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On knot Floer width and Turaev genus

ADAM M LOWRANCE

To each knot K C S? one can associate with its knot Floer homology HFK (K),
a finitely generated bigraded abelian group. In general, the nonzero ranks of these
homology groups lie on a finite number of slope one lines with respect to the bigrading.
The width of the homology is, in essence, the largest horizontal distance between
two such lines. Also, for each diagram D of K there is an associated Turaev surface,
and the Turaev genus is the minimum genus of all Turaev surfaces for K. We show
that the width of knot Floer homology is bounded by Turaev genus plus one. Skein
relations for genus of the Turaev surface and width of a complex that generates knot
Floer homology are given.

57RS8, 57TM25

1 Introduction

Knot Floer homology is an invariant introduced by Ozsvath and Szabé [10] and
independently by Rasmussen [11] that associates to each knot K C S3 a bigraded
abelian group HFK (K) whose graded Euler characteristic is the symmetric Alexander
polynomial of K. The boundary map of the complex that generates knot Floer homology
involves counting holomorphic disks in the symmetric product of a Riemann surface.
Manolescu, Ozsvéth, and Sarkar proved that the boundary map has a combinatorial
description [7]; however, knot Floer homology can still be challenging to compute for
knots with many crossings.

Since HFK (K) is a finitely generated bigraded abelian group, it is nontrivial in only
finitely many bigradings. These nontrivial groups arise on a finite number of slope one
lines with respect to the bigrading. Knot Floer width wg r(K) is the largest difference
between the y—intercepts of two lines that support HFK (K) plus one.

Each knot diagram has an associated Turaev surface, an unknotted oriented surface
on which the knot has an alternating projection. The Turaev genus of a knot g7 (K)
is the minimum genus over all Turaev surfaces for the knot. A precise description of
the Turaev surface is given in Section 3. Originally, the Turaev surface was developed
by Turaev to answer questions about the Jones polynomial [12]. The genus of this
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surface gives a natural bound for width of the reduced Khovanov homology wg(K), a
homology theory for knots whose graded Euler characteristic gives the Jones polynomial.
Manturov [8] showed that wg,(K) < gr(K) + 1 (see also Champanerkar—Kofman—
Stoltzfus [2]). The main result of this paper proves an analogous theorem for knot
Floer homology. This is the first known application of the Turaev surface in knot Floer
homology, and one wonders if there could be more.

Theorem 1.1 Let K C S3 be a knot. The knot Floer width of K is bounded by the
Turaev genus of K plus one:

whF(K) < gr(K)+ 1.

In [9], Ozsvath and Szabé classify knot Floer homology for alternating knots. This
classification has a nice consequence: if K is an alternating knot, then wyr(K) = 1.
In [3], Dasbach, Futer, Kalfagianni, Lin and Stoltzfus prove that K is alternating if and
only if g7(K) = 0. The main result is a generalization of these two facts. This also
establishes a common bound for knot Floer and reduced Khovanov width. In general,
how these two quantities compare to one another is unknown. Using the tables in a
paper of Baldwin and Gillam [1] and Bar-Natan’s knot atlas, one can compute knot
Floer width wyF(K) and reduced Khovanov width wgj(K) for knots with small
crossings, which results in the following observation: if K is a knot with less than 12
crossings, then wyr(K) = wg,(K). In a recent paper [6], Manolescu and Ozsvath
show that for quasi-alternating links, both wg(K) and wgr(K) are equal to one.

This paper is organized as follows. Section 2 describes the width of the knot Floer
complex and how width behaves under a crossing change. Section 3 defines the Turaev
surface and describes an algorithm for computing the genus of this surface. Moreover,
the behavior of this genus under a crossing change is given. Section 4 gives the proof of
the main result and describes an example. Section 5 gives skein relations for the genus
of the Turaev surface and for width of a complex that generates knot Floer homology.

Special thanks is given to Scott Baldridge; his guidance has been instrumental in the
completion of this paper. The author also thanks Oliver Dasbach, Neal Stoltzfus, and
Brendan Owens for many helpful conversations.

2 Knot Floer width

2.1 Kauffman states and the knot Floer complex

The chain complex used to generate knot Floer homology can be described using
Kauffman states. These states and their relations to checkerboard graphs are discussed
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thoroughly by Kauffman [5], (see also Gilmer and Litherland [4]). Ozsvath and Szab6
[9] show that the set of Kauffman states generate (as Z—modules) the chain complex
that yields knot Floer homology.

Let D be the diagram of an oriented knot K C S3 and T' be the 4—valent graph
embedded in the plane obtained by changing each crossing of D to a vertex. Choose
a marked edge ¢ in I', and let Q and R be the two faces of I' that are incident to
€. At each crossing, there are four local faces (not necessarily distinct). A Kauffman
state for (D, €) is a map that assigns to each vertex of I" one of the four local faces
such that each face of I" except Q and R is assigned to exactly one crossing. This
assignment is indicated by placing a dot in one of the four local faces at each crossing,
as in Figure 3.

