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Holomorphic disks, link invariants and
the multi-variable Alexander polynomial

PETER OZSVÁTH

ZOLTÁN SZABÓ

The knot Floer homology is an invariant of knots in S3 whose Euler characteristic
is the Alexander polynomial of the knot. In this paper we generalize this to links in
S3 giving an invariant whose Euler characteristic is the multi-variable Alexander
polynomial. We study basic properties of this invariant, and give some calculations.

57M27; 57M25

1 Introduction

The knot Floer homology defined by the authors [20] and by Rasmussen [24] is an
invariant for knots in S3 whose Euler characteristic is the Alexander polynomial of the
knot. Our aim here is to give a suitable generalization of this invariant to links in S3,
giving rise to an invariant whose Euler characteristic is the multi-variable Alexander
polynomial.

Specifically, let L� S3 be a link with ` components. Let H DH1.S
3�LIZ/. Let

ZŒH � denote the group-ring of H, written as sumsX
h2H

ah � e
h;

where ah 2Z is zero for all but finitely many h2H . Note that H ŠZ` is generated by
the meridians f�ig

`
iD1

for the components Ki of L. Thus, an orientation for L, denoted
by EL, induces an identification between ZŒH � and the ring of Laurent polynomials in
` variables (corresponding to the components of L). Consider now the affine lattice
HDH.L/ over H, given by elements

X̀
iD1

ai � Œ�i �;

where ai 2Q satisfies the property that 2aiC lk.Ki ;L�Ki/ is an even integer, where
here lk denotes linking number.
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616 Peter Ozsváth and Zoltán Szabó

We define a link invariant bHFL. EL/, which has the structure of a vector space over
the field F D Z=2Z equipped with a splitting into direct summands indexed by pairs
consisting of an integer (the “homological grading”) and an element of H

bHFL. EL/Š
M

d2Z;h2H

bHFLd . EL; h/:

A few remarks are in order about these gradings. First of all, the ranks of the groups
bHFL. EL; h/ are independent of the orientation of L, but their homological gradings

depend on this data. Its graded Euler characteristic is the Alexander polynomial in the
following sense.

Recall that an `-component link L has a symmetric multi-variable Alexander polyno-
mial �L . The link invariant is related to the multi-variable Alexander polynomial by
the relation

(1)
X
h2H

�
� bHFL�. EL; h/

�
� eh
D

8<:
�Q`

iD1.T
1
2

i �T
� 1

2

i /

�
��L if ` > 1,

�L if `D 1.

The symmetry of the Alexander polynomial has the following manifestation in link
Floer homology: There is an identification

bHFL�. EL; h/Š bHFL��2ı.h/. EL;�h/;

where here

ı

0@X̀
iD1

ai � Œ�i �

1AD X̀
iD1

ai :

This invariant should be compared with the link invariant described in [20]. Specifically,
that paper gives an invariant for oriented links EL� S3

bHFK. EL/Š
M

d;s2Z

bHFKd . EL; s/;

using the observation that an oriented `–component link in S3 naturally gives rise
to a null-homologous knot in #`�1.S2 � S1/, to which one can in turn apply the
knot Floer homology functor, obtaining a bigraded theory associated to this link.
One of the factors of the bigrading comes from the Z–grading by s 2 Z as above,
and the second comes from the internal homological grading of the Heegaard Floer
homology of #`�1.S2 �S1/ (whose grading takes values in ZC `�1

2
). Taking the

Euler characteristic of this knot Floer homology in a suitable sense gives a normalized
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Holomorphic disks and link invariants 617

version of the Alexander-Conway polynomial of the oriented link. An orientation EL of
a link L gives rise to a homomorphism oW H �! Z, which extends to a map of H to
the integers. Under the map o, the multi-variable Alexander polynomial is carried to
the Alexander-Conway polynomial. This fact admits the following generalization on
the homological level:

Theorem 1.1 Let L� S3 be a link endowed with an orientation, denoted EL. Then,
we have an identification

bHFK
�C. `�1

2
/.
EL; s/Š

X
fh2H

ˇ̌
o.h/Dsg

bHFL�. EL; h/;

where oW H �! Z is the natural homomorphism induced by the orientation.

Knot Floer homology can be viewed as the homology of the graded object associated
to a filtered chain complex whose total homology is Z; and indeed, the filtered chain
homotopy type of this complex is a knot invariant, cf Ozsváth–Szabó [19] and Ras-
mussen [24] (see also Lee [13], Rasmussen [25] and Gornik [6] for corresponding
results in Khovanov’s homology, Khovanov [9] and Khovanov–Rozansky [11]). Thus,
there is a spectral sequence starting with knot Floer homology, and converging to an
E1 term which has rank one. We have the following generalization of this fact to link
Floer homology:

Theorem 1.2 There is a spectral sequence whose E1 term is bHFL. EL/, and whose
E1 term is isomorphic to the exterior algebra ƒ�V , where V is a vector space of rank
`� 1. In fact, the spectral sequence is an invariant of the link L.

The proof is given in Section 6, but we pause here for a few remarks on the construction
of this spectral sequence and its meaning.

An orientation for L gives a basis .m1; : : : ;m`/ for H (given by the oriented meridians
of the various components of L), and hence a partial ordering on H, defined by h1�h2

if
h1� h2 D

X
i

ti �mi ;

where all the ti are non-negative integers. The above theorem is proved by constructing
a chain complex 1CFL. EL/ (cf Definition 4.9) which admits both a Z–grading and an
H–filtration, i.e. the group underlying this chain complex splits as a group

1CFL. EL/Š
M

d2Z;h2H

1CFLd . EL; h/;

Algebraic & Geometric Topology, Volume 8 (2008)
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and its differential b@W 1CFL. EL/ �!1CFL. EL/ carries 1CFLd . EL; h/ intoM
h0�h

1CFLd�1. EL; h
0/:

Moreover, there is an induced differentialbb@ W 1CFLd . EL; h/ �!1CFLd�1. EL; h/;

obtained by post-composing the differential b@ with the projection mapM
h0�h

1CFL. EL; h0/ �!1CFL. EL; h/:

The homology of this graded object is identified with bHFLd . EL; h/. Moreover, the
filtered chain homotopy type of 1CFL. EL/ is a link invariant, and its the total homology
is identified with ƒ�V .

Succinctly, this equips bHFL. EL/ with an additional differential mapping bHFLd . EL; h/

into
L

h0<h
bHFLd�1. EL; h

0/, in such a way that the total homology is ƒ�V . Moreover,
the absolute gradings on bHFL. EL/ are fixed so that the top-dimensional class in ƒ�V
is supported in degree zero.

In [18] we showed that the knot Floer homology of an alternating knot is determined
explicitly in terms of the Alexander polynomial and signature of the knot. Using this
result, together with Equation (1) and Theorem 1.1, we obtain the following:

Theorem 1.3 Let L be an ` > 1–component oriented link with connected, alternating
projection. Letting �L.T1; : : : ;T`/ denote the multi-variable Alexander polynomial
of L, write 0@Ỳ

iD1

�
T

1
2

i �T
� 1

2

i

�1A ��L.T1; : : : ;T`/D
X
h2H

ah � e
h:

Then,
bHFL. EL; h/D F jahj�

o.h/C��`C1
2

�
where here � denotes the signature of the oriented link L, and Fn

.d/
denotes the

n–dimensional graded F –vector space supported entirely in grading d.

Link Floer homology satisfies a Künneth principle for connected sums. Specifically,
let L1 and L2 be a pair of oriented links, and distinguish components K1 2L1 and

Algebraic & Geometric Topology, Volume 8 (2008)



Holomorphic disks and link invariants 619

K2 2L2 . Let L1#L2 denote the link obtained from the disjoint union of L1 and L2 ,
via a connected sum joining K1 and K2 . There is a natural map

H.L1/˚H.L2/ �!H.L1#L2/;

written h1; h2 7! h1#h2 . This is the map which sends both the meridian for K1 and
the meridian for K2 (in L1 and L2 ) to the meridian for the connected sum K1#K2 .

Theorem 1.4 There is an isomorphism:

bHFL�. EL1# EL2; h/Š
X

fh12H.L1/;h22H.L2/
ˇ̌
h1#h2Dhg

bHFL�. EL1; h1/˝ bHFL�. EL2; h2/

The above theorem is proved in Section 11, along with some of its natural generaliza-
tions.

1.1 A further variant

There are several variations of link Floer homology. In Section 4, we construct a chain
complex CFL�. EL; h/, which is a Z–graded and H–filtered chain complex of free
modules over the ring F ŒU1; : : : ;U`�. Multiplication by Ui lowers homological degree
by two and it lowers the filtration level by the basis element mi 2 H . As shown in
Theorem 4.4, the filtered chain homotopy type of this complex is an invariant of the
link. The relationship between this and the earlier construction is encoded in the fact
that 1CFL. EL/ is gotten from CFL�. EL/ by setting each Ui D 0.

The homology of the associated graded object is an oriented link invariant HFL�. EL/
which is a module over the ring F ŒU1; : : : ;U`�, endowed with a Z–grading (inherited
from a Z–grading on CFL�. EL/) and an additional grading by elements of H (induced
from the filtration). We denote this multi-grading

HFL�. EL/Š
M

d2Z;h2H

HFL�d . EL; h/:

Calculating HFL�. EL; h/ is more challenging than calculating bHFL. EL; h/, as its dif-
ferential counts more holomorphic disks.

The Euler characteristic in this case is given by the formula

(2)
X
h2H

�
�
HFL�� . EL; h/

�
� eh
PD

(
�L if ` > 1,
�L

.1�T /
if `D 1;

Algebraic & Geometric Topology, Volume 8 (2008)



620 Peter Ozsváth and Zoltán Szabó

where here f PDg means that two polynomials differ by multiplication by units. More
succinctly, Equation (2) says that the Euler characteristic of HFL�. EL; h/ is the Milnor
torsion of L� S3 [17].

The fact that 1CFL. EL/DCFL�. EL/=fUi D 0g`
iD1

as chain complexes has the following
manifestation on the level of homology, proved in Section 7:

Theorem 1.5 For each fixed d 2 Z and h 2 H , the F –module HFL�
d
. EL; h/ is the

homology of a filtered chain complex whose E1 term in dimension d is given byM
.a1;:::;a`/�0

U
a1

1
� : : : �U

a`
`
� bHFLdC2a1C:::2a`.

EL; hC a1 �m1C � � �C a` �m`/:

For HFL� , we have the following analogue of Theorem 1.2, proved in Section 10:

Theorem 1.6 There is a spectral sequence, which is a link invariant, whose E1 term
is HFL�. EL/, and whose E1 term is isomorphic to the F ŒU1; : : : ;U`�–module F ŒU �,
where each Ui acts as multiplication by U.

1.2 About the construction

Link Floer homology is constructed using suitable multiply-pointed Heegaard diagrams
for links. More precisely, if L is a link with ` components, we consider a Heegaard
decomposition of S3 as U˛[Uˇ , with the property that L\U˛ and L\Uˇ consists
of ` unknotted arcs. The link L can now be encoded in a genus g Heegaard diagram
for S3 , with gC `� 1 attaching circles ˛1; : : : ; ˛gC`�1 for the index one handles,
and gC `� 1 attaching circles ˇ1; : : : ; ˇgC`�1 for the index two attaching circles,
and also 2` points w1; z1; : : : ; w`; z` where the link crosses the mid-level. bHFL is
a variant of Lagrangian Floer homology in the g C ` � 1–fold symmetric product
of † punctured in the basepoints wi and zi . These topological considerations lead
naturally to the notion of balanced Heegaard diagrams, which are Heegaard diagrams
for a (closed, oriented) three-manifold with ` zero- and ` three-handles. Theorems 1.2
and 1.6 are obtained from extending Heegaard Floer homology to the case of such
balanced Heegaard diagrams.

This paper is organized as follows. In Section 2, we review some of the algebraic
terms used throughout this paper. In Section 3, we discuss balanced Heegaard diagrams
associated to links, and also the topological data which can be extracted from them.
We also address admissibility issues which will be required to define the Heegaard
Floer complexes. In Section 4, we describe the Heegaard Floer homology complexes
associated to balanced Heegaard diagrams. In this case, the proof that @2 D 0 is
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Holomorphic disks and link invariants 621

slightly more subtle than the usual case considered in [21]: Specifically, it is now
no longer true that the total count of boundary degenerations, disks with boundary
lying entirely in T˛ (or Tˇ ), is zero. These issues are addressed in Section 5, where
the analytical preliminaries are set up. For certain technical reasons, we find it also
convenient to adopt the “cylindrical” approach to Heegaard Floer homology developed
by Lipshitz [15], where one considers pseudo-holomorphic multi-section of the trivial
†–bundle over a disk, rather than disks in the symmetric product of †.

With the help of this, in Section 6, it is established that @2D0, and indeed, the Heegaard
Floer homology for balanced Heegaard diagrams is identified with the usual Heegaard
Floer homology.

With this background in place, the invariants for links are easy to construct, and their
invariance properties are readily verified in Section 7. In particular, Theorems 1.2, 1.5,
and 1.6 are quick consequences of the constructions.

With the link invariants in hand, we turn to some of their basic properties. In Section
8 we establish certain symmetry properties, which parallel the usual symmetry of the
Alexander polynomial.

In Section 9, we turn to the Euler characteristic statements, verifying Equations (1)
and (2).

In Section 10 we relate the present form of link homology with the earlier form derived
from knot Floer homology in [20], establishing Theorem 1.1.

The Künneth principle for connected sums (Theorem 1.4 above, and also some more
general statements for CFL� ) is established in Section 11.

In Section 12, we establish Theorem 1.3. We give also some principles which help
computing the spectral sequence from Theorem 1.2. These principles allow one to
determine the spectral sequence for all two-bridge links from the signature and the
multi-variable Alexander polynomial.

We illustrate these principles in some particular examples, giving also some calculations
for the two non-alternating, seven-crossing links, as well.

1.3 Further remarks

We have set up here link Floer homology bHFL as the homology of a graded object
associated to a filtration of a chain complex for #`�1.S2 � S1/. As such, it gets
the extra differentials promised in Theorem 1.2. If one is not interested in this extra
structure, but only bHFL as a graded group, then its construction is somewhat more
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622 Peter Ozsváth and Zoltán Szabó

elementary than the constructions described here. Properties of this invariant, and
further computations, are given in [22].

To some degree, link Floer homology can be viewed as a categorification of the
multi-variable Alexander polynomial. It is interesting to compare this with the recent
categorification of the HOMFLY polynomial, Khovanov and Rozansky [10], see also
Khovanov [9], Khovanov and Rozansky [11] and Dunfield, Gukov and Rasmussen [2].
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2 Algebraic preliminaries

We begin by fixing some terminology from homological algebra which will be used
throughout this paper. We give the set Z` the partial ordering a D .a1; : : : ; a`/ �

b D .b1; : : : ; b`/ if each ai � bi . Let S be an affine space for Z` . Natural examples
include the affine space H introduced in the introduction, where we think of Z`

as identified with the first homology of a link complement (where the identification
induced by orientations on the link). Another is the set of relative Spinc structures over
the link complement, cf Section 3.2 below. The ordering on Z` induces an ordering
on S. An S–filtered module over F is an R–module M equipped with an exhausting
family of sub-modules F.M; a/�M indexed by a2S, with the containment relation
F.M; a/ � F.M; b/ if a � b . A module homomorphism �W M �!M 0 with the
property that for all a 2 Z` , �

�
F.M; a/

�
� F.M 0; a/ is called a morphism of S–

filtered modules. A filtered S–complex is a chain complex for which the differential @
is a morphism of S–filtered modules. The homology of an S–filtered chain complex
inherits a natural Z` filtration.

Two S–filtered chain maps �1; �2W A �! B between S–filtered chain complexes
A and B are said to be filtered chain homotopic if there is a morphism of S–filtered
modules H W A�!B with @ıH �H ı@D �1��2 . Two S–filtered chain complexes
A and B are S–filtered chain homotopy equivalent if there are filtered chain maps
f W A �! B and gW B �!A with the property that both f ıg and g ı f are filtered
chain homotopic to the the corresponding identity maps. If C and C 0 are filtered chain
homotopy equivalent, we write C ' C 0 . Clearly, this forms an equivalence relation on
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the set of S filtered chain complexes, and the induced equivalence class of a given
S–filtered chain complex is called its S–filtered chain homotopy type.

Given a S–filtered complex, we can form the associated graded object

gr.C /D
M
a2S

gr.C; a/;

where
gr.C; a/D Coker

�M
b<a

F.C; b/ �! F.C; a/
�
:

Clearly the homology of the associated graded object of a Z`–filtered chain complex
C depends on only the filtered chain homotopy type of C.

Given any set T�S with the property that for all a 2 T if b � a, then b 2 T, we can
form the subcomplex C.T/� C .

We will consider modules over the ring RD F ŒU1; : : : ;U`�. An S filtered R–module
is an R–module whose underlying F –module (gotten by forgetting the action of Ui )
is S–filtered, and has the additional property that

U a1 � : : : �U a` �F.M; b/� F.M; b� a/;

where a D .a1; : : : ; a`/. The notions of morphisms, chain complexes, homotopies,
and homotopy type extend in a straightforward manner: we consider maps which are
simultaneously S filtered and which are also R–modules. If C is a chain S–filtered
chain complex of R–modules, the chain complex bC D C ˝F ŒU1;:::;U`� F gotten by
setting each UiD 0 is also a Z`–filtered chain complex (whose filtered chain homotopy
type depends on C only up to its filtered chain homotopy type).

A free Zn –filtered chain complex of R–modules is one which admits a homogeneous
generating which freely generates the underlying complex over F ŒU1; : : : ;U`�. In
particular, as a F –module, C splits as a direct sum

C D
M
a2S

C fag:

2.1 Operations on S–filtered chain complexes.

If C is a Zn –filtered chain complex, and a 2 Zn , then we can form the Zn filtered
complex C Œa� whose underlying chain complex agrees with C, but whose Zn –filtration
is shifted by a; ie the filtration F.C Œa�; b/D F.C ŒaC b�/.
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If C is free Zn –filtered complex, and i 2 f1; : : : ; ng, we can split the differential
into components Db

a W C fag �! C fbg with b � a; we can form a Zn�1 filtered
chain complex C .1/ by “taking homology in the first component.” Specifically, write
D DD1CD0 , where D1 consists of all the components Db

a where a and b agree on
all but the first place. It is easy to see that D1 is a differential, and hence we can form
the Zn�1 –filtered chain complex

F.C .1/; b/DH�

0B@ [
fa
ˇ̌
.a2;:::;a`/�bg

F.C; a/;D1

1CA
endowed with the differential induced from D0 . Note that there remains an extra action
of U1 on this chain complex (which does not change the filtration level).

Of course, this notion admits a straightforward adaptation to taking the homology in
the i th components for any i 2 f1; : : : ; `g.

3 Heegaard diagrams

We discuss here basic topological aspects of multiply-pointed Heegaard diagrams,
which are relevant for the study of links in three-manifolds. The material here is mostly
a straightforward generalization of the singly-pointed case, which was studied in [21],
and the doubly-pointed case from [20].

3.1 Heegaard diagrams for three-manifolds

Definition 3.1 A balanced `–pointed Heegaard diagram is a quadruple of data�
†; ˛ D f˛1; : : : ˛gC`�1g; ˇ D fˇ1; : : : ; ˇgC`�1g;wD fw1; : : : ; w`g

�
;

where ` is a positive integer, † is an oriented surface of genus g,

˛ D f˛1; : : : ; ˛gC`�1g

is a gC `� 1–tuple of disjoint, simple closed curves which span a g–dimensional
sublattice of H1.†IZ/ (and hence they specify a handlebody U˛ which is bounded by
†), ˇ Dfˇ1; : : : ; ˇgC`�1g is a gC`�1–tuple of disjoint, simple closed curves which
span another g–dimensional sublattice of H1.†IZ/ (specifying another handlebody
Uˇ ), and w is a collection of points in † chosen as follows. Let fAig

`
iD1

denote the
connected components of †�˛1� � � � �˛gC`�1 ; let fBig

`
iD1

denote the connected
components of †� ˇ1 � � � � � ˇgC`�1 . The points wi 2 † are constrained so that
wi 2Ai \Bi .
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A balanced `–pointed Heegaard diagram specifies a closed, oriented three-manifold
Y DU˛[†Uˇ , endowing it with a cellular decomposition whose zero-cells correspond
to the components fAig

`
iD1

, its one-cells correspond to the circles ˛1; : : : ; ˛gC`�1 , its
two-cells correspond to ˇ1; : : : ; ˇgC`�1 , and its three-cells correspond to the fBig

`
iD1

.

