspidal branch curves, J. Algebraic Geom. 2 (1993) 309 MR1203688
12 B Moishezon, A Robb, M Teicher, On Galois covers of Hirzebruch surfaces, Math. Ann. 305 (1996) 493 MR1397434
13 B Moishezon, M Teicher, Simply-connected algebraic surfaces of positive index, Invent. Math. 89 (1987) 601 MR903386
14 B Moishezon, M Teicher, Braid group technique in complex geometry. I. Line arrangements in $\mathbb{CP}^2$, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 425 MR975093
15 B Moishezon, M Teicher, Braid group technique in complex geometry. II. From arrangements of lines and conics to cuspidal curves, from: "Algebraic geometry (Chicago, IL, 1989)", Lecture Notes in Math. 1479, Springer (1991) 131 MR1181212
16 B Moishezon, M Teicher, Braid group techniques in complex geometry. IV. Braid monodromy of the branch curve $S_3$ of $V_3\to \mathbb{CP}^2$ and application to $\pi: (\mathbb{CP}^2-S_3,*)$, from: "Classification of algebraic varieties (L'Aquila, 1992)", Contemp. Math., Amer. Math. Soc. (1994) 333 MR1272707
17 B Moishezon, M Teicher, Braid group technique in complex geometry. V. The fundamental group of a complement of a branch curve of a Veronese generic projection, Comm. Anal. Geom. 4 (1996) 1 MR1393558
18 A Robb, The topology of branch curves of complete intersections, PhD thesis, Columbia university (1994)
19 A Robb, On branch curves of algebraic surfaces, from: "Singularities and complex geometry (Beijing, 1994)", AMS/IP Stud. Adv. Math. 5, Amer. Math. Soc. (1997) 193 MR1468277
20 E R Van Kampen, On the Fundamental Group of an Algebraic Curve, Amer. J. Math. 55 (1933) 255 MR1506962