Let S = S(D, ¢) be the set of all Kauffman states for the diagram D with marked edge
¢. Define two functions 4: S — Z and M: S — Z, called the Alexander filtration
level and the Maslov grading respectively. For each vertex in I', the choice of a local
face determines the local contribution to both the Maslov and the Alexander gradings
as shown in Figure 1 and Figure 2.

Figure 2: The local Maslov grading.

The Maslov grading is defined to be the sum of all local Maslov contributions, and the
Alexander filtration level is the sum of all local Alexander contributions.

The Kauffman states of a knot diagram (D, &) are supported on a finite number of
Alexander—Maslov bigrading diagonals. Let

A =max{A(s)— M(s)|s € S},
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Figure 3: This Kauffman state s for the 819 knot has A(s) = —2 and M(s) = —5.

and
6 =min{A(s) — M(s)|s € S}.

Definition 2.1 The width w(D, ¢) of diagram D of an oriented knot K with distin-
guished edge ¢ is defined to be w(D,e) = A—§+ 1.

2.2 Checkerboard graphs and a graph theoretic interpretation of Kauff-
man states

Recall that there is a graph-theoretic interpretation of Kauffman states [5]. Color the
faces of I" black or white in a checkerboard fashion, following the rule that no two
faces that share an edge are colored the same. This gives rise to two graphs 77 and 75.
The vertices of T correspond to the black faces, and the edges of 77 connect vertices
whose corresponding black faces are incident to a common vertex in I'. Similarly, the
vertices of 7T, correspond to white faces, and the edges of 7, connect vertices whose
corresponding white faces are incident to a common vertex in I'. Moreover, label each
edge of T and T, by one of the following: o+, x—, B— or B+, as shown in Figure 4.

ENEARAEA

Figure 4: The edges in the checkerboard graphs are labeled accordingly.
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Observe that the two checkerboard graphs are embedded in the plane and are dual to
one another. Furthermore, note that o4 edges are dual to «— edges, and S edges are
dual to S_ edges. An example of the 8;9 knot and its corresponding checkerboard
graphs is given in Figure 5 and Figure 6.

AR

Figure 5: The knot 8,9 with a checkerboard coloring.

Figure 6: The checkerboard graphs for the diagram of 8;9 given in Figure 5.

The Kauffman states S(D, €) are in 1-1 correspondence with pairs of spanning trees
t1 C Ty and t, C T, satisfying the condition that each vertex of I'" has exactly one
associated edge in 7 or ¢, (see Kauffman [5]). Observe that this implies if two edges
x in 77 and y in T, are dual to one another, then either x is in #; or y is in #;.
The roots of these spanning trees are the vertices corresponding to the two faces Q
and R that are incident to ¢. Make #; and 7, into directed graphs by choosing the
head of each edge to point away from the root (see Figure 7). Each edge in #; and
t, corresponds to a crossing in the diagram D. By placing a dot near the crossing
associated to each edge in the local face corresponding to the head of that edge, one
recovers a Kauffman state from #; and #,. In this paper, a Kauffman state s € S(D, ¢)
will often be identified with a pair of such spanning trees and written as s = (f1,1;).

2.3 Width of a diagram

The Kauffman state complex depends on the choice of marked edge, however, the
width does not.

Algebraic €& Geometric Topology, Volume 8 (2008)



1146 Adam M Lowrance

Figure 7: The two spanning trees #; and f, for the state shown in Figure 3.
Solid arcs indicate edges that are in the spanning tree. Dashed arcs indicate
edges in the checkerboard graphs but not in the spanning tree.

Proposition 2.2 Let D be an oriented knot diagram, and let ¢ and &' be marked edges
in I'. Then w(D,e) = w(D,¢).

Proof Consider the Kauffman state s = (¢1,1,) as a pair of rooted spanning trees in
T; and T,. The dots of the state s can be recovered as follows. Let x be a directed
edge in either #; or #;. Then x has an associated crossing ¢ in D and the head and
tail of x lie in two different local faces around c. The local face of ¢ that contains
the dot for s is the face that contains the head of x. Changing the marked edge in D
corresponds to (possibly) changing the root in #; or #,. This implies that the direction
of the edge x may change. However, the local difference between the Alexander and
Maslov grading does not depend on the endpoint of x chosen. Notice if x is marked
a4+, then the local difference is % regardless of where the head (ie. the dot in the
Kauffman state) is. Similarly, if x is marked S—, then the local difference is —1 and
if x is marked «— or S, then the local difference is 0 (see Figure 1, Figure 2, and
Figure 4). Thus the overall difference A(s) — M (s) remains unchanged, and hence
w(D,e) =w(D,¢). O

Note that a marked edge is no longer required to define width. Thus width for an
oriented knot projection will now be denoted w(D).