Definition 3.2 A balanced `–pointed Heegaard diagram is called generic if the circles
˛i and ǰ meet transversally, for all i; j 2 f1; : : : ;gC `� 1g.

Fix a connected, oriented three-manifold Y , and a generic self-indexing Morse function
on Y which has the same number ` of index zero and three critical points. Fix also
generic metric g, together with a choice of ` gradient flowlines connecting each of
the index zero and three critical points. Then, there is an associated generic balanced
`–pointed Heegaard diagram for Y whose surface † is the mid-level of the Morse
function; ˛i is the locus of points on † where the gradient flowlines leaving the i th

index one critical point meets †; similarly, ˇi is the locus of points on † which flow
into the i th index two critical point. Finally, for i D 1; : : : ; `, wi is the point on †
which lies on the distinguished gradient flow-line connecting the i th index zero and
index three critical point. If .†; ˛; ˇ ;w/ is obtained in this manner from a Morse
function f , we call f a Morse function compatible with the balanced Heegaard diagram
for Y .

Given a generic `–pointed balanced Heegaard diagram for Y , it is easy to construct a
compatible Morse function f .

Proposition 3.3 Any two generic balanced `–pointed Heegaard diagrams for Y can
be connected by a sequence of the following moves:

(i) Isotopies and handleslides of the ˛ supported in the complement of w;

(ii) Isotopies and handleslides of the ˇ supported in the complement of w;

(iii) Index one/two stabilizations (and their inverses): Forming the connected sum of
.†; ˛; ˇ ;w/ with a torus equipped with a new pair of curves ˛g and ˇg which
meet transversally in a single point;

(iv) Index zero/three stabilizations (and their inverses): Introducing a new pair of
homotopic curves ˛gC` (disjoint from the ˛i for 1� i � gC `� 1) and ˇgC`

(disjoint from the other ˇi ) and a new basepoint w`C1 in such a manner that
˛gC` and ˇgC` are homotopic in †�w1�� � ��w`�w`C1 , and each component
of †�˛1� � � � �˛gC` and †�ˇ1� � � � �ˇgC` contains some wi .
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626 Peter Ozsváth and Zoltán Szabó

Proof It follows from standard Morse theory that any two (unpointed) Heegaard
diagrams can be connected by moves of Types (i)–(iii). The fact that this can be done
in the complement of a single basepoint (the case `D 1) can be established by trading
an isotopy across the basepoint for a sequence of handleslides in the opposite direction
[21, Proposition 7.1].

The proof in general is established by showing that we can use the above moves to
reduce the number of basepoints, and hence reducing to the case of a singly-pointed
Heegaard diagram. This is done as follows. Let A be the two-chain with boundary
a combination of ˛1; : : : ; ˛gC` which has nw`C1

.A/ D 1 and nwi
.A/ D 0 for all

i � `. After a sequence of handleslides among the ˛ , we can arrange for A to have
only one boundary component, which we label ˛gC` . Indeed, another sequence of
handleslides can be done to arrange furthermore for the genus of A to be zero. Let
B be the corresponding two-chain with boundary amongst the ˇ1; : : : ; ˇgC` , with
nw`C1

.B/D 1 and nwi
.B/D 0 for all i � `. Performing a sequence of handleslides

among the ˇ , we can reduce to the case where B is a disk bounded by ˇgC` . We can
now form an index zero/three de-stabilization to delete ˛gC` , ˇgC` and wgC` . The
proof then follows by induction.

3.2 Relative Spinc structures

We pause our discussion on Heegaard diagrams to recall Turaev’s interpretation of
Spinc structures on three-manifolds, see [28], compare also [12].

Let Y be a closed, oriented three-manifold. We say that two nowhere vanishing vector
fields v and v0 are homologous if there is a ball B � Y with the property that v and
v0 are homotopic (through nowhere vanishing vector fields) on the complement of V .
The set of equivalence classes of such vector fields can be naturally identified with
the space Spinc.Y / of Spinc structures over Y . In particular it is an affine space for
H 2.Y IZ/.

This notion has a straightforward generalization to the case of three-manifolds with
toroidal boundary. Specifically, let .M; @M / be a three-manifold with boundary
consisting of a disjoint union of tori T1 [ : : :[ T` . The tangent bundle to the two-
torus has a canonical nowhere vanishing vector field, which is unique up to homotopy
(through nowhere vanishing vector fields). Consider now nowhere vector fields v on Y

whose restriction to @M are identified with the canonical nowhere vanishing vector
field on the boundary tori (in particular, the vector field has no normal component at
the boundary). Two such vector fields v and v0 are declared homologous if there is
a ball B �M � @M with the property that the restrictions of v and v0 to M �B

are homotopic. The set of homology classes of such vector fields is called the set of
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relative Spinc structures, and it is an affine space for H 2.M; @M IZ/. We denote this
set by Spinc.M; @M /.

Multiplying vector fields by �1 induces an involution on the space of relative Spinc

structures
J W Spinc.M; @M / �! Spinc.M; @M /:

If Ev is a vector field on a three-manifold M with toroidal boundaries, whose restriction
to each bounding torus gives the canonical trivialization of the torus’ tangent bundle,
then we can consider the oriented two-plane field Ev? of vectors orthogonal to Ev . Along
@M , this two-plane field has a canonical trivialization, by outward pointing vectors.
Hence, there is a well-defined notion of a relative Chern class of this line field relative
to its trivialization, thought of as an element of H 2.M; @M IZ/. This descends to a
well-defined assignment

c1W Spinc.M; @M / �!H 2.M; @M IZ/:

c1.J � s/D�c1.s/:Clearly,

The reader familiar with [20] should be warned that in that case, we were considering
null-homologous knots, rather than links, and hence there is a well-defined notion of
a zero-surgery. In [20], relative Spinc structures were thought of as absolute Spinc

structures on this zero-surgery. This is a slightly different point of view than the one
taken here (where we no longer have the luxury of referring to a zero-surgery).

3.3 Intersection points and Spinc structures

Fix a generic `–pointed balanced Heegaard diagram for Y , and let f be a compatible
Morse function.

Consider the gC `� 1–fold symmetric product of †, SymgC`�1.†/, and let

T˛ D ˛1 � : : :�˛gC`�1andTˇ D ˇ1 � : : :�ˇgC`�1:

Clearly, an intersection point x 2T˛\Tˇ corresponds to a gC`�1–tuple of gradient
flow-lines which connect all the index one and two critical points.

Let x be the union of gradient flowlines passing through each xi 2 x, and w be the
union of gradient flowlines passing through each wi 2 w. The closure of x[ w is a
collection of arcs whose boundaries consist of all the critical points of f . Moreover,
each component contains a pair of critical points whose indices have opposite parities.
Thus, we can modify the gradient vector field in an arbitrarily small neighborhood of
x[w to obtain a new vector field which vanishes nowhere in Y . Taking the homology
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class of this vector field in the sense of Turaev [28], we obtain a map from intersection
points to Spinc structures over Y

swW T˛ \Tˇ �! Spinc.Y /:

It is easy to see that this is well-defined, i.e. independent of the choice of compatible
Morse function f and modification of the vector field (compare [21, Section 2.6]).

3.4 Whitney disks and admissibility

Fix a generic `–pointed Heegaard diagram for Y , .†; ˛; ˇ ;w/. Given x; y2T˛\Tˇ ,
we can consider Whitney disks from x to y relative to T˛ and Tˇ . Each such Whitney
disk gives rise to a two-chain on †; specifically,

†�˛1� � � � �˛gC`�1�ˇ1� � � � �ˇgC`�1

consists of a collection of regions f�ig
m
iD1

. Fix a reference point pi 2 �i , and let
D.�/ denote the two-chain

mX
iD1

npi
.�/Œ�i �;

where here np.�/ denotes the algebraic intersection number of � with the subvariety
fpg�SymgC`�2.†/. The element D.�/ specifies the relative homology class induced
from the Whitney disk � .

Let �2.x; y/ denote the space of homology classes of Whitney disks. Let

nwW �2.x; y/ �! Z`

be the map which sends � to
�
nw1

.�/; : : : ; nw`.�/
�

Let �2.˛/ denote the space of homology classes of disks with boundary in T˛ . Clearly,
we have isomorphisms

(3) nwW �2.˛/
Š
�! Z` and nwW �2.ˇ/

Š
�! Z`:

There is an exact sequence

(4) 0 � Z � �2.˛/˚�2.ˇ/ � �2.x; y/ � H 1.Y IZ/ � 0:

Moreover, we have an exact sequence

(5) 0 � P � �2.x; y/
nw
� Z` � 0:
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w1


w2

w1 w2

ı1
ı2

ı0
2ı01

Figure 1: Winding to achieve admissibility This is an illustration of the
procedure described in Proposition 3.6. Here, the dotted lines denote the
possible ˛ curves, and the solid lines represent ˇ curves.

Definition 3.4 The group P is called the group of periodic domains.

In the case where H 1.Y IZ/D 0, we have that P Š Z`�1 .

As in Section 3.4 of [21], we need further restrictions on the Heegaard diagram to
obtain a reasonable chain complex (whose homology is the Heegaard Floer homology).
defined.

Definition 3.5 A generic, balanced `–pointed Heegaard diagram is called weakly
admissible if for any non-trivial homology class � 2�2.x; x/ with nw.�/D 0 (meaning
that nwi

.�/D 0 for each wi 2 w), the domain D.�/ has both positive and negative
local multiplicities.

Proposition 3.6 Let Y be a three-manifold with H 1.Y IZ/ D 0. Any balanced `–
pointed Heegaard diagram for Y is isotopic to a weakly admissible balanced `–pointed
Heegaard diagram.

Proof We embed in † a tree � whose ` vertices are the points wi . We claim
that admissibility can be achieved by isotoping some of the ˇ–curves in a regular
neighborhood of � . Specifically, if  is an arc connecting w1 to w2 in � , then
perform an isotopy of the ˇ circles in a regular neighborhood of  in such a manner
that there is a pair of arcs ı1 and ı2 so that ı1 [ ı2 is isotopic to  as an arc from
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w1 to w2 , but ı1 is disjoint from the ˇ circles while ı2 is disjoint from the ˛ circles.
Moreover, we find another pair of arcs ı0

1
and ı0

2
so that ı0

1
[ ı0

2
is isotopic to  , only

now ı0
1

is disjoint from the ˛ circles while ı0
2

is disjoint from the ˇ circles (see Figure
1 for an illustration). Isotoping the ˇ circles in a regular neighborhood of all the edges
in � as above, we obtain a Heegaard diagram that we claim is weakly admissible.

According to Equation (4), any P 2 P can be decomposed as P D AC B , with
A 2 �2.˛/ and B 2 �2.ˇ/. The condition that P is a periodic domain ensures that
nw.A/C nw.B/D 0. According to Equation (3), P is uniquely determined by nw.A/,
modulo addition of †.

Suppose now that P has the property that the oriented intersection number of @A
with  is non-zero. Then, at the intermediate endpoint of ı1 , we see that ACB has
local multiplicity given by @A\  , while at the intermediate endpoint of ı0

1
, ACB

has local multiplicity given by @B \  D �@A\  . Thus, if for some edge  in � ,
@A\  ¤ 0, then P D ACB has both positive and negative coefficients. However,
if P DACB , where A 2 �2.˛/ and B 2 �2.ˇ/, and @A has algebraic intersection
number equal to zero with each edge in � , then, after subtracting off some number
(nw1

.A/) of copies of †, we can write P DA0CB0 , where A0 2 �2.˛/, B0 2 �2.ˇ/

and nwi
.A/ D nwi

.B/ D 0. According to Equation (3), then A0 D 0, and hence
P D 0.

3.5 Heegaard diagrams and links

Fix an `–pointed Heegaard diagram .†; ˛; ˇ ;w/ for a three-manifold Y , and choose
also an additional `–tuple of basepoints zD fz1; : : : ; z`g, with the property that for
each i D 1; : : : ; `, both wi and zi are contained in the same component

Ai �†�˛1� � � � �˛gC`�1 and Bi �†�ˇ1� � � � �ˇgC`�1:

This data gives rise to an oriented, `–component link L in Y D U˛ [† Uˇ .

Definition 3.7 The diagram .†; ˛; ˇ ;w; z/ as above is said to be a 2`–pointed
Heegaard diagram for the oriented link EL in Y .

Conversely, given an oriented, `–component link, one can find a self-indexing Morse
function f W Y �!R with ` index zero and three critical points, and gC `� 1 index
one and two critical points, with the additional property that there are two `–tuples
of flowlines w and z connecting all the index three and index zero critical points,
so that our oriented link L can be realized as the difference z � w . Such a Morse
function gives rise to a 2`–pointed Heegaard diagram for EL in Y .
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Definition 3.8 A 2`–pointed Heegaard diagram for a link EL�Y is weakly admissible
if the underlying `–pointed Heegaard diagram for Y (gotten by disregarding the z) is
weakly admissible.

Proposition 3.9 If EL is an oriented `–component link in Y , then there is a correspond-
ing (weakly admissible) 2`–pointed Heegaard diagram. Any two (weakly admissible)
2`–pointed Heegaard diagrams for the same oriented link EL� Y can be connected by
a sequence of moves of the following types:

� Isotopies and handleslides of the ˛ supported in the complement of w and z;

� Isotopies and handleslides of the ˇ supported in the complement of w and z;

� Index one/two stabilizations (and their inverses), forming the connected sum of
.†; ˛; ˇ ;w/ with a torus equipped with a new pair of curves ˛g and ˇg which
meet transversally in a single point.

Moreover, if we start and end with weakly admissible Heegaard diagrams, then we can
assume that all the intermediate Heegaard diagrams are also weakly admissible.

Proof Without the admissibility hypothesis, the above result follows from Morse
theory in the usual manner. Admissibility can be achieved as in the proof of Proposition
3.6.

3.6 Intersection points and link diagrams

Given a 2`–pointed Heegaard diagram for a link, consider the tori

T˛ D ˛1 � : : :�˛gC`�1 and Tˇ D ˇ1 � : : :�ˇgC`�1:

Given a pair x; y 2 T˛ \Tˇ of intersection points, we can find paths

aW Œ0; 1� �! T˛ and bW Œ0; 1� �! Tˇ;

with @a D @b D x � y. Viewing these paths as one-chains in †, supported away
from the reference points fwig

`
iD1

and fzig
`
iD1

, we obtain a one-cycle �.x; y/ in the
complement Y �L. This assignment clearly descends to give a well-defined map

�w;zW .T˛ \Tˇ/� .T˛ \Tˇ/ �!H1.Y �LIZ/:
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Lemma 3.10 An oriented link in Y gives rise to a map

…W H1.Y �L/ �! Z`;

where …i. / is the linking number of  with the component Li � L, which is an
isomorphism in the case where H 1.Y IZ/ D 0. Given an oriented link, and x; y 2
T˛ \Tˇ , and � 2 �2.x; y/ is any homology class, then

…
�
�w;z.x; y/

�
D nz.�/� nw.�/:

Proof The homology class � 2 �2.x; y/ gives rise to a null-homology of �.x; y/
inside Y . This null-homology meets the i th component of the oriented link EL with
intersection number nz.�/� nw.�/. The lemma follows at once.

We can lift � to a map from intersection points to relative Spinc structures, generalizing
the map from Section 3.3.

Let .†; ˛; ˇ ;w; z/ be a pointed Heegaard diagram for an oriented link EL. We define
the map

(6) sw;zW T˛ \Tˇ �! Spinc.Y; EL/

as follows. Note that we write Spinc.Y; EL/ for the space of relative Spinc structures
on Y � nd.L/, cf Section 3.2.

For this map, we fix a choice as follows. Let  be a gradient flowline connecting an
index zero and index three critical point, and let N. / denote a neighborhood of this
flowline. One can construct a nowhere vanishing vector field Ev over N. /, which has
an integral flowline P which enters N. / from its boundary, contains  as a subset,
and then exits N. /.

Let f be an orientation-preserving involution of N. /. We can arrange for �Evj@N. /
to agree with f �.Ev/j@.N. /[P/ . Indeed, we can construct Ev in such a manner that the
difference Ev�f �.Ev/ is the Poincaré dual of a meridian for  , thought of as an element
of H1.N. /�P /.

This vector field is illustrated in Figure 2.

Armed with this vector field, we define the map promised in Equation (6). Fix a
Morse function f compatible with the Heegaard diagram .†; ˛; ˇ ;w; z/. Given
x 2 T˛ \Tˇ , consider the flowlines x , w , and z . We replace the gradient vector
field in a neighborhood of x so as not to vanish there. Similarly, we replace the
gradient vector field in a neighborhood of w using Ev so that it does not vanish there.
In fact, arranging for P to consist of arcs on z[w , we obtain in this manner a vector
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Figure 2: Non-vanishing vector field On the left, we represent the gradient
vector field in a standard neighborhood of a gradient flowline  connecting an
index zero and three critical point, by sketching various integral curves. The
vector field on the three-ball is obtained by rotating this vector field through
the axis through the center of the picture. Replace this vector field with
the nowhere vanishing vector field Ev represented on the right. Specifically,
consider the vector field represented here (after rotating through the axis in
the center), which vanishes on the oriented meridian represented here by the
pair of circles. Modify the vector field to point into the page at the empty
circle and out of the page at the dark circle. This gives the nowhere vanishing
vector field Ev , with a closed orbit which coincides with an oriented meridian
for  � P .

field on Y which contains EL as a closed orbit. It is easy to see that this is equivalent
to a vector field on Y � nd. EL/ which is a standard non-vanishing vector field on the
boundary tori.

Lemma 3.11 We have that

sw;z.x/� sw;z.y/D PD
�
�.x; y/

�
:

where here PD denotes the Poincaré duality map

PDW H1.Y �L/ �!H 2.Y;L/:

Indeed, given � 2 �2.x; y/, we have that

(7) sw;z.x/� sw;z.y/D
X̀
iD1

�
nzi
.�/� nwi

.�/
�
PDŒ�i �;
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where here �i is the meridian for the i th component of L, with its induced orientation
from the orientation of L.

Proof The vector fields sw;z.x/ and sw;z.y/ differ in a neighborhood of x � y . It
is now a local calculation to see that sw;z.x/� sw;z.y/ D PDŒx � y� (compare [21,
Lemma 2.9] for the corresponding statement for Spinc structures). It is easy to see that
x � y is homologous to �.x; y/.

The second remark follows immediately from Lemma 3.10.

The following fact will be useful in studying the symmetry properties of link Floer
homology.

Lemma 3.12 Let .†; ˛; ˇ ;w; z/ be a multiply pointed Heegaard diagram represent-
ing an oriented link EL� Y , and let sw;zW T˛\Tˇ �! Spinc.Y;L/ denote the induced
map to relative Spinc structures. Then, .�†; ˇ ; ˛;w; z/ specifies the same link,
endowed with the opposite orientation. Let s0w;zW T˛ \Tˇ �! Spinc.Y;L/ denote its
induced map. Then, we have that

(8) sw;z.x/D J ı s0w;z.x/:

Also, .†; ˛; ˇ ; z;w/ is another diagram representing the link with the opposite ori-
entation; let sz;wW T˛ \ Tˇ �! Spinc.Y;L/ denote its corresponding map. Then,

(9) sw;z.x/D sz;w.x/C
X̀
iD1

PDŒ�i �:

Proof For the first remark, note that if f is a Morse function compatible with
.†; ˛; ˇ ;w; z/, then �f is a Morse function compatible with .�†; ˇ ; ˛;w; z/. It is
now a straightforward consequence of its definition that if sw;z.x/ is represented by Ev ,
then �Ev represents s0w;z.x/. Thus, Equation (8) follows.

For the second observation, note that the vector fields Ev and Ew representing sw;z.x/
and sz;w.x/ respectively differ only in a collar neighborhood of the boundary. In fact,
one can see that in this neighborhood, Ew and Ev can be made isotopic away from a
neighborhood of the meridian, where they point in opposite directions. In this way,
Equation (9) follows.
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3.7 Filling relative Spinc structures

Let EL� Y be an oriented link. Fix a component K1 of the underlying link. We have
a natural “filling map”

GK1
W Spinc.Y; EL/ �! Spinc.Y; EL�K1/:

This is gotten by simply viewing the relative Spinc structure on Y relative to EL as one
over Y relative to EL�K1 . More specifically, if we think of Spinc.Y; EL/ as generated
by vector fields which have a closed orbits consisting of the components of L (traversed
with their given orientations), then we can view these also as relative Spinc structures
which have a closed orbits consisting of the components of L�K1 (traversed with
their given orientations).

