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Moves and invariants for knotted handlebodies

ATSUSHI ISHII

We give fundamental moves for the neighborhood equivalence classes of spatial
trivalent graphs. We define a coloring invariant and a cocycle invariant for the
neighborhood equivalence classes and then for all spatial graphs. We show that the
cocycle invariant detects the chirality of a knotted handlebody.

57M27; 57M15, 57M25

1 Introduction

A spatial graph is a finite graph embedded in the 3–sphere S3 . Two spatial graphs
are equivalent if there is an isotopy of S3 taking one onto the other. S Suzuki [17]
introduced the notion of the neighborhood equivalence for spatial graphs. Two spatial
graphs are neighborhood equivalent if there is an isotopy of S3 taking a regular
neighborhood of one graph onto that of the other.

On the other hand, any handlebody embedded in S3 is a regular neighborhood of some
spatial trivalent graph. Hence, there is a one-to-one correspondence between the set of
knotted handlebodies and that of neighborhood equivalence classes of spatial connected
trivalent graphs.

It is known that two spatial trivalent graphs are equivalent if and only if their diagrams are
related by a finite sequence of Reidemeister moves. However, we have not characterized
such fundamental moves for the neighborhood equivalence relation. The first aim of this
paper is to introduce moves for spatial trivalent graphs, called IH-moves, and show that
two spatial trivalent graphs are neighborhood equivalent if and only if their diagrams
are related by a finite sequence of Reidemeister moves and IH-moves (Theorem 1).
It enables us to study knotted handlebodies through spatial trivalent graphs up to
IH-moves.

The second aim of this paper is to define two kinds of invariants for spatial trivalent
graphs. Since they are invariant under Reidemeister moves and IH-moves, we regard
them as invariants for neighborhood equivalence classes of spatial (possibly nontrivalent)
graphs. In fact, any spatial graph is neighborhood equivalent to some spatial trivalent
graph.
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The first invariant comes from colorings for diagrams of spatial trivalent graphs (Theo-
rem 5). Recall that the number of original Fox colorings for a diagram of a knot is an
elementary invariant of the knot. It was extended to spatial Euler graphs by the author
and Yasuhara [4] (see also McAtee, Silver and Williams [13]). Although a trivalent
graph is not an Euler graph, we can define colorings for a spatial trivalent graph by
taking enhanced constituent links of the graph. As an application, we show that there is
a relationship between the coloring invariant and the tunnel number of a spatial graph
(Proposition 6).

The second invariant is a generalization of the quandle cocycle invariant studied by
Carter et al [1; 2] and Satoh [16]. It is a state sum invariant defined by using a quandle
coloring with a weight. We remark that Fox coloring is regarded as a coloring by
the dihedral quandle; see Fenn and Rourke [3], Joyce [5], Kamada [6], Matveev [12]
and Takasaki [14]. We prove that the cocycle invariant of a spatial trivalent graph is
invariant under IH-moves (Theorem 7). Hence, it is equivalent to define the invariant
for knotted handlebodies. In the last section (Section 6), we give an example of a
knotted handlebody whose chirality is detected by the cocycle invariant. We remark
that the fundamental group and then the Alexander polynomial (see Kinoshita [9; 10]
and Suzuki [18]) do not detect the chirality, since the complements of a spatial graph
and its mirror image are homeomorphic.

2 Moves for neighborhood equivalence classes

Since all closed 3–manifolds have a combinatorial triangulation by Moise [15], we
will work in the combinatorial category. A spatial graph is a finite graph embedded
in a closed 3–manifold M . Two spatial graphs are equivalent if there is an isotopy
of M taking one onto the other. Two spatial graphs L1 and L2 are neighborhood
equivalent if there is an isotopy of M taking N.L1/ onto N.L2/, where N.L1/ and
N.L2/ are respectively regular neighborhoods of L1 and L2 . We refer the reader to
Suzuki [17] for some elementary properties of the neighborhood equivalence relation.