The Kauffman state complex is a chain complex that generates knot Floer homology
HFK (K) (see Ozsviath and Szab6 [9]). Thus HFK (K) inherits its bigrading from
the construction described previously, and there is an analogous notion of width. Let

Ag = max{A(§) — M(£)|& is a generator of I-ﬁ(K)},

and
g = min{A(§) — M (§)|£ is a generator of I—TF\K(K)}.
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Definition 2.3 The knot Floer width wgr(K) of aknot K in S3 is given by

wHF(K) = AK—(SK + 1.

This immediately implies

1) wgr(K) <min{w(D)|D is a diagram for K}.

A Kauffman state s € S(D, ¢) is said to be on the maximal diagonal if A(s)—M (s) = A
and on the minimal diagonal if A(s)— M (s) =§. Define a map n: S — Z by setting
n(s) equal to the difference between the number of a4 edges and S_ edges in s
(where s is viewed as the union of two spanning trees). From the proof of Proposition
2.2, the calculation of the local difference for each edge implies that

AGs) = M(s) = 3n(s).

Therefore s is on the maximal diagonal if n(s) is maximized and on the minimal
diagonal if n(s) is minimized. Moreover,

w(D) = %(max{n(s)|s € S} —min{n(s)|s € S}) + 1.

An edge e in either of the checkerboard graphs 77 or T3 is said to be positive if it is
marked either o4 or B4 ; the edge e is said to be negative if it is marked either S_ or
a—. If e is contained in a cycle consisting of only positive edges, then e is said to be
in a positive cycle. If e is contained in a cycle consisting of only negative edges, then
e is said to be in a negative cycle.

The width of a diagram behaves predictably under a crossing change. Before this
behavior can be described, a lemma is needed.

Lemma 2.4 Let D be a diagram with marked edge ¢ for the knot K, and let e be an
edge in either of the checkerboard graphs Ty or T5.

(1) If e is in a positive (negative) cycle, then there exists a state s € S(D, €) on the
maximal (minimal) diagonal that does not contain e .

(2) If e is a positive (negative) edge and is not in a positive (negative) cycle, then
every state s € S(D, €) on the maximal (minimal) diagonal must contain e .

Proof Only the statements for positive edges are proved; the proofs for the negative
edges are analogous. Without loss of generality, suppose that e is a positive edge in

Ty
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Suppose e is in a positive cycle ¢ and suppose all states on the maximal diagonal
contain e. Let s be a state on the maximal diagonal consisting of the two spanning
trees 11 C 77 and #, C T5. Since ¢ contains the edge e, there exists some other
edge ¢’ in y not contained in #; . The graph obtained by adding the edge ¢’ to
f1 contains a unique cycle t.

Suppose the edge e is contained in this unique cycle. Then form a new state s’
consisting of two new spanning trees #; and ¢,, where ¢ is the spanning tree
obtained by adding e’ and deleting e in #;, and ¢, is the spanning tree obtained
by deleting the dual of ¢’ and adding the dual of ¢ in 7,.

To show that s’ is on the maximal diagonal, it is enough to show that n(s) =n(s’).
Since e and ¢’ are in a positive cycle, both edges are positive, and the dual edges
are negative. Deleting a positive edge from #; and adding its negative dual to 7,
results in a net decrease of #(s) by one, since this corresponds to removing an
a4 edge from #; and replacing it with an o— edge in ¢, or removing a S+ edge
from ¢; and replacing it with a S_ edge in #,. Likewise, deleting a negative
edge from ¢; and adding its positive dual to ¢, results in a net increase of 7(s)
by one. To construct s’, first a positive edge is removed from #; and its negative
dual is inserted into 7, . Then a negative edge is removed from #, and its positive
dual is inserted into #;. Thus n(s) = n(s’), and s’, a state not containing the
edge e, is on the maximal diagonal.

Now suppose the edge e is not contained in the cycle 7. Thus t # y, and there
is some edge ¢” in 7 not contained in . Construct a new state s” by deleting
e’ from 1y, replacing it with its dual in #,, inserting ¢’ into 1, and deleting
its dual from 7,. Notice that if ¢’ is a negative edge, then two negative edges
were deleted and two positive edges were inserted in the construction of s”.
Thus n(s”) = n(s) + 2, contradicting the fact that s is on the maximal diagonal.
Hence ¢’ must be a positive edge, and the construction of s” simultaneously
exchanges a positive for a negative edge and a negative for a positive edge.
Therefore 1(s”) = n(s), and s” is again on the maximal diagonal.