Lemma 3.13 We have the following

c1

�
GK1

.s/
�
D c1.s/CPDŒK1�:

Proof To verify this, let F2 be an oriented surface in Y �nd.L�K1/ with boundary
on @nd.L�K1/, representing some relative homology class H2.Y;L�K1/. We can
assume that F2 meets K1 transversally. We can consider the surface F 0

2
in Y �nd.L/

with boundary on nd.L/ gotten by deleting nd.K1/\F2 from F2 . The homology
class of F 0

2
represents the natural map H2.Y;L�K1/ �!H2.Y;L/.

If #.K1 \F2/ denotes the algebraic intersection number of F2 with K1 (endowed
with the orientation it inherits from EL) we have thatD

c1

�
GK1

.s/
�
; ŒF2�

E
D

D
c1.s/; ŒF

0
2�
E
C #.K1\F2/;

which is equivalent to the claim in the lemma.

4 Definition of Heegaard Floer homology for multi-pointed
Heegaard diagrams

4.1 Heegaard diagrams for three-manifolds

For convenience, we work always with Floer homology with coefficients in F DZ=2Z.
We also consider the case where the ambient manifold is a rational homology three-
sphere, and hence Proposition 3.6 applies.

Let .†; ˛; ˇ ;w/ be an `–pointed balanced weakly admissible Heegaard diagram
for a rational homology three-sphere Y . We define CF�.†; ˛; ˇ ;w/ to be the free
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module over the polynomial algebra F ŒU1; : : : ;U`� generated by the intersection points
T˛ \Tˇ inside SymgC`�1.†/. There is a module homomorphism

@�W CF�.†; ˛; ˇ ;w/ �! CF�.†; ˛; ˇ ;w/

defined by

(10) @�xD
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
�.�/D1g

# cM.�/ �U
nw1

.�/

1
� : : : �U

nw` .�/

`
˝ y:

Here, as usual, M.�/ denotes the moduli space of pseudo-holomorphic representatives
of the given homology class of Whitney disks, and cM.�/ denotes the quotient of
this moduli space by the action of R. Also, �.�/ denotes the expected dimension
of M.�/ (i.e. the Maslov index of � ). (Indeed, we will find it useful later to use
Lipshitz’s cylindrical formulation [15] instead; we return to this point in Section 5.)

We will establish the following in Section 5.3:

Proposition 4.1 For an `–pointed, balanced, Heegaard diagram for a rational homol-
ogy three-sphere Y , for any �; �0 2 �2.x; y/, we have that

(11) �.�/��.�0/D 2
X̀
iD1

�
nwi

.�/� nwi
.�0/

�
:

Lemma 4.2 For an `–pointed balanced weakly-admissible Heegaard diagram for a
three-manifold Y and any x 2 T˛ \Tˇ , the right hand side of Equation (10) consists
of only finitely many different non-zero terms.

Proof First, we prove that the coefficient of U
a1

1
� : : : � U

a`
`

in y is finite, for any
given aD a1 � : : :� a` 2 Z` . But this follows readily from the fact that for any two
homology classes �; �0 2 �2.x; y/ with nw.�/D nw.�

0/, ���0 is a periodic domain,
which hence must have both positive and negative coefficients. It follows from this that
there are at most finitely many homology classes � with nw.�/D a and D.�/ � 0,
and hence which can support holomorphic representatives.

If � admits a holomorphic representative, then nwi
.�/� 0 for all i; from Proposition

4.1, it follows at once that for � 2 �2.x; y/ with �.�/D 1, the quantity
P

i nwi
.�/

depends only on x and y. Thus, given x and y it follows that there are only finitely
many different possibilities for U

a1

1
� � � � �U

a`
`

with non-zero coefficient on the right
hand side of Equation (10).

Lemma 4.3 The map @� is a differential on CF�.†; ˛; ˇ ;w/.

Algebraic & Geometric Topology, Volume 8 (2008)



Holomorphic disks and link invariants 637

The above lemma is proved in Section 6, where we also prove that the homology groups
are identified with the usual Heegaard Floer homology of [21]:

Theorem 4.4 The chain homotopy type of the complex CF�.†; ˛; ˇ ;w/ over the
polynomial ring F ŒU1� is a three-manifold invariant; indeed, its homology coincides
with the Heegaard Floer homology group HF�.Y /.

A more precise version of the above theorem can be stated, which respects the splitting
of HF�.Y / according to its various Spinc structures. We do not belabour this point
now, as the primary example we have in mind here is the case where Y D S3 (which
has a unique Spinc structure).

There is a simpler variant of the above construction, where we set U1 D 0, formally –
ie we consider the free module over the polynomial algebra F ŒU2; : : : ;U`� generated
by T˛ \Tˇ , endowed with the differential:

@xD
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
nw1

.�/D0;�.�/D1g

# cM.�/ �U
nw2

.�/

2
� : : : �U

nw` .�/

`
˝ y

It is easy to see that the arguments from Theorem 4.4 also show that the homology of
this chain complex calculates bHF .Y /.

The simplest variant counts holomorphic disks which are disjoint from all the wi ,
to obtain a complex bCF .†; ˛; ˇ ;w/ ie specializing CF�.†; ˛; ˇ ;w/ to the case
where UiD 0 for all i. Explicitly, this is the chain complex of F –vector spaces spanned
by the intersection points of T˛ \Tˇ , and equipped with the differential

@xD
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
nw.�/D0;�.�/D1g

# cM.�/ � y:

For this complex, we have the following:

Theorem 4.5 The complex bCF .†; ˛; ˇ ;w/ calculates bHF
�
Y #
�
#`�1.S2 �S1/

��
.

4.2 Links and multi-filtrations of bHF

The multi-pointed Heegaard diagram for an oriented link EL endows the chain complex
CF�.†; ˛; ˇ ;w/ with a relative Z`–filtration, as follows.

Let .†; ˛; ˇ ;w; z/ be the Heegaard diagram for an oriented link in a three-manifold
with H 1.Y IZ/D 0. In Section 3.6, we defined a map

sw;zW T˛ \Tˇ �! Spinc.Y;L/:
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We extend the above-defined function to generators of the chain complex

CF�.†; ˛; ˇ ;w/

of the form U
a1

1
� � � � �U

a`
`
� x, using the formula

(12) sw;z.U
a1

1
� � � � �U

a`
`
� x/D sw;z.x/� a1 �PDŒ�1�� � � � � a` �PDŒ�`�;

where here f�ig
`
iD1

are meridians for the link (compatible with its given orientation).

Lemma 4.6 Let EL� Y be an oriented link in a three-manifold Y with H1.Y IZ/D 0,
and consider the corresponding identification Z` ŠH 2.Y;L/, given by

.a1; : : : ; a`/ 7!
X̀
iD1

ai �PDŒ�i �;

making Spinc.Y;L/ into an affine space for Z` . Then, the function s (as defined in
Section 3.2, and extended in Equation (12) above) induces a Spinc.Y;L/–filtration on
the chain complex CF�.†; ˛; ˇ ;w; z/ (endowed with the differential from Equation
(10)).

Proof Suppose U
a1

1
� � � � �U

a`
`
� y appears in @x with non-zero coefficient. We must

prove that then s.x/� s.U
a1

1
� � � � �U

a`
`
� y/. But in this case, there is a � 2 �2.x; y/

with a holomorphic representative, and hence nw.�/; nz.�/ � 0. On the other hand,
ai D nwi

.�/, and hence

sw;z.x/� sw;z.U
a1

1
� � � � �U

a`
`
� y/D sw;z.x/� sw;z.y/C nw.�/D nz.�/;

in view of Equation (7).

The following will be verified in Section 7:

Theorem 4.7 The Spinc.Y;L/–filtered chain homotopy type of the chain complex
CF�.˛; ˇ ;w; z/ of ZŒU1; : : : ;U`�–modules is an invariant of the underlying oriented
link.

Definition 4.8 The Spinc.Y;L/–filtered chain homotopy type of the chain complex

associated to a link will be denoted CFL�.Y; EL/. The homology of the associated
graded object is denoted

HFL�.Y; EL/D
M

s2Spinc.Y;L/

HFL�.Y; EL; s/:
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Explicitly, the associated graded object is generated as a F ŒU1; : : : ;U`�–module by
intersection points T˛ \Tˇ , endowed with a differential differential akin to Equation
(10), only now we sum over those � 2 �2.x; y/ with �.�/D 1 and also nz.�/D 0.
Indeed, the summand in grading s is generated by symbols U a1 � � � � �U a` ˝x, where
a1; : : : ; a` are non-negative integers and x 2 T˛ \Tˇ , satisfying the constraint that

sw;z.x/� a1PDŒ�1�� � � � � a`PDŒ�`�D s:

The homology of this complex is the group HFL�.Y; EL; s/.

We can also set U1 D � � � D U` D 0, to obtain a filtration of a chain complex which,
according to Theorem 4.5, calculates bHF of Y #

�
#`�1.S2 �S1/

�
. More concretely,

we consider the chain complex bCF .†; ˛; ˇ ;w/ generated over F by intersection
points T˛ \Tˇ , endowed with the module homomorphism

(13) @xD
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
�.�/D1;nw.�/D0g

# cM.�/ � y:

As in the case of CFL� , the function sw;z endows 1CFL.Y; EL/ with a filtration.

Definition 4.9 The Spinc.Y;L/–filtered chain homotopy type of the chain complex

associated to a link will be denoted 1CFL.Y; EL/. The homology of the associated
graded complex is the link invariant bHFL.Y; EL/.

More precisely, for s 2 Spinc.Y; EL/, bHFL.Y; EL; s/ is the homology of the chain
complex generated by x 2 T˛ \Tˇ with sw;z.x/D s, endowed with the differential

(14) @xD
X

y2T˛\Tˇ

X
f�2�2.x;y/

ˇ̌
�.�/D1;nw.�/Dnz.�/D0g

# cM.�/ � y:

In the introduction, no mention was made of relative Spinc structures; rather, link Floer
homology was described as a group graded by elements of H . For the case of links in
S3 , the equivalence of these two points of view is given as follows. Given an element
hD

P
ai Œ�i � 2H , there is a unique relative Spinc structure s with the property that

c1.s/�
X̀
iD1

PDŒ�i �D 2PDŒh�:

The group bHFL.L; h/ from the introduction, then, is the group bHFL.L; s/. This
convention is quite natural, as we shall see in Section 8.1 below.
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In practice, it can be taxing to calculate relative Spinc structures. It is much simpler,
rather, to define the link filtration on relative terms, declaring that

(15) x> y if and only if nz.�/� nw.�/;

where here � is any element in �2.x; y/, for example in the case where H1.Y IZ/D 0.
(The equivalence of this with our earlier point of view is a direct consequence of
Equation (7).) This determines the filtration only up to an overall shift (by an element
of H 2.Y;LIZ/), but this indeterminacy can be removed using the symmetry properties
of the link invariant, cf Section 8 below.

5 Analytic input

We will be concerned in this section with gluing results for pseudo-holomorphic
disks. Consider an `–pointed Heegaard diagram .†; ˛; ˇ ; fw1; : : : ; w`g/, and let
dDgC`�1. Given x; y2T˛\Tˇ and a homology class of Whitney disk � 2�2.x; y/,
we can form the moduli space M.�/.

Recall that these moduli spaces have Gromov compactifications, cf [7; 16; 4; 5]. For a
given moduli space of pseudo-holomorphic Whitney disks, these Gromov compactifica-
tions include possibly moduli spaces of pseudo-holomorphic Whitney disks connecting
other intersection points, moduli spaces of pseudo-holomorphic spheres, and finally
also moduli spaces of further degenerate disks called boundary degenerations. More
formally, given a point x 2 T˛ , we let �ˇ

2
.x/ denote the space of homology classes of

maps: (
uW Œ0;1/�R �! Symg.†/

ˇ̌̌̌
ˇ u.f0g �R/� Tˇ

limz 7!1 u.z/D x

)
Such a map is called a ˇ–boundary degeneration. We let �˛

2
.x/ denote the set of

˛–boundary degenerations, defined analogously.

Loosely speaking, Gromov’s compactness theorem states that a sequence of pseudo-
holomorphic curves representing � , has a subsequence which converges locally to
a “broken flow-line,” consisting of collection of pseudo-holomorphic flow-lines f�ig,
a collection of ˛– and ˇ–boundary degenerations f j g, and finally a collection of
pseudo-holomorphic spheres fSkg withX

D.�i/C
X

D. j /C
X

D.Sk/DD.�/:

We will also find it necessary at several future points to study ends of moduli spaces as
the Heegaard surface is degenerated. We turn to this more formally as follows.
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5.1 Gluing moduli spaces

Let .†1; ˛1; ˇ 1; z1/ and .†2; ˛2; ˇ 2; z2/ be a pair of Heegaard diagrams, where
here ˛i and ˇ i are di –tuples of attaching circles in †i . We can form their connected
sum at z1 2†1 and z2 2†2 to obtain a new surface †D†1#†2 , endowed with sets
of attaching circles ˛1[ ˛2 and ˇ 1[ ˇ 2 . We will assume that di � gi , and write
d D d1C d2 and g D g1Cg2 .

We will need here descriptions of the moduli spaces of flowlines in the connected sum
diagram, in terms of moduli spaces for the two pieces.

Fix points xi ; yi 2 T˛i
\Tˇi

� Symdi .†i/, which in turn give rise to points x1 � x2 ,
y1 � y2 in Symd1Cd2.†1#†2/. Fix a pair of homology classes of Whitney disks
�i 2 �2.xi ; yi/ with nz1

.�1/D nz2
.�2/. These can be combined naturally to form a

homology class �1#�2 2 �2.x1 � x2; y1 � y2/. Specifically, the local multiplicities of
�1#�2 at each domain D�†1#†2 is the local multiplicity of �i at the corresponding
D �†1 or †2 .

Conversely, each homology class � 2�2.x1�y1; x2�y2/ can be uniquely decomposed
as � D �1#�2 for some pair of �i 2 �2.xi ; yi/ with nz1

.�1/D nz2
.�2/.

Moreover, given complex structures j1 and j2 on †1 and †2 , we can form a complex
structure J.T / with neck-length T as follows: Find conformal disks D1 and D2 about
z1 and z2 , and form the connected sum

†.T /D .†1�D1/#
�
Œ�T � 1;T C 1��S1

�
#.†2�D2/;

under identifications @D1 Š f�T g � S1 and fT g � S1 Š @D2 . As T 7! 1, the
conformal structure on †.T / converges to the nodal curve †1 _†2 .

Theorem 5.1 Fix diagrams .†i ; ˛i ; ˇ i ; zi/ for i D 1; 2 as above, where here ˛i and
ˇ i are di –tuples of attaching circles. Given a homology class � D �1#�2 for the
connected sum of the two diagrams, we have that

�.�/D �.�1/C�.�2/� 2k;

where k D nz1
.�/ D nz2

.�/. Suppose that M.�/ ¤ ∅ for a sequence of almost-
complex structures J.Ti/ with Ti 7!1. Then, the moduli spaces of broken pseudo-
holomorphic flowlines representing �1 and �2 (ie the Gromov compactifications of
these two moduli spaces) are non-empty. Finally, suppose that �.�1/D 1, �.�2/D 2k ,
and also that d2 > g2 ; and consider the maps

�1WM.�1/ �! Symk.D/ and �2WM.�2/ �! Symk.D/;

�i.u/D u�1
�
fzig �Symdi�1.†i/

�
:where here
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If the fibered product of M.�1/ and M.�2/

M.�1/�Symk.D/M.�2/D fu1 �u2 2M.�1/�M.�2/
ˇ̌
�1.u1/D �2.u2/g

is a smooth manifold, then there is an identification of this moduli space with the moduli
space M.�/, for sufficiently long connected sum length.

There are three assertions in the above theorem: One concerns the Maslov index,
one the existence of weak limits, and the third is a gluing result. They are arranged
in order of difficulty; the third requires the most work. One could approach this
problem from the point of view of degenerating Symd .†1#†2/ as the connected
sum degenerates into †1 _ †2 , following the approach to stabilization invariance
from [21]. In this case, the limiting symplectic space is Symd .†1 _†2/, which has
a fairly complicated singular set (consisting of those d–tuples where one element is
the singular point p 2 †1 _†2 ). In particular, the singular set is, in itself, not a
symplectic manifold but rather a singular space whose singularities consist of those
d–tuples where at least two elements are the point p. Under the present circumstances,
holomorphic disks we wish to resolve – whose boundary lies from in the top stratum
Symd1.†1/� Symd2.†2/� Symd .†1 _†2/ – meet the singular stata (consisting of
those tuples where at least one point is the singular point z 2†1 _†2 ) in a complex
codimension one subset, ie where at least two coordinates agree with this singular
point.

A much simpler approach can be given using Lipshitz’s cylindrical reformulation of
Heegaard Floer homology [15]. With this reformulation, then, the gluing problem
takes place in a four-manifold, along a singular set which is a manifold, (placing it
on roughly an equal footing with the proof of stabilization invariance for cylindrical
reformulation, cf [15]). This kind of degeneration has been extensively studied in the
literature, cf Ionel and Parker [8], Li and Ruan [14], Eliashberg, Givental and Hofer
[3], Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder [1], and of course [15]. We
turn to this approach, first recalling the basic set-up of Lipshitz’s picture.

5.2 Lipshitz’s cylindrical formulation of Heegaard Floer homology

The starting point of Lipshitz’s formulation is that a holomorphic disk uW D �!
Symd .†/ corresponds to a holomorphic curve in D�†, which, for any p 2D , meets
the fiber †� fpg in the set of d points u.p/. Thus, one could reformulate the chain
complex defining Heegaard Floer homology as counting certain pseudo-holomorphic
surfaces in D�†.

This can be made more precisely as follows. Consider the four-manifold

W D†� Œ0; 1��R;
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equipped with two projection maps

�†W W �!† and �DW W �! Œ0; 1��R:

(As usual, we think of the unit disk in the complex plane D as the conformal compacti-
fication of the infinite strip Œ0; 1��R, obtained by adding points ˙i at infinity.) Endow
W with an almost-complex structure J tamed by a natural split symplectic form on W ,
which is translation invariant in the R–factor, and for which the projection �D is a
pseudo-holomorphic map. For example, the product complex structure – which will
be called a split complex structure – satisfies these conditions, but it is often useful
to perturb this. However, to ensure positivity, it is convenient to choose points z 2†,
and require that J is split in a neighborhood of z (in †) times Œ0; 1��R. Such an
almost-complex structure J is called split near z.

Consider next a Riemann surface S with boundary, d “positive” punctures

fp1; : : : ;pdg

and d “negative” punctures fq1; : : : ; qdg on its boundary.

Lipshitz considers pseudo-holomorphic maps euW S �!W , satisfying the following
conditions:

� eu is smooth.
� eu.@S/� .˛ � f1g �R/[ .ˇ � f0g �R/

� No component in the image of eu.S/ is contained in a fiber of �D .
� For each i, eu�1.˛i � f1g �R/ and eu�1.ˇi � f0g �R/ consist of exactly one

component of @S �fp1; : : : ;pd ; q1; : : : ; qdg.
� The energy of eu is finite.
� eu is an embedding.
� Any sequence of points in S converging to qi resp. pi is mapped under �D to

a sequence of points whose second coordinate converges to f�1g resp fC1g.

We call holomorphic curves of this type cylindrical flow-lines. Thinking of the com-
plex disk D as a compactification of Œ0; 1��R, a map eu as above can be extended
continuously to a map of the closure of S into W D†�D . We say that eu connects x
to y if the image of this extension meets †� f�ig in the points x� f�ig and it meets
†� fig in the points y� fig.

Projecting such a map eu onto †, we obtain a relative two-chain in † relative to ˛[ˇ ,
whose local multiplicity at some point z 2† is given by the intersection number

enz.eu/D #
�eu \ .fzg � Œ0; 1��R/

�
:
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Conversely, given � 2 �2.x; y/, let fM.�/ denote the moduli space of cylindrical
flow-lines eu which induce the same two-chain as � .

It is sometimes also useful to consider the analogue of boundary degenerations in this
cylindrical context.

Definition 5.2 Consider a Riemann surface S with boundary and d punctures

fp1; : : : ;pdg

on its boundary. Consider now pseudo-holomorphic maps zuW S �! † � Œ0;1/ �

R which are finite energy, smooth embeddings, sending the boundary of † into
ˇ , containing no component in the fiber of the projection to Œ0;1/ � R, so that
each component of zu�1.ˇi � f0g �R/ consists of exactly one component of @S �
fp1; : : : ;pdg. Such a map is called a cylindrical boundary degeneration. For such
a map, the point at infinity is mapped into a fixed x 2 Tˇ . These maps can be
organized into moduli spaces of eN . ˇ/ indexed by homology classes  2H2.†; ˇ /.
A corresponding definition can also be made with ˛ playing the role of ˇ .