In this paper, a trivalent graph may contain a circle component. We regard a circle
as a graph without vertices. An IH-move is a local change of a spatial trivalent graph
as described in Figure 1, where the replacement is applied in a disk embedded in M .
Two spatial trivalent graphs are IH-equivalent if they are related by a finite sequence of
IH-moves and isotopies of M . A contraction move is a local change of a spatial graph
as described in Figure 1, where the replacement is applied in a disk embedded in M .

Theorem 1 Two spatial trivalent graphs are neighborhood equivalent if and only if
they are IH-equivalent. For any spatial graph, we obtain a spatial trivalent graph by
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Figure 1

using contraction moves. This gives a one-to-one correspondence between the set
of neighborhood equivalence classes of all spatial graphs and that of IH-equivalence
classes of spatial trivalent graphs.

Let v be an invariant of a spatial trivalent graph. Theorem 1 implies that, if v is invariant
under IH-moves, then v can be defined for any spatial graph and its neighborhood
equivalence class.

Proof Let N.L1/ and N.L2/ be regular neighborhoods of spatial trivalent graphs L1

and L2 , respectively. If L1 and L2 are neighborhood equivalent, there is an isotopy
fftg0�t�1 of M such that

f0 D idM ; f1.N.L1//DN.L2/:

By Lemma 4 in the next section, f1.L1/ and L2 are related by a finite sequence of
IH-moves and isotopies. Hence, L1 and L2 are IH-equivalent.

We note that an IH-move does not change the isotopy class of a regular neighborhood
of a spatial trivalent graph. If L1 and L2 are IH-equivalent, by the uniqueness of
regular neighborhoods, we have an isotopy of M taking N.L1/ onto N.L2/. Then
L1 and L2 are neighborhood equivalent.

Since a contraction move does not change the isotopy class of a regular neighborhood
of a spatial graph, the one-to-one correspondence is well defined.

We assume that M D S3 . Any two diagrams of equivalent spatial graphs are related
by a finite sequence of the moves R1–3, N4–5 in Figure 2 [7; 20]. Since we may apply
an IH-move in a small disk by an isotopy of S3 , we have the following corollary.

Corollary 2 Let D1 and D2 be diagrams of spatial trivalent graphs L1 and L2 ,
respectively. Then L1 and L2 are neighborhood equivalent if and only if D1 and D2

are related by a finite sequence of the moves R1–6 depicted in Figure 2.
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Two spatial graphs are neighborhood equivalent if and only if they are related by a
finite sequence of contraction moves and isotopies of S3 , since an IH-move can be
realized by contraction moves. Since we may apply a contraction move in a small disk
by an isotopy of S3 , we have the following corollary.

Corollary 3 Let D1 and D2 be diagrams of spatial graphs L1 and L2 , respectively.
Then L1 and L2 are neighborhood equivalent if and only if D1 and D2 are related by
a finite sequence of the moves R1–R3, N4–N6 depicted in Figure 2.

By Corollary 2, we can study a handlebody embedded in S3 through a diagram,
since it can be obtained from a regular neighborhood of a spatial trivalent graph. We
prepare terminologies for this study below. A handlebody-link diagram is a spatial
trivalent graph diagram, where a trivalent graph may contain circle components. Two
handlebody-link diagrams are said to be equivalent if they are related by a finite
sequence of the moves R1–6 depicted in Figure 2. A handlebody-link is the equivalence
class of a handlebody-link diagram. A handlebody-knot is a handlebody-link with one
component. By Corollary 2, a handlebody-link corresponds to handlebodies embedded
in S3 .
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3 A spine of a handlebody

Let M be a closed 3–manifold. Let H be a handlebody embedded in M . We assume
that the handlebody H is of genus g > 1. A trivalent spine of H is a trivalent graph
K embedded in H such that a regular neighborhood of K is H .

Lemma 4 Any two trivalent spines K and K0 of H are related by a finite sequence
of IH-moves and isotopies.