Iterate this process as follows: continue by choosing a new edge in y not in
s” (and thus this edge is also not in s). Adding this new edge to s” forms a
unique cycle. If e is contained in this unique cycle, the process ends as described
above. If e is not contained in this unique cycle, then some edge not in y can
be removed, resulting in a state still on the maximal diagonal. Since y contains
only a finite number of edges, in a finite number of steps, the edge ¢ must be
contained in the unique cycle. Therefore there is a state on the maximal diagonal
not containing the edge e.
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(2) Suppose e is a positive edge and is not in a positive cycle. Also, suppose that
there exists a state s on the maximal diagonal, consisting of spanning trees
ty C T} and t, C T3, not containing the edge e. Then consider the subgraph of
T obtained by adding the edge e. There is a unique cycle in this subgraph, and
since e is not in a positive cycle, this cycle contains a negative edge ¢’. Let s’
be the state obtained by deleting ¢’ and adding e in #; and adding the dual of ¢’
and deleting the dual of e in #,. Both of these switches add a positive edge and
delete a negative edge. Thus 1(s’) = n(s) + 2 and this contradicts the fact that
s is on the maximal diagonal. Hence all states on the maximal diagonal must
contain e. d

With the previous lemma established, the behavior of the width of a diagram under
a crossing change can now be determined. Let D be a diagram for the knot K with
marked edge ¢, and let D’ be the diagram obtained from D by a single crossing change.
Let 77 and 75 be the checkerboard graphs for D and T/ and T, be the checkerboard
graphs for D’. The crossing in D has an associated positive edge e and an associated
negative edge e— in the checkerboard graphs. These two edges are dual to each other.
Moreover, the crossing change switches e to a negative edge and e_ to a positive
edge.

Theorem 2.5 Let D be a diagram of a knot K and D’ be the diagram obtained from
D by a single crossing change. Suppose ey (the positive edge) and e_ (the negative
edge) are the edges in the checkerboard graphs Ty and T, of D associated to the
crossing that is changed. Then the width of a diagram under a crossing change behaves
as follows.

(1) |Jw(D)—w(D)| <1.
(2) If ey isina positive cycle and e— is in a negative cycle, then w(D’) = w(D)+1.

(3) Ifey isin a positive cycle and e_ is not in any negative cycle, then w(D’) =
w(D).

(4) If e+ is not in any positive cycle and e_ is in a negative cycle, then w(D’) =
w(D).

(5) If e4 is not in any positive cycle and e_ is not in any negative cycle, then
w(D") =w(D)—1.

Proof

(1) Let s = (t;,t,) be a Kauffman state for D. The edges e+ and e_ are dual in
the checkerboard graphs. Thus exactly one of them is an edge in either #; or #;.
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The crossing change corresponds to changing this edge and no others in #; or
1. Label the new Kauffman state for D’ by s" = (.1,).

Suppose e4 is marked o4 . Then e_ is marked «a—, and after the crossing
change, et switches to a f— edge and e_ switches to a B4+ edge (see Figure
4). Thus if et is in either #; or t,, it follows that n(s) = n(s’) + 2 and
A(s)—M(s) = A(s'") — M(s") + 1. If e is not in either ¢; or 75, then e— must
be in either 7; or ;. Then n(s) = n(s’) and A(s) — M(s) = A(s") — M(s').
This implies that A and § either decrease by one or remain the same. The case
where e is marked B4 is analogous. Therefore, |w(D) —w(D’)| < 1.

Suppose e is in a positive cycle and e— is in a negative cycle. Then by Lemma
2.4, there are states Smax and Smin in S(D, €) such that sp,x is on the maximal
diagonal and does not contain e4+ and sp;, is on the minimal diagonal and does
not contain e—. Since e4 and e_ are dual and sy« does not contain e, it
follows that spmax contains e—. Similarly, smin contains e . Let s/, and sr’nin
be the states after the crossing change with the same edges as Smax and Smin
respectively.

If e4 is marked o4, then e— is marked o—. After the crossing change, e
is switched to a B_ edge, and e_ is switched to a B4+ edge. It follows that
N(Smax) = M(Smax) +2 and 1(s/..) = 17(Smin). In this case, the crossing change
induces an increase in A by one and no change in §. Similarly, if e4+ is marked
B+ and e_ is marked fB—, then the crossing change induces no change in A
and a decrease in § by one. Therefore, w(D’) = w(D) + 1.

Suppose e is in a positive cycle and e— is not in any negative cycle. As before,
there is a state spmax in S(D, ) on the maximal diagonal not containing e .
Now, however, every state on the minimal diagonal must contain the edge e_.
Hence smax, as well as every state on the minimal diagonal contains the edge e_.
So, if e is marked B4 and e— is marked S—, then both A and § are increased
by one under a crossing change. If e; is marked o4 and e_ is marked o—,
then the crossing change does not alter 7(smax) or n(s) for s any state on the
minimal diagonal. If another state s;,,, on the maximal diagonal contains the
edge e, then the crossing change decreases 7(s;,,) by two. Therefore A and
§ are unchanged. Thus w(D’) = w(D).