In [15], Lipshitz sets up a theory analogous to Heegaard Floer homology (in the case
where d Dg ), counting elements of fM.e�/. In setting up this theory, he establishes the
necessary transversality properties: For a generic choice of almost-complex structure J

over W as above, all the moduli spaces fM.e�/ with �.e�/ < 0 are empty; non-empty
moduli spaces fM.e�/ with �.e�/D 0 consist of constant flowlines, and moduli spaces
with �.�/ D 1 are smooth one-manifolds. He also shows that these moduli spaces
have the necessary Gromov compactifications analogous to those for the moduli spaces
of holomorphic disks in a more traditional Lagrangian set-up. Indeed, in [15, Appendix
A], Lipshitz establishes identifications fM.�/ŠM.�/ for suitably generic choices
of almost-complex structures, in cases where �.�/D 1. In particular, if we consider
the map defined as in Equation (10), only using moduli spaces fM.�/=R in place of
M.�/=R, then the two maps actually agree. Although Lipshitz considers the case
where d D g , the logic here applies immediately to prove the corresponding result in
the case where d > g , as well.

With this cylindrical formulation, now the denegeration considered in Theorem 5.1
becomes more transparent. Specifically, the degeneration of † to †1_†2 corresponds
to a generation of W into W1 D †1 � Œ0; 1� � R and W2 D †2 � Œ0; 1� � R, two
symplectic manifolds which meet along the hypersurface Œ0; 1� � R, joined along
fp1g� Œ0; 1��R�W1 and fp2g� Œ0; 1��R�W2 . (Compare also [8; 14; 3; 1]. Finally,
observe that this is precisely the set-up which Lipshitz uses in his proof of stabilization
invariance for the cylindrical theory, see [15]).

Algebraic & Geometric Topology, Volume 8 (2008)



Holomorphic disks and link invariants 645

More precisely, we start with almost-complex structures J1 and J2 on W1 and W2

and neighborhoods D1 and D2 of z1 and z2 . We assume that J1 and J2 which are
split on D1 � Œ0; 1��R and D2 � Œ0; 1��R respectively. From this, we construct a
complex structure J.T / on

W .T /D†.T /� Œ0; 1��R;

which agrees with J1 near .†1�D1/� Œ0; 1��R, and J2 near .†2�D2/� Œ0; 1��R,
and which is split over S1 � Œ�T � 1;T C 1�� Œ0; 1��R.

Definition 5.3 A pre-glued flowline representing the homology class � D �1#�2 2

�2.x1�y1; x2�y2/ is a pair of cylindrical flow-lines eu1 2
fM.e� 1/ and eu2 2M.e� 2/

satisfying the matching condition

.�D ıeu1/
�
�†1
ıeu1/

�1.fz1g/D .�D ıeu2/
�
�†2
ıeu2/

�1.fz2g/:

Similarly, a pre-glued ˛–boundary degeneration is a pair of ˛–boundary degenerationsev1 2M.�1/ and ev2 2M.�2/ satisfying the analogous matching condition .�D ıeu/��†1
ıev1/

�1.fz1g/
�
D .�D ıeu��†2

ıev2/
�1.fz2g/

�
. A similar definition can also

be made for ˇ–boundary degenerations.

The curves ˛1[ : : :[˛gC`�1 divide † into ` regions A1; : : : ;A` . Choose reference
points wi , one in each Ai .

It will be useful to have the following:

Lemma 5.4 Given e 2 �ˇ
2
.x/, we have that �.e /D 2

P`
iD1 nwi

.e /.
Proof This follows readily from the excision principle for the the linearized @ operator,
to reduce to the case of a disk. (See the proof of Theorem 5.5 for a more detailed
discussion of a related problem.)

We interrupt now our path to Theorem 5.1, paying off an earlier debt, supplying the
following quick consequence of the above lemma:

Proof of Proposition 4.1 According to Equation (5), the homology classes of � and
�0 differ by the juxtaposition of a boundary degeneration with D. /D

P
i

�
nwi

.�/�

nwi
.�0/

�
, whose index, according to Lemma 5.4, is given by 2

P
i

�
nwi

.�/�nwi
.�0/

�
.

The result now follows from the additivity of the index under juxtaposition.
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We give another consequence of Lemma 5.4. By arranging for the almost-complex
structure on W to be split near neighborhoods of all the wi , one can arrange for the
usual positivity principle to hold: If a moduli space N . ˇ/ is non-empty, then all the
nwi

. ˇ/� 0. It follows from this, together with Lemma 5.4, that if  is a homology
class of boundary degenerations which contains a non-constant pseudo-holomorphic
representative, then �. /� 2. This principle is used in the following:

Proof of the cylindrical analogue of Theorem 5.1 We turn to Theorem 5.1, using
moduli spaces of cylindrical flowlines in place of pseudo-holomorphic Whitney disks.
In this context, the restriction maps are to be replaced by maps

e� i W
fM.e� i/ �! Symk.D/

given by e� i.eu/D .�D ıeu/�.�† ıeu/�1.fzig/
�
:

The formula for the Maslov index follows readily from the excision principle for the
linearized @ operator, using the cylindrical formulation. Consider a sequence of pseudo-
holomorphic curves fvtgt2Z 2 fMJ .t/.�/, where here the subscript J.t/ denotes the
almost-complex structure induced on W .t/ with neck-length t as described earlier.
Using Gromov’s compactness theorem, after passing to a subsequence, vt converges
locally to a pseudo-holomorphic curve in the symplectic manifold

W .1/Š
�
W1�fz1g � Œ0; 1��R

�a�
W2�fz2g � Œ0; 1��R

�
;

which in turn can be completed to a pseudo-holomorphic curve in W1 and one in W2 .
More precisely, we obtain a broken flow-line whose components consist of pre-glued
flowlines and boundary degenerations, finally also nodal curves supported entirely inside
fibers †1 _†2 . The representatives in the moduli spaces for �1 and �2 respectively
are gotten by ignoring the matching conditions.

In the case where �.�1/ D 1, the limiting process generically gives rise rise to an
unbroken, preglued flowline, according to the following dimension counts. Specifically,
taking a Gromov compactification, we obtain a pseudo-holomorphic representative eu1

of �1 , and also a possibly broken flow-line representing �2 .

Assuming that this broken flow-line contains no components which are closed curves,
there is some component of it u2 with the property that u1 and u2 represents a pre-
glued flowline in the sense of Definition 5.3. We claim that u2 in fact represents �2 . Ifeu2 did not represent �2 , then it represents a homology class �0 which is a component
in the Gromov compactification of �0 . If this compactification contains additional
boundary degenerations, the Maslov index of �0 is at least 2 smaller than the Maslov
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index of �2 (in view of Lemma 5.4). Moreover, if the compactification contains other
flows, those will serve only to further decrease the Maslov index of �0 relative to that of
� . In sum, in the case where �0 does not agree with �2 , its Maslov index �.�0/ < 2k .
But given � 2 Symk.D/, the moduli space

��1
2 .�/D

˚eu 2 fM.e� 0/ˇ̌.�D ıeu2/.�† ıeu2/
�1.fz2g/D�

	
has expected dimension �.�0/� 2k < 0. Thus, for a generic choice of � (gotten by
�1.�1/), this space is empty.

It is easy to rule out also the case that the Gromov limit representing �2 cannot have
any closed components. To this end, suppose it has some components which represent
the homology class mŒ†2� for some m> 2. After deleting these components, we are
left with a homology class �0 with �.�0

2
/D 2.d2 � g2C 1/ (cf Lemma 5.4). Some

component u2 of this Gromov compactification has �2.u2/D�
0 , where �0 is obtained

from �1.�1/ by deleting m points. But the moduli space of such points has expected
dimension given by

(16) �.�02/� 2.k �m/D 2k � 2.k �m/� 2.d2C 1�g2/mD�2m.d2�g2/ < 0;

and hence it is empty (here, of course, is where we used our assumption that d2 > g2 ).

Thus, we have established that a sequence of holomorphic representatives for � has a
Gromov limit (as we stretch the neck) to a pre-glued flowline representing �1 and �2 .
Conversely, given a pre-glued flowline, one can obtain a pseudo-holomorphic curve
in fM.�/ by gluing (cf [15] for further details on this gluing problem, and [1] for a
discussion of gluing in a very general context).

5.3 Counting boundary degenerations

We let eN . / denote the moduli space of pseudo-holomorphic boundary degenerations
in the homology class of  . Note that PSL2.R/ acts on the this moduli space, and we
let ceN . / denote the quotient by this action. The principles used in proving Theorem
5.1 can also be used to count boundary degenerations.

Theorem 5.5 Consider †, a surface of genus g, equipped with a set of attaching circles
˛1; : : : ; ˛gC`�1 for a handlebody. If D. / � 0 and �. /D 2, then D. /D Ai for
some i; and indeed in this case

(17) #ceN . /�

�
0 .mod 2/ if `D 1,
1 .mod 2/ if ` > 1.
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Proof It follows readily from Lemma 5.4 that if  is a non-zero homology class of
boundary degenerations with D. /� 0, then �. /� 2, with equality iff D. /DAi .
In the case where D.�/ D Ai , it remains to verify Equation (17). The case where
`D 1 has already been established in [21, Theorem 3.15] for the usual Heegaard-Floer
moduli spaces and [15] for the cylindrical version. Consider some region Ai , which
we re-name simply A0 . Recall that this is a Riemann surface with boundary, equipped
with mC p curves ˛1; : : : ; ˛mCp , of which the first m comprise its boundary, and
the rest are pairwise disjoint, embedded circles in the interior. We have fixed also
x 2 ˛1 � : : :� ˛mCp . We reduce to the case where p D 0, by de-stabilizing. Next,
we reduce to the case where the number of boundary circles is one. To this end, we
can write A0 D A#D , where D here is a disk with boundary ˛m , and A is a planar
surface-with-boundary ˛1; : : : ; ˛m�1 . Denote the connected sum point in A by z1 and
the one in D by z2 . Degenerating the connected sum tube, we obtain a fibered product
description eN .A0/D eN .A/�Sym1.D/

eN .D/, where the fibered product is taken over
the maps

�1W
eN .A/ �! Sym1.D/ and �2W

eN .D/ �! Sym1.D/

defined as before. It is easy to see, though that eN .D/ is smooth, and the map �2

is in fact a diffeomorphism. Thus, it follows that eN .A0/ Š eN .A/. In this manner,
we have reduced to the case where p D 0 and mD 1, which is, once again, the case
where ADD . Now, since the map �2 is PSL2.R/–equivariant, we see that # bN .D/
is precisely the degree of the map �2 , which is one.

5.4 Notational remark

The notation of Theorem 5.1 suggests using moduli spaces of pseudo-holomorphic
Whitney disks, while its proof uses cylindrical flow-lines. One could close the gap by
either appealing to an identification between the two kinds of moduli spaces, cf [15],
or simply adopting the cylindrical point of view instead; either approach has the same
final outcome. In view of this remark, we henceforth drop the notational distinction
between cylindrical and more traditional moduli spaces.

6 Heegaard Floer homology for multi-pointed Heegaard dia-
grams revisited

Having set up the analytical preliminaries, we now prove the invariance properties
promised in Section 4.
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Proof of Lemma 4.3 In the usual proof that @2 D 0 from Floer homology (cf [21,
Theorem 3.3] for a proof in the original case, and [15] for the cylindrical formulation),
this is observed by counting ends of two-dimensional moduli spaces.

Specifically, fix intersection points x and q, and a vector aD .a1; : : : ; a`/ 2 Z` . We
consider the ends of a

f�2�2.x;q/
ˇ̌
�.�/D2;nw.�/Dag

cM.�/:

In the case where x¤ q, these ends cannot contain any boundary degenerations, since
according to Lemma 5.4, these all carry Maslov index at least 2 (and hence if they
appear in the boundary, the remaining configuration has Maslov index � 0, and hence,
if it is non-empty, it must consist of the constant flowline alone). Thus, the ends in this
case are modeled ona

y2T˛\Tˇ

a
f�12�2.x;y/;�22�2.y;q/

ˇ̌
�1��2D�g

cM.�1/� cM.�2/:

And the total count of these ends are given by

(18)
X

y2T˛\Tˇ

X
f�12�2.x;y/;�22�2.y;q/

ˇ̌
nw.�1/Cnw.�2/Dag

�
# cM.�1/

�
�
�
# cM.�2/

�
;

which on the one hand must be even, on the other hand, it is easily seen to be the
U

a1

1
� � � � �U

a`
`
�q–component of .@�/2.x/. In the case where qD x, there are additional

terms, which count boundary degenerations meeting constant flowlines, whose total
signed count is X

f 2�˛
2
.x/
ˇ̌
nw. /Da;�. /D2g

# bN ˛
. /C

X
f 2�

ˇ

2
.x/
ˇ̌
nw. /Da;�. /D2g

# bN ˇ
. /:

According to Theorem 5.5, this quantity vanishes. More precisely, # bN ˛
. / � 0

.mod 2/ except in the case where ` > 1 and D. / is one of the components Ai

of †� ˛1 � � � � � ˛g , so that a has the form that ai D 0 for all but one value of i,
where the component ai D 1. In this case # bN ˛

. / � 1 .mod 2/, but there is also
a unique cancelling  0 with D. 0/ D Bi and # bN ˛

. 0/ � 1 .mod 2/. Thus, we
are left once again with a sum as in Equation (18) which can be interpreted as the
U

a1

1
� � � � �U

a`
`
�q–component of .@�/2.x/.
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v1v2

˛ ˇ
x

y

Figure 3: Model doubly-pointed Heegaard diagram for S3 We
have illustrated here the doubly-pointed Heegaard diagram for S3

.S; ˛; ˇ; fv1; v2g/ considered above. The picture takes place on the two-
sphere S.

6.1 Simple stabilization invariance

The aim of this subsection is to prove that the homology of the chain complex

CF�.†; ˛; ˇ ;w/

is invariant under a particularly simple index zero/three stabilizations (cf Proposition
3.3).

Specifically, recall that if we have a balanced Heegaard diagram .†; ˛; ˇ ;w/ with

˛ D f˛1; : : : ˛gC`�1g; ˇ D fˇ1; : : : ; ˇgC`�1g; wD fw1; : : : ; w`g;

we can construct a new balanced Heegaard diagram by introducing a new pair of
separating curves ˛gC` and ˇgC` and a new basepoint w`C1 , so that ˛gC` is isotopic
to ˇgC` in †�w1� � � � �w`C1 . Let

˛ 0 D f˛01; : : : ; ˛
0
gC`�1; ˛gC`g; ˇ 0 D fˇ01; : : : ; ˇ

0
gC`�1; ˇgC`g;

where for i D 1; : : : ;gC `� 1, ˛0i resp. ˇ0i is obtained from ˛i resp. ˇi by a small
isotopic translate. As in Section 3, we say that this new diagram .†; ˛ 0; ˇ 0;w [
fw`C1g/ is obtained from .†; ˛; ˇ ;w/ by an index zero/three stabilization.

We call the stabilization simple if ˛gC` bounds a disk in † whose closure is disjoint
from the other ˛i .

Let S be the two-sphere, and ˛ � S be an embedded curve which divides S into two
regions, each of which contains a basepoint v1 or v2 . Let ˇ be a small Hamiltonian
isotopic translate of ˛ (in the complement of v1 and v2 ), meeting ˛ in two points x

and y, cf Figure 3. Of course, .S; ˛; ˇ; fv1; v2g/ represents a balanced diagram for
S3 .
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Lemma 6.1 If � 2 �2.x;x/ or �2.y;y/ with D.�/� 0, then

(19) �.�/� 2nvi
.�/� 0:

Moreover, the chain complex CF�.S; ˛; ˇ; fv1; v2g/ is given by

F ŒU1;U2� �x
U1�U2
� F ŒU1;U2� �y:

Proof Inequality 19 follows easily from Lemma 5.4.

For the claim about the chain complex, it is easy to see that boundary maps from y to
x come in cancelling pairs, whereas there are two holomorphic disks from x to y with
Maslov index one, and they are bigons, one of which contains v1 the other v2 .

Definition 6.2 Let .†1; � ; �; fu1; : : : ;u`g/ and .†2;  ; ı ; fv1; : : : ; vmg/ be a pair
of balanced multi-pointed Heegaard diagrams, and choose basepoints u1 2 u, v1 2 v.
We can form their connected sum .†; ˛; ˇ ;w/, a balanced `Cm�1–pointed Heegaard
diagram whose underlying surface † is obtained from †1 and †2 by forming the
connected sum at the points u1 and v1 . We let ˛ D � [  , ˇ D � [ ı , only
now thought of as curves in †, and wD fw1;u2; : : : ;u`; v2; : : : ; vmg, where w1 is
some reference point on the connected sum neck. We denote this connected sum by
.†1; � ; �; fu1; : : : ;u`g/#.†2;  ; ı ; fv1; : : : ; vmg/.

In particular, given an arbitrary multi-pointed the Heegaard diagram .†; ˛; ˇ ;w/,
a simple index zero/three stabilization can be thought of as the connected sum with
.S; ˛; ˇ; fv1; v2g/ as considered in Lemma 6.1.

Fix a Heegaard multi-diagram .†; ˛; ˇ ;w/, choose x; y 2 T˛ \ Tˇ , and w1 2 w.
Correspondingly, let �w1 WM.�/ �! Symk.D/, where k D nw1

.�/, denote the map
which assigns to the Whitney disk u the divisor

u�1
�
w1 �SymgC`�2.†/

�
;

or, in the cylindrical formulation, �D.�† ı u/�1.fw1g/. Given � 2 �2.x; y/ and
0 < t < 1, we let M.�; t/ denote the moduli space of pseudo-holomorphic maps u

representing � with the additional constraint that .t; 0/ 2 �w1.u/.

Lemma 6.3 Let � 2 �2.x; y/ be a homotopy class of Whitney disks for a balanced
Heegaard diagram

.†; f˛1; : : : ; ˛gC`�1g; fˇ1; : : : ; ˇgC`�1g; fw1; : : : ; w`g/:

If �.�/D 2, then M.�; t/ is generically a zero-dimension moduli space. Moreover,
there is a number � > 0 with the property that for all t � � , the only possible non-empty
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moduli spaces M.�; t/ with �.�/D 2 consist of moduli spaces for � 2 �2.x; y/ with
xD y, and indeed � is obtained by splicing a �. /D 2 boundary degeneration to the
constant flowline. Indeed, for this moduli space,

#M.�; t/D

�
0 .mod 2/ if `D 1,
1 .mod 2/ if ` > 1.

Proof The dimension statement is clear. Note that the admissibility hypothesis ensures
that there are at most finitely many � 2 �2.x; y/ consisting of moduli spaces for with
�.�/D 2 and D.�/ � 0, and hence only finitely many homotopy classes for which
M.�; t/ could possibly be non-empty for some t. Consider one such homotopy class,
and suppose that M.�; t/ is non-empty for a sequence of t 7! 0. Let ut 2M.�; t/ be
a corresponding sequence of pseudo-holomorphic curves. Taking their Gromov limit,
we obtain a broken flow-line u representing the homology class � . Since �w1.ut /

contains points arbitrarily close to the line f0g�R but w1 does not lie in any of the ˇ ,
we can conclude that the Gromov limit must contain a component which is a non-trivial
boundary-degeneration  . According to Lemma 5.4, we can conclude that �. /� 2.
Thus, the remaining configuration � � has non-positive Maslov index, and it also
has a pseudo-holomorphic representative. This forces it to be a constant flowline.

We have thus established that there is a real number � > 0 such that if M.�; t/ is
non-empty for any 0 < t � � , then � is obtained by splicing a �. /D 2 boundary
degeneration to a constant flowline. The result now follows by gluing  to the constant
flow-line, and applying Theorem 5.5.

We will also need a result about a suitable generalization of M.�; t/, but only for the
Heegaard diagram .S; ˛; ˇ; fv1; v2g/ introduced above.

Given a divisor � 2 Symk.D/, let M.�;�/D fu 2M.�/
ˇ̌
�v1.�/D�g.

Lemma 6.4 Consider the Heegaard diagram .S; ˛; ˇ; fv1; v2g/ as above, with the two
intersection points x;y 2 ˛\ˇ . Fix also a generic � 2 Symk.D/ for some positive
integer k. Then, X

f�2�2.a;a/j�.�/D2k;nv2
.�/D0g

#M.�;�/� 1 .mod 2/;

for aD x or y.