Suppose ey is not in any positive cycle and e— is in a negative cycle. This
case is completely analogous to the case above. If e4 is marked S+ and e—
is marked B_, then both A and § remained unchanged, and if ey is marked
a4 and e_ is marked o—, then both A and § are decreased by one. Therefore,
w(D") = w(D).
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(5) Suppose ey is not in any positive cycle and that e— is not in any negative
cycle. Then all states on the maximal diagonal contain ey and all states on the
minimal diagonal contain e_. If ey is marked S+ and e_ is marked f_, then
A remains unchanged and § is increased by one. If e4 is marked a4 and e—
is marked «—, then A is decreased by one and § remains unchanged. Thus
w(D') =w(D)—1. |

3 Ribbon graphs and Turaev genus

The ideas discussed below involve ribbon graphs associated to a knot diagram. These
ideas are developed in a paper by Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus [3].

3.1 Ribbon graphs

A connected oriented ribbon graph D 1is a connected graph embedded on an oriented
surface such that each face of the graph is homeomorphic to a disk, where a face is a
connected component of the complement of the graph in the surface. Informally, we
think of a connected oriented ribbon graph as a graph together with a cyclic ordering
of the edges around each vertex. The surface on which the graph embeds is then the
smallest genus oriented surface in which the graph can be embedded while preserving
the cyclic ordering of the edges around each vertex. The genus g(ID) of a connected
oriented ribbon graph D is the genus of the surface on which the graph is embedded
and is determined by its Euler characteristic. Note that all ribbon graphs in this paper
are assumed to be connected and oriented and are referred to only as ribbon graphs.

For each planar knot diagram, there are two associated ribbon graphs D (A) and D(B).
Let D be a diagram for a knot K C S3. For each crossing in D, there is an A—splicing
and a B-splicing, and each time a crossing is replaced with a splicing, an edge is
inserted as shown in Figure 8.

One ribbon graph D(A) is associated to choosing the A—splicing for each crossing,
and the other D (B) is associated to choosing the B-splicing for each crossing. The
construction of ID(A4) is described here; the construction of ID(B) is analogous. First,
take a checkerboard coloring of I' as described above. Then draw a circle corresponding
to each of the black faces. Connect the circles just as their corresponding faces are
connected in D (see the first picture of Figure 9). Next, replace each crossing by an
A-splicing (see Figure 8). This results in a collection of circles in the plane together
with line segments joining them. Choose an orientation for each circle as follows.
Orient the circle counterclockwise if it is inside an even number of circles, and orient
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/
/

Crossing in D

A—splicing B—splicing

Figure 8: The splicings of a crossing.

the circle clockwise if it is inside an odd number of circles (see the second picture of
Figure 9).

The ribbon graph DD(A) is obtained by “contracting each circle to a point” as follows:
the vertices of D (A) are in one-to-one correspondence with the circles and the edges of
D(A) are in one-to-one correspondence with the line segments. If / is a line segment
between two circles ¢ and c;, then there is a corresponding edge connecting the
vertices of D(A) corresponding to ¢y and c¢;. The cyclic orientation of the edges
meeting at a vertex of D(A) is determined by first fixing a cyclic orientation of the plane,
say counterclockwise. Then the edges meeting at any vertex of D(A) are cyclically
ordered in the counterclockwise direction according to the cyclic order given by the
orientation of the corresponding circle. Figure 9 describes each step of this construction.
Note to construct D(B), start with circles corresponding to the white faces of I', and
at each crossing choose a B—splicing instead of an 4 —splicing. Otherwise proceed as
above.

In the construction of the two ribbon graphs ID(A4) and D(B), a choice of black and
white checkerboard graphs is made. The construction does not depend on this choice.
Regardless of whether circles corresponding to the white or black graph are chosen, the
circles coming from choosing an A—splicing at each crossing (or choosing a B—splicing
at each crossing) are the same.

3.2 Turaev surface

The ribbon graph D (A4) is embedded on a surface as follows. Let D be the diagram and
I" the plane graph associated to D. Regard I' as embedded in R? sitting inside R3.
Outside the neighborhoods around the vertices of I' is a collection of arcs in the plane.
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Figure 9: On the left is the black faces of 8,9 represented as circles with
the crossing information from D. The picture in the middle is the result of
choosing an A—splicing at each crossing. On the right is the ribbon graph
D(A) for 819.

Replace each arc by a band that is perpendicular to the plane. In the neighborhoods of
the vertices, place a saddle so that the circles obtained from choosing an 4—splicing
at each crossing lie above the plane and so that the circles obtained from choosing
a B-splicing at each crossing lie below the plane (see Figure 10). This results in a
surface with boundary a collection of disjoint circles, with circles corresponding to
the A-splicing above the plane and circles corresponding to the B—splicing below the
plane. For each boundary circle, insert a disk, to obtain a closed surface G(D) known
as the Turaev surface (see Turaev [12]).

Figure 10: In a neighborhood of each vertex of I" a saddle surface transitions
between the A and B circles.

The ribbon graph D(A4) is embedded on G(D) as follows. Each vertex of ID(A) is
the center of the disk used to cap off a boundary circle lying above the plane. Edges
are then gradient lines from the vertices through the saddle points (which correspond
to crossings). Notice that the ribbon graph D (B) can also be embedded in this surface
by embedding its vertices in the center of disks used to cap off circles below the plane.
Edges of D(B) are also gradient lines from the vertices to the saddle points.

The embeddings of D(A4) and D(B) on G(D) are especially nice. Each face of both
D(A) and D(B) on G(D) is homeomorphic to a disk. Moreover, D(A) and D(B)
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are dual on G(D) (see Dasbach et al [3]). Note that since each face of ID(A) and
D(B) is a disk, it follows that the genera of D(A),D(B) and G(D) agree. This leads
to the definition of the topological invariant discussed in the introduction.

Definition 3.1 Let K C S3 be a knot. The Turaev genus g (K) of K is defined by
g7 (K) =min{g(G(D))|D is a diagram of K}.

Turaev genus is an obstruction to a knot being alternating. In fact, a knot K is alternating
if and only if g7(K) = 0 (see Dasbach et al [3]).

3.3 Computing the genus of the Turaev surface

The genus of G(D) is determined by the Euler characteristic of D(A) (thought of as a
cellular decomposition of G(D)). Thus to compute the genus of the Turaev surface, it
suffices to compute the number of vertices V', the number of edges E, and the number
of faces F of D(A). The number of edges E is equal to the number of crossings in
the diagram. Since D(A) and D(B) are dual to one another on G (D), the number of
faces F of D(A) is equal to the number of vertices of D(B).

In order to compute V, it suffices to count the number of circles after choosing the A—
splicing at each crossing in the constructions of D (A). The vertices of 77 correspond
to the circles coming from the black checkerboard coloring of D. These circles,
along with the crossings, determine the knot diagram, and are the starting point for the
construction of D (A4) (see Figure 9). The following is an algorithm to count the vertices
of D (A) by counting the circles after choosing the A—splicing for each crossing. The
algorithm is given by performing a sequence of operations on the checkerboard graph
T:.

Step 1 Remove all negative edges from 77 . If two vertices of 77 are the endpoints
of a negative edge, then their corresponding circles are separated by an A-splicing
(see Figure 11). Thus choosing an A—splicing for that crossing does not change the
number of circles, and so each negative edge in 77 can be removed.

Step 2 Contract all non-loop positive edges. If in the resulting graph there exists a
positive edge whose endpoints are distinct vertices, then the circles corresponding to
these vertices are joined by an A—splicing (see the second picture of Figure 11). Thus
choosing an A-splicing for that crossing decreases the number circles by one; likewise,
contracting the edge decreases the number of vertices by one. Either the resulting
graph contains a non-loop positive edge or all remaining edges are loops. If the graph
contains a non-loop positive edge, then repeat this step. Otherwise, the resulting graph
is a collection of vertices and loops, and is called the bouquet of T .
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Figure 11: On the left is the picture corresponding to deleting a negative edge.
The middle is the picture corresponding to contracting a non-loop positive
edge. On the right is the picture corresponding choosing the A—splicing for a
positive loop.

Step 3 Count vertices and loops. Each vertex in the bouquet of 7T corresponds to a
circle in the construction of ID(A), and each loop in the bouquet of 77 corresponds to
a crossing between a circle and itself. Choosing an A—splicing at a crossing between a
circle and itself splits that circle into two circles (see Figure 11). Therefore, each loop
also corresponds to a circle in the construction of D(A4). Hence, V is the number of
vertices plus the number of loops in the bouquet of 77 .

In order to calculate F', the algorithm is modified as follows. The sequence of operations
is performed on the checkerboard graph 7,. Since a B—splicing is chosen at each
crossing in the construction of ID(B), in Step 1, positive edges are deleted. Also,
non-loop negative edges are contracted in Step 2. Then F is equal to the number of
vertices plus the number of loops in the bouquet of T, . This process is shown in Figure
12.

This algorithm immediately implies the following theorem.
Theorem 3.2 Let D be a diagram for a knot K C S3, and let G(D) be the Turaev
surface of D. Let Ty and T, be the checkerboard graphs of D. Let V' be the number

of vertices and loops in the bouquet of Ty, E be the number of edges in T (or T5),
and F be the number of vertices and loops in the bouquet of T,. Then

2-2¢(G(D))=V —E +F.

Since the constructions of D(A) and D(B) do not depend on which checkerboard
graph is chosen, it follows that this algorithm does not depend on the checkerboard
graph chosen. Thus 77 and 7, may be relabeled at our convenience.
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Figure 12: The procedure on 77 (top) and 7, (bottom) gives V' =3 and F = 5.