Proof Consider the case where aD x . Let

S.x; �/D
X

f�2�2.x;x/
ˇ̌
�.�/D2k;nv2

.�/D0g

#M.�;�/:
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We claim first that S.x; �/ depends on � only through its total weight k. Specifically,
if �0; �1 are two generic points in Symk.D/, then S.x; �0/ D S.x; �1/. This
follows from the following Gromov compactness argument. Let f�tgt2Œ0;1� be a path
in Symk.D/ connecting �0 and �1 . Consider the one-dimensional moduli space[

ft2Œ0;1�;�2�2.x;x/j�.�/D2kg

M.�;�t /:

This has four types of ends. The first type appear in the expression[
(
�1 2 �2.x;y/
�2 2 �2.y;x/

t 2 Œ0;1�

ˇ̌ �.�1/D 1
nv2

.�1/D 0D nv2
.�2/

�.�2/D 2k�1

) cM.�1/�M.�2; �t /:

The total number of such ends is zero, since x is a cycle (in the chain complex for
.S; ˛; ˇ; fv1; v2g/). The second type of ends appear in[

(
�1 2 �2.x;y/
�2 2 �2.y;x/

t 2 Œ0;1�

ˇ̌ �.�1/D 2k�1;
�.�2/D 1;

nv2
.�1/D 0D nv2

.�2/

)M.�1; �t /� cM.�2/:

The total number of such ends is zero, since y is a cycle. Note that nv1
.�1/D 0 or

nv2
.�2/D 0 for any such degeneration, since otherwise our divisor family �t remains

in a compact portion of the interior of the disk for all t 2 Œ0; 1�.

The third and fourth types of ends appear in[
f�2�2.x;x/

ˇ̌
�.�/D2k;nv2

.�/D0g

M.�;�0/;

and the related expression [
f�2�2.x;x/

ˇ̌
�.�/D2k;nv2

.�/D0g

M.�;�1/:

Thus, taken together, the total number of ends is given by S.x; �0/ � S.x; �1/

.mod 2/, which must therefore vanish.

Now let �T consists of k points each of which have horizontal component � � (chosen
as in Lemma 6.3), and with vertical spacing of at least T between them. Taking a limit
as T 7!1, we see that the ends of the parameterized moduli space[

fT2Œ1;1/g

[
f�2�2.x;x/

ˇ̌
�.�/D2kg

M.�;�T /
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consist of M.�;�1/ (the end where T D 1), and a product
Qk

iD1 M.�; ti/, in the
notation of Lemma 6.3. Combining this observation with the result of that lemma, we
see that S.x; �1/� 1 .mod 2/.

The case where aD y follows similarly.

Proposition 6.5 Suppose that .†; ˛ 0; ˇ 0;w0/ is obtained from .†; ˛; ˇ ;w/ by a
simple index zero/three stabilization. Then, there is an identification of F ŒU1; : : : ;U`�–
modules

HF�.†; ˛; ˇ ;w/ŠHF�.†; ˛ 0; ˇ 0;w0/:
Indeed, multiplication by U`C1 is identified with multiplication by U1 .

Proof We show that for suitable choices of almost-complex structures,

CF�.†; ˛ 0; ˇ 0;w0/

is identified with the mapping cone of a map

(20) CF�.†;˛;ˇ;w/ŒU`C1�
U`C1�U1

� CF�.†;˛;ˇ;w/ŒU`C1�;

where here CF�.†; ˛; ˇ ;w/ŒU`C1� denotes the chain complex

CF�.†; ˛; ˇ ;w/˝F ŒU1;:::;U`� F ŒU1; : : : ;U`C1�:

We degenerate the Heegaard surface, to realize it as a connected sum

.†; ˛; ˇ ;w/#.S; ˛; ˇ; v1; v2/

(with sufficiently large connected sum neck) where now w1 is identified with v1 ; or
more precisely, w1 and v1 are the corresponding connected sum points, and we choose
a new distinguished point w0

1
to lie in this connected sum region. Note that here w`C1

is given by v2 . We will use a complex structure on the connected sum surface with a
very long connected sum length (and in fact, we will move the connected sum point v1

close to the circle ˇ in S, as explained below).

Clearly, T 0˛ \ T 0
ˇ
D .T˛ \ Tˇ/ � fx;yg; ie intersection points come in two types

(containing x and y), and differentials can be of four types. Write Cx resp Cy �

CF�.†0; ˛ 0; ˇ 0;w0/ as the submodule generated by intersection points containing x

resp y 2˛\ˇ ; ie we have a module splitting C 0DCF�.†0; ˛ 0; ˇ 0;w0; z0/ŠCx˚Cy .

We begin by considering the Cx –component of the differential of a generator in Cx .
Apply Theorem 5.1 to some homotopy class � 2 �2.x � fxg; y � fxg/, in the case
where ` > 1 . Writing � D �1#�2 , we have that

�.�/D �.�1/C�.�2/� 2nv1
.�/:
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If #M.�/¤ 0, then D.�2/� 0 (since �2 has a pseudo-holomorphic representative).
As an easy consequence of Lemma 5.4, it follows that �.�2/� 2nv1

.�/ � 0, with
equality iff nv2

.�2/D 0. In the case where, nv2
.�2/¤ 0 we force �.�1/��1, and

hence it is generically empty. Thus, we are left with the case of �.�2/� 2nv1
.�/D 0,

and nv2
.�/D0. In this case, Theorem 5.1 shows that the y�x–component of @�.x�x/

is given by X
f�12�2.x;y/

ˇ̌
�.�1/D1g

X
u12

cM.�1/

X
�22�2.x;x/

#fu2 2M.�2/
ˇ̌
�1.u1/D �2.u2/g:

In this expression, we consider u1 2
cM.�1/ as an actual map (rather than only

one modulo re-parameterization) by taking the representatives with the property that
the projection of �1.u1/ onto the R factor contains 0, and no positive real number.
According to Lemma 6.4, then, for each u1 2

cM.�1/,X
�22�2.x;x/

#fu2 2M.�2/
ˇ̌
�1.u1/D �2.u2/g � 1 .mod 2/:

Thus, the y�x component of @�.x�x/ is identified with the y component of @�.x/
for the original Heegaard diagram.

Thus we have identified the Cx component of the differential of an element in Cx �C 0

with the differential coming from the obvious identification of Cx with the chain com-
plex for the original diagram CF�.†; ˛; ˇ ;w/. In the same manner, the differential
within Cy is identified with the differential of the original diagram.

We consider now the Cx –component of the differential of a generator in Cy . Again,
we express M.�/ as a fibered product over �1 2 �2.x; y/ with �2 2 �2.y;x/. Now,
an application of Lemma 5.4 shows that if D.�2/ � 0, then �.�2/� 2nv1

.�2/ � 1,
with equality iff nv2

.�2/D 0. In the case of equality, we have that �.�1/D 0, and
hence it must be constant. This forces �2 to be one of the two flows from y to x

with �.�2/ D 1 and D.�2/ � 0. Each of these homotopy classes admits a unique
holomorphic representative, and hence the differential cancels: The Cx component of
the boundary of something in Cy is trivial.

Finally, we consider the Cy component of the differential of a generator in Cx . Splitting
a homotopy class � in the fibered sum description, we once again have

�.�1/C�.�2/� 2nv1
.�1/D 1;

and hence the condition that �.�1/� 0 (which is needed for its corresponding moduli
space to be non-empty) translates into the condition that �.�2/ � 2nv1

.�2/ � 1.
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Moreover, for �2 2 �2.x;y/ with D.�2/� 0, we have that �.�2/� 2nv1
.�2/��1.

Parity considerations exclude the possibility that the quantity equals 0.

In the case where �.�2/� 2nv1
.�2/ D 1, we conclude that �.�1/ D 0, and hence

it must be constant, forcing nv1
.�2/ D 0. Thus, �2 2 �2.x;y/ must be the unique

homotopy class with �.�2/D 1, D.�2/ � 0, nv1
.�2/D 0, and nv2

.�2/D 1. Thus,
the corresponding component of @.x�x/ is U`C1 � x�y (note that in the connected
sum diagram, the reference point v2 corresponds to the new variable U`C1 ).

In the remaining cases, �.�1/D 2 and �.�2/�2nv1
.�2/D�1. Since �.�2/� 0, we

conclude that nv1
.�2/>0, while the condition that D.�2/�0 and �.�2/�2nv1

.�2/D

�1 readily forces nv2
.�2/D 0.

Suppose that nv1
.�2/D 1D �.�2/. In this case, �2 is constrained to be a homotopy

class with a unique holomorphic representative up to translation. Let u2 be a holomor-
phic representative of �2 , and �2Du�1

2
.fv1g/. Note that this consists of a single point

up to translation in D ; after suitable translation, we arrange for �2 D .t; 0/ 2D . We
wish now to apply Theorem 5.1, with now † playing the role of †2 in the statement
of that theorem. For this, we need to assume that `, the number of marked points w,
is greater than one (so that we are taking more than the gth symmetric product of †,
as required in the hypothesis of the last part of Theorem 5.1). We return to the case
where `D 1 at the end of this proof.

Completion of the proof of the proposition when ` > 1 According to Theorem 5.1,
count of points in all Maslov index one moduli spaces �1#�2 , where �2 2 �2.x;y/

has nv1
.�2/D �.�2/D 1 is given by the map

ı1W Cx �! Cy

defined by

ı1.x/D
X

y2T˛\Tˇ

X
f�12�2.x;y/

ˇ̌
�.�1/D2;nw1

.�1/D1g

�
#M.�1; t/

�
�

0@Ỳ
iD1

U
nwi

.�1/

1

1A � y;
in the notation of Lemma 6.3. By choosing v1 sufficiently close to ˇ , we can arrange
for t to be arbitrarily close to 0. According to Lemma 6.3 for suitable choice of t, this
count is given by

(21) ı1.x/D U1 � x

There are in principle other terms which count homotopy classes with nv1
.�2/> 1 (and

corresponding to factorizations of � as �1 and �2 with k D nw1
.�1/ > 1, �.�1/D 2).
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Our claim is that for a sufficiently large parameter � , these homotopy classes have
trivial contribution. Here, � parameterizes the choice of connected sum point v1.�/ in
S, with the limit lim� 7!1 v1.�/ given by a point v1

1
on the curve ˇ . Note that we

have already taken � large to apply Lemma 6.3 in establishing Equation (21).

Suppose now that for a sequence of � going to infinity, the moduli spaces M� .�/ are
non-empty for all choice of connected sum neck length. Then, for all sufficiently large
� , the fibered product M.�1/�Symk.D/M.�2/ is non-empty, where here kD nv1

.�2/.

Thus, we obtain a sequence of pseudo-holomorphic representatives u�
1
� u�

2
of the

fibered product. Clearly, there are Gromov limits u11 and u12 as � 7!1 of the curves
u�

1
and u�

2
. By dimension counts, since �.u�

1
/D 2, there are only three possible types

of limit for u11 : either it is a strong limit to a pseudo-holomorphic disk, or it is a weak
limit to a singly-broken flowline, or it contains a boundary degeneration, in which case
the remaining component must be a constant flowline. In this latter case, k D 1, and
hence it has been covered earlier.

Suppose that the limit u11 D u1
1

is not a broken flowline, and let u1
2

denote the
matching component of u12 (ie u12 could a priori be a broken flow-line, but it has
some component u1

2
with the property that �1.u

1
1
/D�2.u

1
2
/ . However, since v1.�/

limits to ˇ , we see that �2.u
1
2
/ contains some points on the ˇ–boundary. To achieve

this, we must have a sequence u�
1

with arbitrarily large � , with �1.u
�
1
/ containing

points arbitrarily close to the line f0g�R. According to Lemma 6.3, this forces k D 1,
a case considered earlier.

In the remaining case, the Gromov limit u11 is given as a broken flow-line u11 D aıb .
Again, by simple dimension counts, we see that �.a/ D �.b/ D 1. There is also a
corresponding u12 D a0 ı b0 . Since �.�2/ is odd, we can conclude that so is either
�.a0/ or �.b0/. Suppose it is �.a0/ which is odd. It is easy to see that for .a0/�1.v1

1
/

contains points on the boundary f0g�R. Moreover, the same reasoning as before, with
a and a0 playing the roles of u1

1
and u1

2
respectively, shows that a is supported in a

homotopy class which admits holomorphic representatives a� with �1.a
� / containing

points arbitrarily close to f0g �R. But this is impossible, as w1 is disjoint from ˇ ,
and a� has to be one of finitely many holomorphic disks up to translation. The case
where �.b0/ is odd follows mutas mutandis.

Putting the above facts together, we obtain the desired identification of
CF�.†; ˛ 0; ˇ 0;w0/ with the mapping cone of Equation (20), giving an expression

HF�.†; ˛ 0; ˇ 0;w0/Š
HF�.†; ˛; ˇ ;w/ŒU`C1�

U`C1�U1

;

at least in the case where ` > 1.
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Proof of the proposition when `D 1 In this case, Theorem 5.1 cannot be applied
directly to identify the Cy component of Cx .

Specifically, consider a homology class of � D �1#�2 , with �.�/D 1, �2 2 �2.x;y/,
and nv1

.�2/ D 1 D �.�2/. Take a Gromov limits of elements of M.�/, as the
connected sum is degenerated. Again, this limits to the unique (up to translation)
holomorphic representative u2 of �2 , but now we cannot assume that the Gromov
limit u1 from the other side is a flow-line. More specifically, the dimension counts (cf
Equation (16)) which ruled out the possibility of a closed component in the Gromov
compactification no longer apply. Indeed, by pushing the connected sum point v1

sufficiently close to ˇ , we can use Lemma 6.3 to rule out the case where the component
of u1 in the Gromov compactification which matches with u2 is an actual cylindrical
flow-line. Rather, it must be a closed holomorphic curve representing the homology
class Œ†1� (with multiplicity one). The argument from stabilization invariance as in [15]
applies now to show that cM.�/D 1. More precisely, the Gromov limit u1 equals a
constant flow-line meeting a copy of †1 , with �2.u2/D p . In this case, gluing can be
used to show that #M.�/D C �#M.�2/, where here C is the count of representatives
D#†1 with a marked point q to †1� Œ0; 1��R in the homology class Œ†1� which maps
u.p/ to .w1;p/. The fact that C D 1, in the case where g1 D 1 is calculated in the
proof of stabilization invariance of cylindrical Heegaard Floer homology (cf Appendix
B of [15]). One can show that C D 1 for arbitrary g follows from this case by, for
example, by realizing †1 as a connected sum of g1 copies of a genus one surface,
and degenerating along all the necks. Now, M.�/D 1 follows from the elementary
calculation that #M.�2/D 1.

Thus, we have computed that the counts of all Maslov index one moduli spaces of the
form �1#�2 , where �2.x;y/ is the flowline with nv1

.�2/D �.�2/D 1 is given by
the same map ı1 as in Equation (21). We can rule out the case where �.�1/D 2 and
k > 1 much as before. Specifically, by pushing the connected sum point close to ˇ ,
Lemma 6.3 shows that the corresponding Gromov limit u1 must contain at least one
closed curve component. Removing this component, we are left with a broken flow-line
with Maslov index zero, and hence, a constant flowline, hence showing that we needed
to be in the case where k D 1. The argument is now completed as before.

6.2 Model calculations

The aim of the present subsection is to continue with the methods from the previous
subsection to perform some model calculations which will be useful for establishing
handleslide invariance.
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Definition 6.6 Let C be a chain complex over the polynomial algebra F ŒU1; : : : ;U`�.
We say that it is of F ŒU �–type if for i ¤ j , there are chain homotopies Ui ' Uj

(thought of as endomorphisms of C).

Of course, if a chain complex C is of F ŒU �–type, then its homology is a module over
the polynomial algebra F ŒU �, where U acts by multiplication by any of the Ui .

Let .†; ˛; ˇ ;w/ be a Heegaard diagram, and fix two preferred basepoints w1; w2 2w.
Let †0 be a surface obtained by attaching a one-handle in the neighborhood of w1 and
w2 , and fix a pair of circles ˛0 and ˇ0 which are supported inside the handle, each a
small isotopic translate of one another, separating w1 and w2 . Equivalently, we form
a double-connected sum of † along w1 and w2 with the sphere S as in Figure 3.

Proposition 6.7 Let .†; ˛; ˇ ;w/ be a Heegaard diagram, and let .†0; ˛ 0; ˇ 0;w0/
be the Heegaard diagram obtained by attaching a one-handle in the above sense, so
that if the original describes a three-manifold Y , then the second diagram describes
Y 0 D Y #.S2 �S1/. Suppose that HF�.†; ˛; ˇ ;w/ of F ŒU �–type, then the same is
true of HF�.†0; ˛ 0; ˇ 0;w0/; and indeed

CF�.†0; ˛ 0; ˇ 0;w0/' CF�.†; ˛; ˇ ;w/˚CF�.†; ˛; ˇ ;w/:

Proof We analyze as in Proposition 6.5, only this time stretching near both w1 and
w2 . In this case, homotopy classes � break as fibered products of homotopy classes
�1 for .†; ˛; ˇ ;w/, and �2 for .S; ˛; ˇ; v1; v2/. Now we have

�.�/D �.�1/C�.�2/� 2nv1
.�2/� 2nv2

.�2/:

The same dimension counts as in the proof of Proposition 6.5 express

CF�.†0; ˛ 0; ˇ 0;w0/

as a mapping cone of a map

(22) CF�.†;˛;ˇ;w/ U1�U2Cı
� CF�.†;˛;ˇ;w/:

As in the proof of that proposition, the first chain complex is identified with Cx and
the second with Cy . The map ı counts those disks which have nv1

.�2/Cnv2
.�2/� 2.

By moving the connected sum points as in Proposition 6.5, we can arrange that these
terms contribute trivially.

Thus, since U1 ' U2 , the chain map from Equation (22) is null-homotopic, and it
follows at once that CF�.†0; ˛; ˇ 0;w0/ is chain homotopic to the direct sum of two
copies of CF�.†; ˛; ˇ ;w/.
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Let † be an oriented two-manifold, and ˛ be a collection of attaching circles, and
let w be a collection of basepoints, one in each component of †�˛1� � � � �˛gC`�1 .
Let ˛ 0 be a set of attaching circles obtained as small exact Hamiltonian translates
of ˛i . Specifically ˛0i is obtained as an exact Hamiltonian translate of ˛i , so that
˛i \ ˛

0
j D ∅ unless i D j , in which case the intersection consists of two points of

transverse intersection. Moreover, the Hamiltonian isotopy never crosses any of the
wi 2 w. Clearly, .†; ˛; ˛ 0;w/ represents #g.S2 �S1/, where g is the genus of †.

Proposition 6.8 CF�.†; ˛; ˛ 0;w/ is of F ŒU �–type, and its homology is isomorphic
to F ŒU �˝ƒ�V , where V is a g–dimensional vector space.

Proof We can reduce to the case where g D 0 by repeatedly applying Proposition
6.7. In the case where g D 0, the proposition is proved after repeated applications of
Proposition 6.5.

As an example, suppose that .†; ˛; ˇ ;w/ is an admissible multi-pointed Heegaard
diagram, and suppose that ˇ 0 is obtained from ˇ by a small perturbation as in Proposi-
tion 6.8. According to Proposition 6.8, there is an element Œ‚ˇˇ0 �2HF�.†; ˇ ; ˇ 0;w/
of maximal degree.

We can define a corresponding map

ˆ˛ˇˇ0 W CF�.†;˛;ˇ;w/ �! CF�.†;˛;ˇ 0;w/

ˆ˛ˇˇ0.�/D
X

y2T˛\Tˇ

X
f 2�2.x;‚ˇˇ0 ;y/g

#M. /

0@Ỳ
iD1

U
nwi

. /

i

1A � yby:

This map is a chain map (compare [21, Section 8]). (In this notation, we implicitly
assume that Œ‚ˇˇ0 � is represented by a single intersection point ‚ˇˇ0 ; more generally,
our map is gotten by summing triangle maps over the various intersection points whose
sum represents the homology class.)

Proposition 6.9 If the curves in ˇ 0 are sufficiently close to those in ˇ , chosen so
that each ˇ0i meets ˇi in precisely two intersection points, then the map ˆ˛ˇˇ0 defined
above induces an isomorphism in homology.

Proof This follows as in [21, Proposition 9.8]. The point is that for each x 2T˛\Tˇ ,
there is a corresponding nearest point x0 2 T˛ \Tˇ0 , and also a corresponding small
triangle  2 �2.x; ‚ˇˇ0 ; y/. Thus, the map obtained by counting only these smallest
triangles induces an isomorphism of chain groups. Using the energy filtration, it follows
that ˆ˛ˇˇ0 is an isomorphism of chain complexes.
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6.3 Handleslide invariance

We can now adapt the proof of handleslide invariance of Heegaard Floer homology as
in [21, Section 9] to establish handleslide invariance of HF� in the present context.