We next investigate the behavior of the genus of the Turaev surface under a crossing
change in light of the algorithm given in the proof of Theorem 3.2. Let D be a diagram
for the knot K, and let D’ be the diagram obtained from D by a single crossing change.
Let T} and T, be the checkerboard graphs for D. Let G(D) and G(D’) be the two
Turaev surfaces. Suppose that e and e_ are the edges in the checkerboard graphs
that are associated to the crossing that is changed. Assume that e is a positive edge.
Since e_ is dual to ey, it follows that e_ is negative (see Figure 4). The crossing
change causes ey to switch to a negative edge and e_ to switch to a positive edge.

Theorem 3.3 Let D be a diagram of a knot K and D’ be the diagram obtained from
D by a single crossing change. Suppose ey (the positive edge) and e_ (the negative
edge) are the edges in the checkerboard graphs T and T, of D associated to the
crossing that is changed. Then the genus of the Turaev surface under a crossing change
behaves as follows.

(1) If e is in a positive cycle and e_ is in a negative cycle, then g(G(D’)) =

g(G(D))+1.

(2) If ey isin a positive cycle and e— is not in any negative cycle, then g(G(D')) =
g(G(D)).

(3) If ey is not in any positive cycle and e— is in a negative cycle, then g(G(D')) =
g(G(D)).

(4) If e4 is not in any positive cycle and e_ is not in any negative cycle, then
g(G(D) =g(G(D))—1.

Algebraic €& Geometric Topology, Volume 8 (2008)



On knot Floer width and Turaev genus 1157

Proof If ey is not an edge in 77, then relabel 77 and 7, so that it is. In order to
compute V', the algorithm of Theorem 3.2 states that all negative edges are removed
from 7. Since a crossing change switches e to a negative edge, after the crossing
change this edge will be deleted. If e is in a positive cycle, then this decreases the
number of loops in the bouquet of 7' by one, and thus V' decreases by one. If e is
not in any positive cycle, then this increases the number of vertices in the bouquet of
T} by one, and thus V increases by one.

Similarly, in order to compute F all positive edges are deleted from 75, and after the
crossing change, the edge corresponding to e— will be deleted. If e_ is in a negative
cycle, then this decreases the number of loops in the bouquet of 7, by one, and thus
F decreases by one. If e_ is not in any negative cycle, this increases the number of
vertices in the bouquet of 7T, by one, and thus F increases by one.

The number of edges E is equal to the number of crossings in the diagram, which
remains the same under a crossing change. These conditions determine the behavior of
the Euler characteristic, and thus the genus of G(D) under a crossing change. |

4 Knot Floer width and Turaev genus

In the previous sections, we showed that the behavior of both the width of a diagram
and the genus of the Turaev surface under a crossing change mimic each other.

Theorem 4.1 Let D be a diagram for a knot K C S* and G(D) be the Turaev surface
for D. Then w(D) = g(G(D)) + 1.

Proof Let D be a diagram for K. If D is an alternating diagram, then the Kauffman
states appear on only one Maslov—Alexander diagonal, and w(D) =1 (see Ozsvath and
Szab6 [9]). Also, if D is an alternating diagram, then G(D) is a sphere (see Dasbach
et al [3]), and hence the result holds for alternating knots. Each of the checkerboard
graphs for an alternating diagram are composed entirely of positive or negative edges.
Hence, any knot diagram can be transformed into an alternating diagram by choosing
crossing changes that make all of the edges in one checkerboard graph positive (and
thus all the edges in the other checkerboard graph negative). Therefore Theorem 3.3
and Theorem 2.5 imply the result. a

Theorem 4.1 along with the algorithm of Theorem 3.2 give a method to calculate the

width of the Kauffman state complex for a diagram D. The main theorem (Theorem
1.1) is a direct consequence of the previous theorem and (1).
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We elaborate on the example of the 819 knot developed throughout the paper. Figure
3 shows a Kauffman state s where A(s) — M (s) = 3, and Figure 13 shows a state s
where A(s) — M (s) =2.

Figure 13: For this Kauffman state, (s) = 4, and hence A(s) — M (s) = 2.

In fact, there are 27 Kauffman states for this diagram of 8;9. The number of Kauffman
states in each bigrading is listed in Table 1. From this information, one can see that
w(D) = 2. Figure 3 shows a state on the maximal diagonal, and Figure 13 shows a
state on the minimal diagonal.

Table 1: This shows the number of Kauffman states in each bigrading.