Specifically, start with a Heegaard diagram .†; ˛; ˇ ;w/. Let  be obtained from ˇ

by a single handleslide.

Proposition 6.10 There is an identification HF�.†; ˛; ˇ ;w/ŠHF�.†; ˛;  ;w/.

Proof As a first step, we claim that HF�.†; ˇ ;  ;w/Š F ŒU �˝ƒ�V , where V is
a g–dimensional F –vector space. To see this, de-stabilize using Propositions 6.5 and
6.7 to the case where there are exactly two ˇ curves and two  curves. There are
three cases, according to whether g D g.†/ is 0, 1, or 2. The case where g D 2 is
established in [21]; the other two cases are easily established by the same calculation.

With this said, there is a canonical top-dimensional generator ‚ˇ of

HF�.†; ˇ ;  ;w/:

The handleslide map

‰˛ˇ W HF�.†; ˛; ˇ ;w/ �!HF�.†; ˛;  ;w/

is defined by counting pseudo-holomorphic triangles: ‰˛ˇ D f˛ˇ .� ˝‚ˇ /; ie here

f˛ˇ .x˝‚ˇ /D
X

y2T˛\T

X
f 2�2.x;‚ˇ ;y/

ˇ̌
�. /D0g

#M. / �

0@Ỳ
iD1

U
nwi

. /

i

1A � y:
Now, according to associativity of the triangle maps, we see that the composite

‰˛ˇ0 ı‰˛ˇ D f˛ˇˇ0
�
� ˝fˇˇ0.‚ˇ ˝‚ˇ0/

�
:

Next, we verify that fˇˇ0.‚ˇ ˝‚ˇ0/ D ‚ˇˇ0 is the canonical top-dimensional
generator of HF�.†; ˇ ; ˇ 0;w/, which is calculated in Proposition 6.8; ie we obtain
the map ˆ˛ˇˇ0 studied in Proposition 6.9. The map is an isomorphism now according
to that proposition.

6.4 Invariance

We prove the invariance of HF� as introduced in Section 4.
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Proof of Theorem 4.4 We show that HF� is invariant under the four Heegaard moves
from Proposition 3.3, or, more specifically, their admissible versions as in Proposition
3.6.

Isotopy invariance follows exactly as in [21, Section 7].

Handleslide invariance was established in Proposition 6.10.

Invariance under index one and two stabilizations follows from exactly as in [21, Section
10].

Finally, it remains to consider invariance index zero/three stabilizations. In this case,
we introduce a new pair of (isotopic) curves ˛gC` and ˇgC` , each of which separates
† in two. In the case where the stabilization is simple in the sense of Section 6.1,
ie ˛gC` bounds a disk containing w`C1 and none of the other ˛i (or wi ), invariance is
established in Proposition 6.5. It is easy to see that general index zero/three stabilizations
can be achieved by simple index zero/three stabilizations, followed by a sequence of
handleslides.

The case of bCF can be handled more quickly:

Proof of Theorem 4.5 Let .†; ˛; ˇ ;w/ be the multi-pointed Heegaard diagram, with
wD fw1; : : : ; w`g. Let P be a planar surface with ` boundary components. Form the
surface †0 D .†� nd.w//[P . Consider .†0; ˛; ˇ ; w/, where here w is chosen in
the region P �†0 . It is easy to see that .†0; ˛; ˇ ; w/ is a pointed Heegaard diagram
for Y #

�
#`�1.S2 �S1/

�
. Admissibility of the original diagram corresponds precisely

to admissibility for this new diagram. Moreover, the intersection points of T˛ \Tˇ
in SymgC`�1.†/ are identical with those in SymgC`�1.†0/. Finally, holomorphic
curves in SymgC`�1.†/ which are disjoint from all the wi are identical with those in
SymgC`�1.†0/ which are disjoint from w. The result now follows.

7 Invariance of link invariants

Invariance of the filtered chain homotopy type of the link filtration CFL�.S3; EL/ is an
easy consequence of the methods from Section 6.

Proof of Theorem 4.7 We must verify that CFL�.†; ˛; ˇ ;w; z/ is invariant under
isotopies and handleslides supported in the complement of w and z, and also index
one/two stabilizations.

If .†0; ˛ 0; ˇ 0;w0; z0/ is obtained from an index one/two stabilization, then the methods
from [21, Section 10] actually give an isomorphism of chain complexes

CFL�.†0; ˛ 0; ˇ 0;w0; z0/Š CFL�.†; ˛; ˇ ;w; z/:
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Performing the stabilization away from w and z, we see that the assignment to relative
Spinc structures is unaffected.

Handleslides amongst the ˇ are understood as follows. As before, if  is obtained
from ˇ by a handleslide, then there is a chain map (cf Proposition 6.10)

‰˛ˇ W CFL�.†; ˛; ˇ ;w/ �! CFL�.†; ˛;  ;w/;

defined by counting holomorphic triangles. Since all triply-periodic domains are disjoint
from w and z, it follows easily that if x � y, then ‰˛;ˇ; .x/ � ‰˛;ˇ; .y/. We thus
consider the induced map on the associated graded object, ie the map b‰˛ˇ induced
by counting pseudo-holomorphic triangles which are disjoint from w and z alike. Note
that

sw;z.x/D s0w;z
�b‰˛ˇ .x/�;

where here s0w;z is the map associated to the Heegaard diagram .†; ˛;  ;w; z/, since
the triangles used in the definition of b‰ this count are disjoint from w and z. Now,
adapting the argument from Proposition 6.10, we have that the map

b‰˛ˇ0 ı b‰˛ˇ D bf ˛ˇˇ0.� ˝‚ˇˇ0/
is an isomorphism. Specifically, here

bf ˛ˇˇ0.x˝‚ˇˇ0/D X
y2T˛\Tˇ

X
f 2�2.x;‚ˇˇ0 ;y/

ˇ̌
�. /D0;nw. /Dnz. /D0g

#M. /y:

The fact that this is an isomorphism follows readily as in Proposition 6.9, with the
observation that the small triangles considered there do not contain any of the the
basepoints fwi ; zig

`
iD1

. Since b‰ induces an isomorphism of Spinc.Y;L/–graded
complexes, it follows formally that ‰˛ˇ induces an isomorphism of Spinc.Y;L/–
filtered complexes.

7.1 Link homology as an associated graded object

We consider now the link filtration.

Proof of Theorem 1.2 From its construction, we see that bHFL is the homology of the
graded object associated to a Z`–filtration of bCF .†; ˛; ˇ ;w/, which, according to
Theorem 4.5, calculates bHF

�
#`�1.S2�S1/

�
. But bHF

�
#`�1.S2�S1/

�
is identified

with the exterior algebra of H1.#`�1.S2 �S1/IF/ (cf [21, Lemma 9.1]). Invariance
of the spectral sequence is a consequence of Theorem 4.7.
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Proof of Theorem 1.5 Fix s2 Spinc.Y;L/. Recall that the chain complex computing

HFL�.Y; EL; s/ consists of symbols U a1 � � � � �U a` ˝ x, where a1; : : : ; a` are non-
negative integers and x 2 T˛ \Tˇ , satisfying the constraint that

sw;z.x/� a1PDŒ�1�� � � � � a`PDŒ�`�D s:

This set is endowed with the differential as in Equation (10), except that now we sum
over only those � 2 �2.x; y/ with nz.�/D 0. The further filtration on 1CFL.Y; EL; s/

is given by the map U a1 � � � � �U a` ˝ x 7! .a1; : : : ; a`/. Its associated graded object
is clearly the one stated in the theorem.

Proof of Theorem 1.6 The spectral sequence arises from the filtration of

CFL�.S3; EL/:

The fact that the homology of this total complex is ZŒU � follows from the fact that
the underlying chain complex associated to .†; ˛; ˇ ;w/ has homology HF�.S3/

(according to Theorem 4.4), which in turn is known to be ZŒU � (cf [21]).

7.2 Forgetful functors

Let EL be an `–component oriented link, which we assume to be in S3 for simplicity.
Distinguish a component K1 �L, and consider the filling map

GK1
W Spinc.Y;L/ �! Spinc.Y;L�K1/

studied in Section 3.7. Under this map, a Spinc.Y;L/–filtered chain complex can be
viewed as a Spinc.Y;L�K1/–filtered chain complex.

Let M be the rank two graded vector space with one generator in grading 0 and another
in grading �1.

Proposition 7.1 Let EL be an oriented, `–component link in S3 , and distinguish the
first component K1 . Consider the filtration 1CFL. EL/, viewed as a Spinc.Y;L�K1/–
filtered chain complex, via the filling map using the distinguished component K1 of L.
The filtered chain homotopy type of this complex is identified with 1CFL. EL�K1/˝M .

In more elementary terms, a Z`–filtered chain complex can be viewed as a Z`�1 –
filtered one, by forgetting the first term in the relative filtration. The above proposition
says that for the relatively Z`–filtered chain complex 1CFL.Y; EL/, if we forget the
first term in the relative filtration, we obtain the relatively Z`�1 –filtered complex
1CFL. EL�K1/˝M .

Algebraic & Geometric Topology, Volume 8 (2008)



Holomorphic disks and link invariants 665

In particular, if we consider the higher differentials inducing a chain complex on
bHFL. EL/ (from Theorem 1.2) and take their homology in the first component (in the

sense of Section 2.1), we obtain bHFL. EL0/˝M (up to some overall translation of the
grading by relative Spinc structures).

Proof of Proposition 7.1 We begin with the relative Z`–filtered statement.

In view of Propositions 6.5 and 6.7, and keeping track of filtrations, we see that the
Z`�1 –filtered chain complex obtained from CFL�.S3; EL/ obtained by forgetting about
the first factor is identified with the mapping cone of

CFL�.S3; EL0/ŒU1�
U1�Ui
� CFL�.S3; EL0/ŒU1�;

where EL0D EL�K1 and i is some integer > 1. This identification is gotten by reducing
to the case of simple stabilizations (in the sense of Section 6.1), after handlesliding
across the basepoint z1 .

Specializing to Uj � 0 for all j, we obtain two copies of 1CFL.S3; EL0/, verifying the
simplified statement of Proposition 7.1, using only the relative Z`–filtered statement.

To obtain the version stated here, we must add the following observations. If

.†; ˛; ˇ ;w; z/

is a multiply-pointed Heegaard diagram for EL, and x2T˛\Tˇ , then the map obtained
by handlesliding across z1 still preserves GK1

�
sw;z.x/

�
. Moreover, in the identification

of Proposition 6.5 between the complex obtained from applying the forgetful map to
1CFL.S3;L/ and the complex 1CFL.S3;L�K1/˝M , we have an identification
between the induced relative Spinc structures.

8 Symmetry

We consider the symmetry properties of bHFL. EL/. The properties we give here are
formally analogous to corresponding properties of knot Floer homology, cf [20; 24;
21].

Proposition 8.1 Let EL be an oriented link. Then, we have an identification

bHFL�. EL; s/Š bHFL�.� EL;Js/:
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Proof Suppose .†; ˛; ˇ ;w; z/ is a pointed Heegaard diagram representing EL. Then,
.�†; ˇ ; ˛;w; z/ is also a pointed Heegaard diagram for the link L, only now it
represents the opposite orientation � EL. The two Heegaard diagrams give assignments

sw;zW T˛ \Tˇ �! Spinc.Y;L/ and s0w;zW T˛ \Tˇ �! Spinc.Y;L/;

respectively. Let bbCF denote the chain complex whose homology is bHF , ie this is
the associated graded object for the link filtration of bCF . Explicitly, its generators are
x 2 T˛ \Tˇ , and it is endowed with the differential from Equation (14).

Of course, the generators for bCF .†; ˛; ˇ ;w; z/ and bCF .�†; ˇ ; ˛;w; z/ coincide.
Indeed, by pre-composing with a reflection on the disk, we see that the differentials for
the two chain complexes coincide.

However, sw;z.x/D Js0w;z.x/, as in Lemma 3.12. The result follows.

Proposition 8.2 Let EL be an oriented link in S3 . Let f W Spinc.Y;L/ �! Z be the
map defined as follows. Writing

c1.s/D
X̀
iD1

ai �PDŒ�i �;

we have that f .s/D
P`

iD1 ai . Then, we have an identification

bHFLd . EL; s/Š bHFLd�f .s/C`. EL;J.s/C
X̀
iD1

PDŒ�i �/:

Proof Write � D
P`

iD1 �i . As in Lemma 3.12, we see that .†; ˛; ˇ ;w; z/ and
.†; ˛; ˇ ; z;w/ are Heegaard diagrams for EL and � EL respectively. The generators of
bbCF and the differentials coincide, but the two maps to relative Spinc structures differ,
with sw;z.x/Dsz;w.x/CPDŒ��. Thus, we see that there is a function gW Spinc.Y;L/�!

Z with the property that

bHFLd . EL; s/Š bHFLdCg.s/

�
� EL; s��

�
:

Suppose that f .s1/�f .s2/D k , then there is a flowline � 2 �2.x; y/ with s.x/D s1

and s.y/ D s2 , nw.�/ D 0, nz.�/ D k . Now, in .†; ˛; ˇ ;w; z/, it follows that
gr.x/�gr.y/D�.�/, whereas for .†; ˛; ˇ ; z;w/, gr0.x/�gr0.y/D�.�/�2k (where
here we use gr0 to denote the grading induced on the second diagram). It follows at
once that there is some constant c D c. EL/ (depending on the oriented link) with the
property that for all s 2 Spinc.Y;L/, g.s/D�f .s/C c. EL/.
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Combining the above remarks with Proposition 8.1, we have that

(23) bHFLd . EL; s/D bHFL
d�f .s/Cc. EL/

. EL;J.s/��/:

On the other hand, two applications of Equation (23) shows that

bHFLd . EL; s/D bHFL
d�f .s/Cc. EL/�f .J .sC�//Cc. EL/

. EL; s/;

and hence, since f .J.sC�//D�f .s/C 2n that c. EL/D n.

There is a natural map

i W Spinc.Y;L/ �! Spinc.�Y;L/;

since the notion of equivalence classes of nowhere vanishing vector fields does not refer
to the orientation of the ambient manifold. Note, however, that c1

�
i.s/

�
D�c1

�
J.s/

�
,

since the induced two-plane field on Ev? gets opposite orientations depending on the
orientation of Y .

Proposition 8.3 Let EL be an oriented link, and let r. EL/ denote its mirror. Then,

bHFLd . EL; s/D bHFL
�dC`�1�

r. EL/; i.s/
�
:

Proof If .†; ˛; ˇ ;w; z/ represents EL, we can think of .�†; ˛; ˇ ;w; z/ as repre-
senting its mirror. It is easy to see that this latter chain complex is the dual complex
for the former, ie

bCF d .�†; ˛; ˇ ;w; z/Š Hom
�bCF �d .†; ˛; ˇ ;w; z/

�
;

so that the assignment from the intersection points to relative Spinc structures is
intertwined with the natural map i referred to above. The shift in grading follows from
the fact that both total complexes for bCF have homology isomorphic to ƒ�F`�1 ,
graded so that its top-most term has grading 0 (cf Theorem 1.2).

8.1 Notational remarks

Relative Spinc structures are not very concrete objects, and hence it is sometimes
awkward to describe link Floer homology as filtered by them. We could alternatively
use relative two-dimensional homology, and indeed the above results suggest the
following convention.
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For � 2H 2.Y;L/, we could define bHFL. EL; �/ to be bHFL. EL; s/, where here s is the
relative Spinc structure determined by the formula

c1.s/C
X̀
iD1

PDŒ�i �D �:

Given � 2H 2.Y;L/, write

� D
X̀
iD1

ai �PDŒ�i �:

We let j�j be the quantity

j�j D
X̀
iD1

ai :

With these conventions, then, Proposition 8.2 reads

bHFLd . EL; �/D bHFLd�j�j. EL;��/:

Also, according to Proposition 7.1,

bHFL. EL�K1; �CPDŒK1�/

is gotten by introducing extra differentials on
L

s2Z
bHFL. EL; �C 2s �PDŒ�1�/.

It is simpler yet to consider bHFL. EL/ as graded by elements of H.L/; ie given h 2

H.L/, write bHFL. EL; h/D bHFL. EL; s/, where s is chosen so that

(24) c1.s/C
X̀
iD1

PDŒ�i �D 2 �PDŒh�:

Now, Proposition 8.2 reads

(25) bHFLd . EL; h/D bHFLd�jhj. EL;�h/:

Note that we could have had the grading set be inside H, rather than H , by dropping
the factor of 2 in Equation (24). However, we have chosen the present formula so that
bHFL.K; s �PDŒ��/D bHFK.K; s/, in the case where K is a (one-component) knot.

9 Euler characteristics

The aim of this section is to calculate the Euler characteristic of link homology, estab-
lishing Equations (1) and (2).
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9.1 The case of 1HFL

Let X be a connected, m–dimensional CW complex, and let H D H1.X IZ/=Tors.
The Reidemeister–Franz torsion of X is defined as follows (see for example [17; 28]).
Let K denote the field of fractions of the group-ring ZŒH �. Let eX denote the covering
space determined by the natural homomorphism of �1.X;x/ �!H . The action by
H gives the CW complex of eX , C�. eX IZ/ a complex of free ZŒH �–modules. In
particular, its differentials e@i W Ci. eX IZ/ �! Ci�1. eX IZ/
are all ZŒU �–equivariant. A fundamental family of cells for eX is a a collection of
cells for eX , each of which projects to exactly one cell of X. The Reidemeister–Franz
torsion is defined to vanish if H�.C�. eX /˝ZŒH � K/ ¤ 0. Otherwise, we proceed
as follows. Suppose that c and c0 are two ordered bases for some K vector space.
Then, their top exterior products differ by an element which we denote by Œc=c0� (ie
det.c/D Œc=c0� � det.c0/). Let bi be a sequence of vectors in Ci. eX IZ/ whose image
under eı i forms a basis for this image. By our assumption, e@i.biC1/bi is a basis for
Ci. eX IZ/; let ci be a basis for Ci. eX IZ/ coming from a fundamental family of cells
for eX . Then, the Reidemeister–Franz torsion t.X / 2 K

˙H
is defined to be

t.X /D

mY
iD0

�
@i.biC1/bi

ci

�.�1/iC1

:

In the case where X is the complement of an `–component link L � S3 , H Š Z` ,
and t.X / 2 ZŒH �. Indeed, in this case the Reidemeister–Franz torsion, which we now
denote by t.L/, is related to the (multi-variable) Alexander polynomial by the formula

t.L/D

8<:
�L.T /

.T � 1/
if `D 1,

�L.T1; : : : ;T`/ if ` > 1.

Although this defines t.L/ only up to an overall sign and translation by elements of
H, the latter indeterminacy can be resolved by taking the representative of t.L/ which
satisfies the symmetry t.L/D t.L/, where here f 2 ZŒH � 7! f is the map induced
by taking h to h�1 . (The existence of such a symmetric representative is standard in
the theory of torsion, cf [17; 28].)

Proposition 9.1 Given a link L, we have an identification

(26)
X
h2H

�
� bHFL�.L; h/

�
� eh
D˙

0@Ỳ
iD1

.T
1
2

i �T
� 1

2

i /

1A � t.L/:
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Here, we think of Ti D emi , where mi are meridians for L.

Proof Let .†; ˛; ˇ ;w; z/ be a 2`–pointed Heegaard diagram for S3 subordinate to
L� S3 .

By stabilizing if necessary, we can arrange for the following conditions to hold:

� The genus of † is g, with ˇ1; : : : ; ˇ` forming meridians for the various compo-
nents of L.

� There are circles ˛1; : : : ; ˛` , with the property that ˛i\ ǰ for i D 1; : : : ; ` and
j D 1; : : : ;g is empty unless i D j , in which case ˛i and ˇi meet in a single
point.

� wi and zi can be connected by an arc ıi which is disjoint from all the j̨ with
j D 1; : : : ;g , and it is also disjoint from all the ǰ with j ¤ i , meeting ˇi

transversally in a single point.

Let ai be the one-handle in S3 corresponding to the circle ˛i , and bj be the two-
handle corresponding to the attaching circle ǰ . The zero-handles A1; : : :A` , the
one-handles a1; : : : ; agC` , and the two-handles b`C1; : : : b`Cg together form a handle
decomposition for S3�L. Let eAi , eaj , and ebk (with i D 1; : : : ; `, j D 1; : : : ;gC`,
k D `C 1; : : : ; `Cg ) denote a collection of lifts to the cover fM . Note that we can
label f eAig

`
iD1

so that

(27) e@eai D .1�Ti/ eAi :

for all i D 1; : : : ; `.

Now,

t.fM /D

"
fe@eaig

`
iD1

f eAig

#�1

�

"
fe@ebkg

`Cg

kD`C1
feaig

`
iD1
g

feaj g
`Cg
jD1

#
�

"
febkg

`Cg

kD`C1

febkg
`Cg

kD`C1

#�1

:

Of course, "
febkg

`Cg

kD`C1

febkg
`Cg

kD`C1

#
D 1:

Moreover, it is not difficult to see that"
fe@ebkg

`Cg

kD`C1
feaig

`
iD1
g

feaj g
`Cg
jD1

#
D

"
f@bkg

`Cg

kD`C1

fakg
`Cg

kD`C1

#
D #

�fT˛ \fTˇ � :
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Finally, according to Equation (27),"
fe@eaig

`
iD1

f eAig

#
D

Ỳ
iD1

.1�Ti/:

Observe next that for any s 2 Spinc.Y;L/, we have thatX
s2Spinc.Y;L/

�
� bHFL.L; s0C h/

�
eh
PD#.fT˛ \fTˇ /:

This establishes Equation Equation (26), up to an overall translation by units in the
Laurent polynomials in T1; : : : ;T` . The indeterminacy in translation by the various
Ti is resolved by observing that both sides of the equation are symmetric under the
involution of the ring of Laurent polynomials induced by Ti 7! T �1

i (for all i): The
left hand side is invariant according to Proposition 8.2, while the right hand side is
symmetric by basic properties of torsion [17].

9.2 The case of HFL�

Proposition 9.2 We have an identificationX
h2H

�
�
HFL�.L; h/

�
� eh
� D˙ t.L/:

Proof Each generator x 2 bHFL.L/ gives rise to infinitely many generators

T
�a1

1
� � � � �T

�a`
`
� x

for all .a1; : : : ; a`/� 0, with F.eh � x/D F.x/� h. Thus, it follows that

X
h2H

�
�
HFL�.L; h/

�
� eh
D

0B@ X
f.a1;:::;a`/2Z`

ˇ̌
a�0g

T
�a1

1
� � � � �T

�a`
`

1CA
�

 X
h2H

�
�bHFL.L; h/

�
� eh

!
:

Since X
f.a1;:::;a`/2Z`

ˇ̌
a�0g

T
�a1

1
� � � � �T

�a`
`
D

1Q`
iD1.1�T �1

i /
;

the proposition now follows from Proposition 9.1.
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10 Relationship with knot Floer homology

Our aim here is to show that certain aspects of the link Floer homology considered here
can be extracted from the knot Floer homology of links considered in [20]. Specifically,
we prove Theorem 1.1, which shows in particular that the total rank of bHFL agrees
with the total rank of the knot Floer homology for an oriented link. From this, we
quickly deduce the link Floer homology of alternating links, in Section 10.1.

First, we briefly recall the construction from [20]. Suppose that L is an `–component
oriented link in S3 . Then, we can construct an oriented knot in #`�1.S2 � S1/ as
follows. Fix 2`� 2 points fpi ; qig

`�1
iD1

in EL which are paired off in such a manner
that if we formally identify each pi with qi in L, we obtain a connected graph. We
view pi and qi as the feet of a one-handle to attach to S3 . Attaching all `� 1 of
these one-handles, we obtain a three-manifold �.S3; fpi ; qig/ which is diffeomorphic
to #`�1.S2�S1/. Inside each one-handle, we can find a band along which to perform
a connected sum of the component of EL containing pi with the component containing
qi . We choose the band so that the induced orientation of its boundary is compatible
with the orientation of the link (moreover the band is chosen to be always transverse to
the foliation of the one-handle by two-spheres). Our hypotheses on the number and
distribution of the distinguished points ensures that the newly-constructed link gotten
by performing all `� 1 of the connected sums is in fact a single-component knot. We
denote this link by �. EL; fpi ; qig/ inside �.S3; fpi ; qig/ Š #`�1.S2 �S1/. It is not
difficult to see that the diffeomorphism type of the pair

�
�.S3; fpi ; qig/; �. EL; fpi ; qig/

�
depends on only the underlying oriented link EL [20, Proposition 2.1]; hence we denote
this object simply by the knot �. EL/� #`�1.S2 �S1/.

With these preliminaries, the knot Floer homology groups

bHFK. EL/D
M
s2Z

bHFK. EL; s/

of an oriented link are defined to be the knot Floer homology groups of �. EL/ �
#`�1.S2 �S1/:

bHFK
�
#`�1.S2

�S1/; �. EL/
�
D

M
s2Z

bHFK
�
#`�1.S2

�S1/; �. EL/; s
�
:

In our proof of Theorem 1.1, it will be useful to pass from a Heegaard diagram for a link
EL�S3 to a corresponding Heegaard diagram for �.L/� #`�1.S2�S1/. This is done
as follows. Fix a Heegaard diagram .†; ˛; ˇ ;w; z/ for an oriented, `–component link
EL�S3 . Write wDfw1; : : : ; w`g, zDfz1; : : : ; z`g. We attach `�1 one-handles to †
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to obtain a new surface †0 as follows. The feet of the i th one-handle is attached along
a neighborhood of zi and wiC1 . Letting w D w1 and z D z` , we get a two-pointed
Heegaard diagram .†0; ˛; ˇ ; w; z/ for �. EL/ � #`�1.S2 � S1/ (compare the proof
of Theorem 4.5). Admissibility for .†; ˛; ˇ ;w; z/ translates into admissibility for
.†0; ˛; ˇ ; w; z/.

Proof of Theorem 1.1 There is a one-to-one correspondence between generators for
1CFL. EL/ and bCFK

�
�. EL/

�
.

Collapse the relative Z` filtration on 1CFL.S3; EL/ to a relative Z–filtration by

Fo.x/�Fo.y/D
X

i

�
nzi
.�/� nwi

.�/
�
;

where here � 2 �2.x; y/ is any Whitney disk in SymgC`�1.†/. Recall also that the
Z–filtration on bCF

�
#`�1.S2 �S1/; �. EL/

�
is given by

F 0.x/�F 0.y/D nz`.�
0/� nw1

.�0/

where here �0 2 �2.x; y/ is any Whitney disk in SymgC`�1.†0/.

Clearly, any Whitney disk �0 2 �2.x; y/ in SymgC`�1.†0/ gives rise naturally to
a Whitney disk � 2 �2.x; y/ in SymgC`�1.†/, having the property that nzi

.�/ D

nwiC1
.�/ for i D 1; : : : `� 1. From these conditions, it is immediate to see that

Fo.x/D F 0.x/;

identifying one of the factors in the bigrading for both theories.

Moreover, it is also straightforward to see that �.�/D �.�0/, and hence the relative
homological gradings of both theories are identified. A shift in the absolute homological
bigradings by `�1

2
can be identified in a model calculation, according to which the top-

dimensional generator bHF
�
#`�1.S2�S1/

�
generates bHF .S3/ in the corresponding

multiply-pointed Heegaard diagram. We can also remove the indeterminacy in the
relative Z–filtration, using the fact that both theories are enjoy the symmetry property
(Proposition 8.2).

Having established that both complexes have the same generators with the same
bigradings, it remains to show that the differentials are identified; ie for suitable choices
of complex structure on †0 , the holomorphic disks correspond, as well.

By stabilizing and renumbering curves if necessary, we can arrange for the diagram
.†; ˛; ˇ ;w; z/ to have the following properties:
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� For positive, odd i less than or equal to `, wi an zi are connected by an arc ıi
which meets ˛i in a single point but which is disjoint from all the other ˛i and

ǰ .

� For positive, even i less than or equal to `, wi an zi are connected by an arc ıi
which meets ˇi in a single point but which is disjoint from all the other ˛i and

ǰ .

Our aim is to exhibit a complex structure on †0 with the property that for all x; y 2
T˛\Tˇ and all �0 2�2.x; y/ with nw1

.�0/D nz`.�
0/D 0 and �.�0/D 1 (ie these are

the disks which contribute in the differential for bCFK
�
�. EL/

�
), if M.�0/ is non-empty,

then we must have nzi
.�0/D nwi

.�0/D 0 for all i, as well.

The complex structure is obtained by thinking of †0 as obtained from † by adding
one-handles with a long connected sum length attached connecting zi to wiC1 (for i D

1; : : : ; `). We choose the feet of these handles zi and wiC1 in a family fzi.t/gt2Œ0;1/
and fwiC1.t/gt2Œ0;1/ starting out at zi.0/ and wiC1.0/ our original zi and wiC1

respectively, zi.t/; wiC1.t/ 2†�˛1�� � ��˛gC`�ˇ1� : : : ˇgC` , for odd i less than
`,

lim
t 7!1

zi.t/D z1i 2 ˛i ;

while for even i,
lim

t 7!1
wi.t/D w

1
i 2 ˇi :

This can be achieved by constraining wi.t/ and zi.t/ to be subarcs of ıi .

We have a two-parameter family of complex structures on †0 , †0.�; �/, where �
denotes the conformal structure on the annulus in the connected sum region, and �
parametrizes the placement of the feet of the one-handles wi.�/ and zi.�/.

Starting with our homotopy class �0 2 �2.x; y/, thought of representing a cylindrical
flow-line in †0 , let � 2 �2.x; y/ be the corresponding Whitney disk in SymgC`�1.†/.
If for all � , we can find sufficiently large � for which M�;� .�

0/ is non-empty, then
we can take a Gromov limit (as � 7! 1) for any choice of � . This gives a possibly
broken pseudo-holomorphic cylindrical flow-line u� representing � .

Observe that since nw1
.�0/ D 0, it is clear that u� contains no components which

contain all of †. Moreover, it can contain no boundary degenerations. Specifically,
each boundary degeneration satisfies nwi

. /D nzi
. / for all i D 1; : : : ; `, while a

boundary degeneration arising in this manner must also satisfy the additional conditions
that nw1

. /D nz`. /D 0 (as nw1
.�/D nz`.�/D 0), forcing all nwi

. /D nzi
. /.

This forces  D 0.
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Thus, u� represents a juxtaposition of cylindrical flow-lines in †. Moreover, each
component u� in the Gromov compactification must satisfy the conditions that

�zi .�/.u� /D �
wiC1.�/.u� /

for i D 1; : : : `� 1, while �w1.u� /D �
z`.u� /D 0. Indeed, the same remarks apply

taking � �!1, as well: we obtain a possibly broken flowline u1 , each of whose
components consist of cylindrical flowlines satisfying

(28) �z1
i .u1/D �

w1
iC1.u1/:

Choose i minimal with the property that nzi
.�0/¤ 0. If there is no such i, of course,

then �0 represents a flowline with all nzi
.�0/D nwi

.�0/D 0 as desired. Otherwise,
we assume that nwi

.�0/D 0 (returning to the other case later). Then, some component
u1 of u1 has �z1

i .u1/ ¤ ∅. In fact, if i is odd, then �z1
i .u1/ is contained in

f1g�R. However, since w1
iC1

is not on one of the ˛–circles, �wiC1.u1/ is disjoint
from f1g �R, contradicting Equation (28). A symmetrical argument applies when i

is even. In the other case, where nwi
.�0/¤ 0, we can instead find the minimal j for

which nwj .�
0/¤ 0, and then apply similar reasoning to derive a contradiction.

10.1 Alternating links

A large class of calculations is provided by Theorem 1.3, which follows quickly from
the material established thus far, combined with results from [18].

Proof of Theorem 1.3 In [18, Theorem 4.1], an analogue of Theorem 1.3 is established
for the knot invariant of L and the (one-variable) Alexander-Conway polynomial;
specifically, letting �L be its Alexander-Conway polynomial, and writing

.T �1=2
�T 1=2/n�1

��L.T /D a0C

X
s>0

as.T
s
CT �s/;

we have that
bHFK.S3;L; s/Š F jas j

.sC�
2
/
:

Combining this with Theorem 1.1, the result follows.

11 The Künneth formula for connected sums

In this section, we study the behaviour of the link invariant under connected sums,
generalizing corresponding results for knot Floer homology [20; 24]. We give a variant
for the filtration of CF�.S3/, and use it to conclude a corresponding result for bHFL
(Theorem 1.4).
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Let C be a Zm filtered chain complex over the ring F ŒU1; : : : ;Um� and C 0 be a
Zn –filtered chain complex over F ŒU 0

1
; : : : ;U 0n�, we can form their tensor product

C ˝U1�U 0
1

C 0 , thought of as a chain complex over the polynomial ring

F ŒU1; : : : ;Um;U
0
1; : : : ;U

0
n�=U1 � U 01:

This complex is naturally ZmCn�1 –filtered, by the rule that the part of C ˝ C 0 in
filtration level .a1; a2; : : : ; am; b2; : : : ; bn/,

F
�
C ˝U1'U 0

1
C 0; .a1; a2; : : : ; am; b2; : : : ; bn/

�
;

is generated by the sum over all aC b D a1 of the subcomplexes

F.C; a; a2; : : : ; am/˝F
�
C 0; .b; b2; : : : ; bn/

�
:

Consider two links L1 and L2 , and fix components p 2 L1 , p0 2 L2 . There is a
natural map

#W Spinc.L1/�Spinc.L2/ �! Spinc.L1#p�p0L2/;

defined as follows. Represent relative Spinc structures s1 and s2 as nowhere vanishing
vector fields Ev1 and Ev2 which are tangent to L1 and L2 respectively. Deleting a
sufficiently small ball B1 around p 2L1 � S3 , the vector field Ev1 points normal to
the boundary S3�B1 at exactly two points, where the corresponding component of
L1 meets @B1 . Find a corresponding ball B2 around p0 2L2 . We can then identify
v1j@B1

with v2j@B2
, and hence extend the vector field over S3#S3 , to obtain a nowhere

vanishing vector field containing L1#p�p0L2 as a closed orbit. This determines the
stated map. It is easy to see that

.s1CPDŒh1�/#.s2CPDŒh2�/D s1#s2C �1.PDŒh1�/C �2.PDŒh2�/;

where here
�i W H1.S

3
�Li/ �!H1.S

3
�L1#L2/

are the natural maps.

We can refine the above tensor product as follows. If C is a Spinc.L1/–filtered complex
over F ŒU1; : : : ;Um� and C 0 is a Spinc.L2/–filtered complex over F ŒU 0

1
; : : : ;U 0n�, we

can form the chain complex
C ˝U1'U 0

1
C 0;

equipped with the Spinc.L1#L2/–filtration, where F.C˝U1'U 0
1
C 0; s/ is generated by

the sum of F.C; s1/˝F.C 0; s2/ over all pairs s1 2 Spinc.Y;L1/ and s2 2 Spinc.L2/

with sD s1#s2 .
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Theorem 11.1 Let L1 and L2 be oriented links with n1 and n2 components respec-
tively. Fix also a point p 2 L1 and p0 2 L2 , and form the connected sum L1#L2

(near the two distinguished points). Then, the chain complex CFL�.L1#p�p0L2/ is
isomorphic as a Spinc.L1#L2/–filtered chain complex over

F ŒU1; : : : ;Un;U
0
1; : : : ;U

0
m�=U1 � U 01:

to the tensor product CFL�.L1/ ˝U1�U 0
1

CFL�.L2/, where here U1 and U 0
1

are
variables corresponding to the components of L1 and L2 distinguished by the points p

and p0 respectively.

Proposition 11.2 Let .Y1;L1/ and .Y2;L2/ are links with multi-pointed Heegaard
diagrams

.†1; ˛1; ˇ 1; fw
1
i g

n1

iD1
; fz1

i g
n1

iD1
/ .†2; ˛2; ˇ 2; fw

2
i ; z

2
i g

n2

iD1
/:

The connected sum .Y1#Y2;L1#L2/, where we connect the first component of L1

with the first component of L2 , can be given a Heegaard diagram

.†1#†2; ˛1[ ˛2; ˇ 1[ ˇ 2; fw
1
i g

n1

iD1
[fw2

i g
n2

iD2
; fz1

i g
n1�1
iD2
[fz2

i g
n2

iD1
/;

whose underlying surface †1#†2 is formed by the connected sum of †1 and †2 along
the point z1

1
2 †1 and w2

1
2 †2 . In this new diagram, the pair of reference points

w1
1

and z2
1

represent the connected sum of the first component of L1 with the first
component of L2 .

Proof This is straightforward.

Proof of Theorem 11.1 Let ˛ 0
1

, ˇ 01 , and ˛ 0
2

be small perturbations of the sets
of curves ˛1 , ˇ 1 , and ˛2 respectively. Correspondingly, there are canonical top-
dimensional intersection points ‚1 2 Tˇ1

\Tˇ0
1

and ‚2 2 T˛2
\T˛0

2
.

We have a map

CF�.˛1; ˇ 1/ �! CF�.˛1[ ˛2; ˇ 1[ ˛ 02/

x1 7! x1 �‚2:

Combining Propositions 6.5 and 6.7, we see that this is a chain map. There is a similar
map

CF�.˛ 02; ˇ 2/ �! CF�.ˇ 1[ ˛ 02; ˇ
0
1[ ˇ 2/

defined by
x2 7!‚1 � x2:
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Finally, we have a chain map

CF�.˛1[ ˛2; ˇ 1[ ˛ 02/˝CF�.ˇ 1[ ˛ 02; ˇ
0
1[ ˇ 2/�!CF�.˛1[ ˛2; ˇ

0
1[ ˇ 2/

defined by counting pseudo-holomorphic triangles.

Putting these together, we obtain a composite chain map

ˆW CF�.˛1; ˇ 1/˝CF�.˛ 02; ˇ 2/ �! CF�.˛1[ ˛ 02; ˇ
0
1[ ˇ 2/:

There is also a “closest point map” inducing an isomorphism of modules over the
polynomial algebra (F ŒU1; : : : ;Um;U

0
1
; : : : ;U 0n0 �=U1 � U 0

1
)

�W CF�.˛1; ˇ 1/˝CF�.˛ 02; ˇ 2/ �! CF�.˛1[ ˛ 02; ˇ
0
1[ ˇ 2/

with �.x1�x2/D x0
1
�x0

2
. Here x0

1
2T˛1\Tˇ

0

1
is the point nearest to x1 2T˛1\Tˇ1

,
while x0

2
2 T˛2

\Tˇ2
is the point closest to x2 2 T˛

0
2\Tˇ2

. The closest point map
can alternatively be thought of as counting holomorphic triangles with minimal area.
Thus, ˆ is a map of the form � plus lower order terms (provided that the curves ˛ 0

resp. ˇ 0 are sufficiently to ˛ resp. ˇ 0 ). In particular, ‚ induces an isomorphism of
chain complexes over F ŒU1; : : : ;Um;U

0
1
; : : : ;U 0n0 �=U1 � U 0

1
.

It is easy to see that

sw1;z1
.x1/#sw2;z2

.x2/D sw1[w2;z1[z2
.x01 � x02/:

Thus the map � induces an isomorphism on the associated Spinc.L1#L2/–graded
complex. The other terms in ˆ have lower order than �, and hence ˆ induces a
Spinc.L1#L2/–filtered isomorphism, as claimed.

Proof of Theorem 1.4 This theorem follows readily from Theorem 11.1, and the
principle that an isomorphism of Z`–filtered complexes induces an isomorphism on
the homology of its associated graded object.

12 Examples

We turn to some sample calculations. Specifically, we will be concerned here with
calculation the filtered chain homotopy type of 1CFL. EL/ for various oriented links. In
Section 12.1, we give a theorem which can be used to compute this data explicitly for
a two-bridge link. In Section 12.2, we give some calculations of this data for the first
two non-alternating links.
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12.1 Two-component alternating links

Although Theorem 1.3 concerns only the homology of the associated graded object
bHFL.L/, in many cases, one can also use it to deduce information about the filtered

homotopy type of the full chain complex.

We study here the filtered chain homotopy type 1CFL of alternating links. For simplicity,
we consider here the case of two-component links.

Theorem 12.1 Let EL be an oriented, two-component link which admits a connected,
alternating projection. The filtered chain homotopy type of 1CFL.S3; EL/ is determined
by the following data:

� The multi-variable Alexander polynomial of EL;

� The signature of EL;

� The linking number of K1 and K2 ;

� The filtered chain homotopy type bCF .S3;K1/ and bCF .S3;K2/ of the two
components K1 and K2 of L.

In the course of the proof, we show explicitly how 1CFL.S3; EL/ is determined by the
data. First, we must set up some notions.