Alexander\Maslov H -6 ‘ -5 ‘ -4 ‘ -3 ‘ 2 ‘ -1 ‘ 0 ‘

-3 1

-2 201

-1 313

0 314

1 313

2 2|1
3 1

Figure 12 shows that for the given diagram of 8;9, V' =3 and F = 5. Since the
diagram has 8 crossings, it follows the E = 8. Therefore the Euler characteristic of
G (D) is zero, and the genus of G(D) is one. This verifies that w(D) = g(G(D)) + 1.
In fact, the knot Floer width of 8;¢ is two, and since 8;¢ is non-alternating, its Turaev
genus is one.
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S A skein relation for genus and width

In this section skein relations for the genus of the Turaev surface and for the width of a
diagram are developed. Each of these skein relations is for a link diagram. Therefore,
these relations cannot immediately be used to calculate knot Floer width or Turaev
genus. Instead, they give us an upper bound for each.

In order to define the relations, we must expand our view from knots to links. The
construction of the Turaev surface can be generalized to include links. If the diagram
of the link is non-split (ie. there is no circle in the plane that does not intersect the
diagram, where part of the diagram lies both inside and outside the circle), then both
D(A) and D(B) are connected, and the construction of the Turaev surface is the same
as before. However, if the link diagram is split, then D = Dy []---]] Dy is a disjoint
union of non-split diagrams. Each D; is called a split component of D. The Turaev
surface corresponds to a disjoint union of surfaces, one for each split component of the
link diagram.

For a link diagram D, let x(G(D)) be the Euler characteristic of the Turaev surface.
If D = Dy]] D, is a split diagram with split components D; and D,, then the
Turaev surface G(D) is the disjoint union G(D;) [ [ G(D,), and hence x(G(D)) =
x(G(D1))+ x(G(D3)). Also, if D is a non-split alternating diagram, then (G (D)) =

XOOCK

oo

Figure 14: The links in the skein relation.

Theorem 5.1 Let L4, L_, Ly, and Lo be link diagrams as in Figure 14. Then the
following skein relation holds:

X(G(L+)) + x(G(L-)) = x(G(Lo)) + x(G(Loo)) — 2.

Proof Let a; be the number of circles in the all A—splicing for L;, b; be the number
of circles in the all B—splicing for L;, and ¢; the number of edges in either ribbon
graph for L;, where i = +,—,0, or co. Since Ly and Lo, have one less crossing
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than L4 and L_, it follows that c+ = c— =cp+ 1 = coo + 1. Also since Ly is
obtained from L by one A-splicing, the number of circles in the all A—splicing for
L is the same for L. Thus ay = ag. Similarly, b+ = bso, @d— = deo, and b_ = by.
The result follows from these equations. |

The skein relation on Euler characteristic can be viewed as a relation on genus (and
in light of Theorem 4.1, as a relation on width). Let D be a link diagram. If D
is a non-split diagram, then let g(D) = g(G(D)), the genus of the Turaev surface.
However, if D = D; | D, is the disjoint union of two link diagrams D; and D,
let g(Dq [ D2) =g(D1) + g(D,) — 1. This normalization is introduced since 2 —
2g(D1 ] D2) = x(G(D1 ][] D3)). Moreover, if D is a non-split alternating diagram,
then g (D) = 0. The skein relation of Theorem 5.1 becomes

2 g(L+)+8(L-)=g(Lo) +8(Loo) + 1.

Equation (2) can also be viewed in terms of width. If D is a non-split diagram, define
w(D) = w(D), the width of the diagram. If D = D[] D, is a disjoint union of
diagrams D; and D,, introduce the normalization w(D; | [ D) =w(Dy)+w(D;)-2.
Also, if D is a non-split alternating diagram, then w(D) = 1. Theorem 4.1 implies
that the skein relation of (2) becomes

3) w(Ly)+w(Lo)=w(Ly)+w(Lso) + 1.
Remarks (1) As noted in the proof of Theorem 4.1, any link diagram can be
transformed into an alternating diagram through a sequence of crossing changes.

(2) If alink diagram is alternating, then for any crossing, the diagrams corresponding
to Ly and L are also alternating.

(3) For most skein relations, the base case is a disjoint union of unknots; however,
the base case of this skein relation is a disjoint union of alternating diagrams.

These remarks together imply that one can use (3) to calculate the width of a diagram
without computing the entire Kauffman state complex. We conclude with a simple
example. Consider the link diagrams given in Figure 15.

Equation (3) states that
W(Ly) = —w(L) +W(Lo) +W(Loo) + 1.

Since L_ and L, are non-split diagrams of alternating knots, it follows that w(L_) =
w(Loo) = 1. However, Ly = Dy || D is a disjoint union of two non-split alternating
diagrams D; and D, . Therefore w(Lg) =w(D1)+w(D,)—2=0. Hence, w(L4+)=
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X0 OO0 Qoo o

+ - Lo Lo

Figure 15: Four link diagrams in the skein relation of Equation (3).

1. This also follows directly from the Kauffman state complex since there is only one
Kauffman state for the diagram L. However, in general, the number of Kauffman
states increases exponentially with the number of crossings. Using the skein relation to
calculate width depends only on the number of crossing changes needed to make L
into an alternating diagram.
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