We say that a Z˚ Z–filtered chain complex is E2 –collapsed if it has a splitting
C D fCi;j gi;j2Z so that its differential @ is written has the form @DD1CD2 , where
here

D1
jCi;j
DD1

i;j W Ci;j �! Ci�1;j and D2
jCi;j
DD2

i;j W Ci;j �! Ci;j�1:

For example, suppose that C is a Z˚Z filtered chain complex which also has an
internal grading g (which the differential drops by one). Suppose moreover that the
filtration .i; j / and the grading g are related by i C j � g D c for some constant c.
Then, C is E2 collapsed. Theorem 1.3 ensures that the link Floer homology of an
alternating link is E2 –collapsed.

We give some examples of E2 –collapsed chain complexes. Let B.d/ denote the chain
complex with

�
B.d/

�
i;j
D

8̂̂<̂
:̂

F.d/ if .i; j /D .0; 0/
F.dC1/ if .i; j / 2 f.0; 1/; .1; 0/g
F.dC2/ if .i; j /D .1; 1/
0 otherwise
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and the property that D1
1;1

and D1
1;0

and D2
1;1

and D2
0;1

are field isomorphisms.

Fix an integer `, and let V `
.d/

be the chain complex with

�
V `
.d/

�
i;j
D

8<:
F.d/ if .i; j /D .�j ; j / with j D 0; : : : ; `� 1

F.d�1/ if .i; j /D .�j � 1; j / with j D 0; : : : ; `� 1

0 otherwise

where D DD1CD2 is a sum of maps, where D1
�j ;j are field isomorphisms for all i,

D2
�j ;j is an isomorphism for all 1� j � `� 1.

Similarly, let H `
.d/

be the chain complex with

�
H `
.d/

�
i;j
D

8<:
F.d/ if .i; j /D .i;�i/ with i D 0; : : : ; `� 1

F.d�1/ if .i; j /D .i;�i � 1/ with i D 0; : : : ; `� 1

0 otherwise

where D D D1 C D2 is a sum of maps, where D1
i;�i is an isomorphism for all

i D 1; : : : ; `� 1, while D2
i;�i is an isomorphism for all i.

Note that H�.B/ŠH�.V
`
.d/
/ŠH�.H `

.d/
/D 0.

There are two basic types of E2 –collapsed chain complexes with non-trivial homology
Let X `

.d/
be the complex given by

�
X `
.d/

�
i;j
D

8<:
F.d/ if i C j D ` and i; j � 0

F.dC1/ if i C j D `C 1 if i; j > 0

0 otherwise

where D DD1CD2 is a sum of maps, where D1
i;j and D2

i;j are isomorphisms when
i C j D `C 1 and i; j > 0, and zero otherwise.

Also, let Y `
.d/

be the complex determined by

�
Y `.d/

�
i;j
D

8<:
F.d/ if i C j D ` and i; j � 0

F.d�1/ if i C j D `� 1 and i; j � 0

0 otherwise

where D DD1CD2 is a sum of maps, where D1
i;j is an isomorphism when i > 0,

j � 0, and iCj D `, while D2
i;�i is an isomorphism when i � 0, j > 0, and iCj D `,

and all other maps are zero.

For these latter two complexes, we see that H�.X
`
.d/
/ŠH�.Y

`
.d/
/Š F.d/ .
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It is straightforward to see that for each E2 –collapsed chain complex C is filtered
chain homotopy equivalent to a filtered chain complex which splits as a direct sum of
copies of chain complexes of the type

B.d/Œi; j �; V `
.d/Œi; j �; H `

.d/Œi; j �; X `
.d/Œi; j �; and Y `.d/Œi; j �;

allowing ,̀ i, and j to vary. (Here, as in Section 2, given A a Z˚Z–filtered chain
complex, we let AŒi; j � denote the Z˚Z filtered chain complex obtained from A by
shifting the filtration, so that .AŒi; j �/x;y DAxCi;yCj .).

Proof of Theorem 12.1 In view of Theorem 1.3, bCF .S3; EL/ is an E2 –collapsed
chain complex, and as such decomposes into summands of the above five types. Thus,
the filtered chain homotopy type is determined by the number of summands of each
type, and their various parameters (i, j, d, and in four cases, `). Our goal is to show
how the data assumed in the statement of Theorem 12.1 can be used to extract all of
the needed information.

Let E`
.d/

denote the Z–filtered chain complex

�
E`
.d/

�
i
D

8<:
F.d/ if i D 0

F.d�1/ if i D�`

0 otherwise

endowed with a differential which is an isomorphism from
�
E`
.d/

�
0

to
�
E`
.d/

�
�`

. It
is easy to see that each Z–filtered chain complex splits as a sum of complexes of the
form E`

.d/
Œi �, and also homologically non-trivial complexes of the form F supported

in some fixed degree and filtration level.

Observe that taking the homology in the vertical direction (ie taking the homology
with respect to D2 to obtain a Z–filtered chain complex, endowed with the differential
induced from D1 ) has the property that it annihilates BŒi; j �, H `Œi; j �. Moreover,
taking the vertical homology of V `

.d/
Œi; j �, we obtain E`

.d/
Œi �. The vertical homology

of X `Œi; j � is a copy of F in filtration level i, while the horizontal homology gives F
in filtration level j �`; the horizontal homology of Y `Œi; j � is a copy of F in filtration
level j while its vertical homology gives F in filtration level i C `.

On the other hand, according to Proposition 7.1, if we take the vertical homology of
1CFL. EL/, we obtain the knot filtration on bCF .S3/ coming from K1 , tensored with
F ˚F (supported in two consecutive dimensions) and shifted over (in its filtration) by
n, and taking the horizontal homology, we obtain the knot filtration of K2 again shifted
by n

2
and tensored with F˚F . Specifically, these two projections are Z–filtered chain

complexes, and as such can be decomposed into one-step complexes F (supported in
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some filtration level), and two-step complexes E`
.d/
Œi �, consisting of F in filtration

level i and i � ` (trivial otherwise), endowed with a differential which induces an
isomorphism from the part in filtration level i to the one in filtration level i � `.

It follows from the above remarks that the summands in 1CFL. EL/ of the form V are in
two-to-one correspondence with the summands of type E in bCF .K1/: More precisely,
if E`

.d/
Œi � appears in bCF .K1/, there are two summands,

V `
.d/Œi �

n

2
; d � i �

n

2
�; and V `

.d�1/Œi �
n

2
; d � 1� i �

n

2
�:

Similarly, the summands in 1CFL. EL/ of the form H are in two-to-one correspondence
with the summands of type E in bCF .K2/: More precisely, if E`

.d/
Œi � appears in

bCF .K2/, there are two summands,

H `
.d/Œi �

n

2
; d � i �

n

2
� and H `

.d�1/Œi �
n

2
; d � 1� i �

n

2
�:

Moreover, since H�.C /Š F.�1/˚F.0/ , there can be at most two summands of type
X `Œi; j � or Y `Œi; j �. We claim that there are in fact only two possible cases: Either the
two summands are X `

0
Œi; j � and X `�1

�1
Œi; j � or Y `

�1
Œi; j � and Y `�1

0
Œi � 1; j � 1�. This

follows from the constraints that H�.C /Š F ˚F are supported in two consecutive
degrees (0 and �1), together with the constraint that if we take the horizontal resp.
vertical homologies, we are to get a filtered chain complex whose homology F ˚F is
supported in two consecutive gradings and the same filtration level. In fact, taking the
vertical resp. horizontal homology gives the knot Floer homology of K1 resp. K2 ,
tensored with F ˚ F , supported in two consecutive dimensions and filtration level
�.K1/ resp. �.K2/.

More specifically, writing �1 D �.K1/, �2 D �.K2/, and n for the linking number of
K1 with K2 , we have two cases, according to the sign of

`D �1C �2C nC
� � 1

2
:

If `� 0, 1CFL. EL/ has summands

Y `.0/Œ�2C
1� � � n

2
; �1C

1� � � n

2
�˚Y `�1

.�1/Œ�2C
3� � � n

2
; �1C

3� � � n

2
�:

If `� 0, then 1CFL. EL/ has summands

X
j`j

.0/
Œ�1C

n

2
; �2C

n

2
�˚X

j`j�1

.�1/
Œ�1C

n

2
; �2C

n

2
�:
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A B

Figure 4: The oriented link EHn with nD 2

The remaining summands of type B (and their precise placement) are determined by
the Alexander polynomial of L.

For example, if EL is a two-component, two-bridge link, Theorem 12.1 applies im-
mediately to express the knot filtration in terms of the Alexander polynomial and
signatures of EL. Note in particular, that in this case, the two components K1 and K2

are individually unknotted; it follows in particular that there are no summands of type
V or H. (Any two-bridge link can be represented by a four-pointed Heegaard diagram
with genus zero, and hence the holomorphic curve counts defining the differential take
place in the Riemann sphere. Thus, these counts are purely combinatorial, compare [23]
and also [20, Section 6].)

Consider the Hopf link EH . There are two orientations for EH , distinguished by the
signature. We denote the two cases by EH˙ , with the convention that �. EH˙/D˙.�1/.
Note also that � EH .X;Y / D 1, and hence bHFL. EH / consists of four generators. It
follows at once from the above considerations that

1CFL. EHC/' Y 0
.0/Œ

1

2
;
1

2
�˚Y 1

.�1/Œ�
1

2
;�

1

2
�

while
1CFL. EH�/'X 1

.0/Œ�
1

2
;�

1

2
�˚X 0

.�1/Œ�
1

2
;�

1

2
�:

More generally, consider the link EHn consisting of two unknotted circles which link
each other both algebraically n> 0 and geometrically n times – ie this is the .2; 2n/

torus link with the specified orientation (see Figure 4). It is easy to see that

� EHn
.S;T /D S

n�1
2 T

1�n
2

n�1X
iD0

.S�1T /i

and �. EHn/D�n.
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H2

H�2

M2

M�2

Figure 5: Link Floer homologies of Hn with nD 2 We have illustrated
the link Floer homologies of H2 for the four different possible orientations.
The upper left is EH2 – the right-handed, positive version, as illustrated in
Figure 4. The upper right-hand illustrates the link obtained by reversing the
orientation of B. The second row illustrates the link Floer homology groups
of the mirrors of the links in the first row.

It follows at once that

bCF . EHn/' Y 0
.0/

�
n

2
;
n

2

�
˚Y 1

.�1/

�
n

2
� 1;

n

2
� 1

� n�1M
iD1

B.�2i/

�
�i C

n

2
;�i C

n

2

�
:

Similarly, if we reverse the orientation of one of the components, we get a link denoted
EH�n , and we see that

bCF . EH�n/'X n
.0/

�
�

n

2
;�

n

2

�
˚X n�1

.�1/

�
�

n

2
;�

n

2

�
:

The complexes for EHn and EH�n , along with their mirrors, are illustrated in the case
where nD 2 in Figure 5.

One can alternatively calculate this directly by by looking at a genus zero Heegaard
diagram, as illustrated in Figure 6.

12.2 Two non-alternating examples

We calculate 1CFL.L/ for the first two two-component, non-alternating links L1 and
L2 . These are both seven-crossing links, both obtained as a union of a trefoil and
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˛

ˇ

w1

w2

z1

z2

Figure 6: Heegaard diagram for EHn with nD 2 We have illustrated the
four basepoints and the two curves (˛ and ˇ ). This picture takes place on the
Riemann sphere. The eight intersection points are visible; and indeed each
gives rise to a generator in homology, as illustrated in Figure 5. The various
orientations are, of course, obtained by permuting the roles of w1 with z1 ,
while the mirrors can be found by reversing the roles of ˛ and ˇ .

an unknot, denoted 72
8

and 72
7

respectively in Roflsen’s table [26], and 7n2 and 7n1

respectively in Thistlethwaite’s link table [27]. They are distinguishable immediately by
the linking number of the two components. For 72

8
, the two components have linking

number zero, while for 72
7

they have linking number ˙2. Both links are illustrated in
Figures 7 and 8 respectively.

12.2.1 The link L1 (a.k.a. 72
8

, 7n2) We claim that the link Floer homology groups
of the link L1 illustrated in Figure 7) have the form

(29) bHFL.72
8; i; j /D

8̂̂̂<̂
ˆ̂:

F4
.0/

if .i; j /D .0; 0/
F2
.iCj/

if i; j 2 Z, ji jC jj j D 1

F.iCj/ if i; j 2 f˙1g

0 otherwise.

Figure 7: A seven-crossing non-alternating link This is the link we de-
note L1 ; it is denoted 72

8 in Rolfsen’s notation; 7n2 in Thistlethwaite’s.
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Figure 8: The other seven-crossing non-alternating link This is the link
we denote L2 ; it is denoted 72

7
in Rolfsen’s notation; 7n1 in Thistlethwaite’s.

In particular, this link, too, is E2 –collapsed. Note that is not necessary to separate two
possible orientations: Rotation through a vertical axis gives an identification between
two possible orientations for L1 .

Equation (29) can be seen by considering the (admissible) Heegaard diagram pictured
in Figure 9, which takes place in a genus one surface, with attaching circles f˛1; ˛2g

and fˇ1; ˇ2g.

We label

˛1\ˇ1 D fx1;x2;x3g ˛1\ˇ2 D fb1; b2; b3; b4g

˛2\ˇ1 D fy1;y2;y3g ˛2\ˇ2 D fa1; a2; a3; a4g

Any two intersection points between ˛i and ǰ can be connected by a sequence of
consecutive embedded Whitney disks. Using these disks (each of which has �.�/D˙1,
depending on its orientation), it is straightforward to calculate the relative gradings and
filtrations of any two intersection points of the form fai ;xj g (or any two intersection
points of the form fbi ;yj g). Finally, there is a square at the center of the diagram which
represents a Whitney disk connecting a4�x1 to b4�y3 , which allows one to complete
the calculations all relative gradings and filtration levels of generators. Indeed, one
readily sees that in all but four filtration levels (which in the normalization of Equation
(29), are .i; j / 2 f�1;�2g� f0;�1g) the generators have the same relative gradings,
and hence the ranks and degrees of the homology (up to an overall translation) are as
given in Equation (29).

We consider the four remaining filtration levels .�2;�1/, .�2; 0/, .�1;�1/, .�1; 0/,
represented by intersection points

fa4 �x1; b4 �y3g; fa2 �x1; b2 �y3g;

fa3 �x1; b3 �y3; b4 �y2g; fa1 �x1; a4 �x2; b1 �y3; b2 �y2g
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˛2 w1

y1 y3 a4 a2

y2 a3 a1

ˇ2
w2

ˇ1

z2

x1

b4 b2 x2

˛1

b3 b1
x3

z1

Figure 9: Heegaard diagram for 72
8

Attach a one-handle to the plane at
the two circles. This gives a Heegaard diagram for 72

8 , with the orientation as
given in Figure 7. The shaded rectangle represents a flow-line from a4 �x1

to b4 �y3 .

respectively. We need to show that the homology groups have ranks 0, 0, 1 and 2

respectively.

To handle the filtration level .�2;�1/, one inspects the Heegaard diagram in Figure 9,
to find a rectangle connecting a4�x1 to b4�y3 . It is easy to see that there are no other
non-negative domains connecting these two disks, hence the differential annihilates
this pair of generators. (For this, it is useful to observe that all other possible homology
classes of disks which could contribute to the differential are obtained from this given

Figure 10: Link Floer homology for L1 We have illustrated the link Floer
homology for the link L1 as pictured in Figure 7. The first coordinate denotes
the filtration induced by the trefoil component, while the second denotes the
filtration by the unknot component.
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x2

a4˛1 w1

a3

ˇ2

x4

x3

a2a1
x1

y1 y2 b1 b2 b3

z2

˛2

ˇ1

w2

Figure 11: Heegaard diagram for 72
7

Attach a one-handle to the plane at
the two circles. This gives a Heegaard diagram for 72

7 , with the orientation as
given in Figure 8.

square by the addition of a periodic domain. But any non-trivial periodic domain has
both positive and negative local multiplicities in one of the regions adjoining b1 , which
is disjoint from our given square. Thus, there are no other non-negative homotopy
classes.)

In the same manner, one can find a rectangle to show that the homology in the filtration
level .�2; 0/ is trivial. Indeed, one can find also rectangles connecting generators
a3 �x1 to b4 �y2 and a1 �x1 to b2 �y2 , showing that the differentials in filtrations
levels .�1;�1/ and .�1; 0/ are non-trivial. It is straightforward then to conclude that
the groups with their relative gradings are as given in Equation (29).

To verify the absolute gradings, recall that we need to orient the knot (and an orientation
is implicit in the Heegaard diagram, via the choices of wi and zj ). If we allow isotopies
to cross z2 and z1 , it is easy to shrink ˇ2 in Figure 9 (canceling out intersection points
b1 , b3 , b2 , b4 , a4 , a2 ) and then perform a finger move on ˇ1 to cancel point x2 and
x3 , to obtain an admissible doubly-pointed Heegaard diagram for S3 with exactly two
generators, a1 �x1 and a3 �x1 . It is easy to see that a1 �x1 represents a generator
for bHF .S3/, and hence it is supported in degree zero. This completes the verification
of Equation (29).
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Figure 12: Heegaard diagram for 72
7 Link Floer homology for L2 with

the orientation from Figure 8. The first coordinate represents the unknot
factor, while the second represents the trefoil.

As in the alternating case, the higher differentials on bHFL.S3; EL/ can be determined
by the knot Floer homologies of the two components (the trefoil and the unknot). We
illustrate the resulting complex in Figure 10.

12.2.2 The link L2 (aka 72
7

, 7n1) The Floer homology of the link EL2 is not E2 –
collapsed. In fact, we have:

(30) bHFL. EL2/D

8<:
F.iCj�3/ if .i; j / 2 f0; 1g � f1; 2g[ f0;�1g � f�1;�2g

F.�2/˚F.�3/ if .i; j /D .0; 0/
0 otherwise.

To perform the calculation, we draw the Heegaard diagram in Figure 11.

This once again is a genus one Heegaard diagram with two pairs of attaching circles
f˛1; ˛2g and fˇ1; ˇ2g. Now we label

˛1\ˇ1 D fx1;x2;x3;x4g; ˛1\ˇ2 D fa1; a2; a3; a4g;

˛2\ˇ1 D fb1; b2; b3g; ˛2\ˇ2 D fy1;y2g:

Proceeding as before, it is easy to calculate filtration levels and gradings (up to an
overall shift) of generators. There are three filtration levels, .�1; 1/, .�1; 0/, and
.1; 0/, where there are exactly two generators, one, .0; 1/, where there are three, and
finally one, .0; 0/ where there are four. In all the rest, there are one or zero generators,
so in these other filtration levels, Equation (30) is immediately verified.
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Figure 13: Heegaard diagram for 72
7 Link Floer homology for 72

7 , re-
versing the orientation of with the orientation of the unknot from that depicted
in Figure 8.

For .i; j /D .�1; 1/, there are two generators fa3 � b3;x4 �y1g, and a rectangle can
be immediately found to show that the homology in this filtration level is trivial. The
same remarks apply for .i; j / D .�1; 0/ and .1; 0/. Also, rectangles can be found
connecting a4 � b3 to x2 �y1 (and also a4 � b3 to x4 �y2 ), forcing the differential
to be non-trivial and hence the homology to be one-dimensional.

The remaining case of .i; j /D .0; 0/ can be either analyzed carefully in this way, or
alternatively, one can argue that taking the horizontal homologies should give the knot
Floer homology of the trefoil (as in Proposition 7.1) tensored with a two-dimensional
vector space. In particular, the horizontal homology through the j D 0 line must be
two-dimensional. But since the homology is trivial for all i ¤ 0 and j D 0, it follows
that this horizontal homology is identified with the homology in the filtration level
.i; j /D .0; 0/.

Absolute degrees are now computed by considering isotopies which cross z1 and z2 . It
is easy to find an isotopy of ˇ1 crossing z2 which cancels b1; b2;x1;x2;x3;x 4, and
then an isotopy of ˇ2 which crosses z1 cancelling a1 and a2 . This leaves a diagram
with exactly two generators a3 � b1 and a4 � b1 . In fact, a4 � b1 is the generator
which survives in bHF .S3/, and hence it must have absolute grading equal to zero.

This completes the verification of Equation (30).

To compute higher differentials, we can no longer argue that the link complex must be
E2 –collapsed. However, we still have a number of constraints: The two homological

Algebraic & Geometric Topology, Volume 8 (2008)



Holomorphic disks and link invariants 691

projections give the homology of the trefoil and the unknot respectively, and the total
homology must have rank two (in dimensions 0 and 1). These constraints suffice to
determine the higher differentials uniquely. We have illustrated these in Figure 12.

Reverse the orientation of one of the two components. Again, we obtain a chain
complex which is uniquely determined by these constraints. We have illustrated the
unique solution in Figure 13.
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