Let fDj g be properly embedded mutually disjoint disks in H . We denote by B.fDj g/

the set of connected components obtained by cutting H along the disks fDj g. If
B.fDj g/ is the set of 3–balls, we call the disks fDj g a system of disks for H . A
system of disks fDj g is maximal if each 3–ball in B.fDj g/ has three disks in its
boundary. Then there is a one-to-one correspondence between the set of trivalent spines
and that of maximal systems of disks up to isotopy: For each trivalent spine, there is a
unique maximal system of disks such that the spine is dual to the disks.

For a proof of Lemma 4, we keep a trivalent spine and a maximal system of disks
all together. A sd-system of H is a pair of a trivalent spine K of H and a maximal
system of disks fDj g for H such that K appears in each 3–ball in B.fDj g/ as a
trivial Y-tangle, where a trivial Y-tangle is a Y-shaped graph properly embedded in a
3–ball which is homeomorphic to the 3–ball shown in Figure 3. We note that, if T

and T 0 are trivial Y-tangles with the same endpoints, then there is an isotopy of the
3–ball taking T onto T 0 relative to the boundary.

Figure 3

Proof of Lemma 4 A marking

mD
S3g�3

jD1
mj

is a disjoint union of 3g� 3 pairwise nonparallel, essential unoriented simple loops
in @H . For the trivalent spines K and K0 , there are sd-systems .K; fDj g/ and
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.K0; fD0j g/, respectively. F Luo [11, Corollary 1] showed that there exists a finite
sequence of markings

mi
D

S3g�3
jD1

mi
j (i D 1; : : : ; n)

m1
D

S3g�3
jD1

@Dj and mn D
S3g�3

jD1
@D0j ;such that

and such that mi
j DmiC1

j for j ¤ ki and mi
ki
\miC1

ki
consists of two points of

different intersection signs as shown in Figure 4. By reordering the disks if necessary,
we may assume that m1

j D @Dj and mn
j D @D

0
j for any j .

i
i

i
i

mi
ki

�!

i
i

i
i

miC1
ki

Figure 4

For i D 1; : : : ; n, we take a sd-system .Ki ; fDi
j g/ such that @Di

j Dmi
j for any j as

follows. Set K1 WD K , D1
j WD Dj for any j . Since the spine K1 appears in each

3–ball in B.fD1
j g/ as a trivial Y-tangle, we may position the disk D1

k1
, the spine K1 ,

and the marking m2
k1

as depicted in the left diagram of Figure 5. Replacing K1 and
D1

k1
by the spine and the disk depicted in the right diagram, we obtain a sd-system

.K2; fD2
j g/ such that @D2

k1
Dm2

k1
and D2

j DD1
j for j ¤ k1 . We remark that K2 is

obtained from K1 by an IH-move and isotopies. Repeating this procedure, we obtain
.Ki ; fDi

j g/ for i D 1; : : : ; n.

i
i

i
i

Di
ki

miC1
ki

�!

ii
ii

DiC1
ki

Figure 5

Since a handlebody is irreducible, there is an isotopy fftg0�t�1 of H such that

f0 D idH ; f1.D
n
j /DD0j ; f1.D

n
j \Kn/DD0j \K0;
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for any j . Since the spine f1.K
n/ and K0 appear in each 3–ball in B.fD0j g/ as trivial

Y-tangles, there is an isotopy of H taking f1.K
n/ onto K0 . Therefore K and K0 are

related by a finite sequence of IH-moves and isotopies.

4 Enhanced constituent links and colorings

Let L be a spatial trivalent graph. Let � be a map from the set of edges of L to Z=2Z
such that �.e1/C �.e2/C �.e3/ D 0 for edges e1; e2; e3 incident to a vertex. We
denote by R.L/ the set of such maps. For a spatial trivalent graph L and � 2R.L/,
we call the pair .L; �/ an enhanced constituent link of L. The spatial trivalent graph
depicted in the left diagram of Figure 6 has four enhanced constituent links, where
edges assigned 1 by the map � are drawn thickly. We call �.e/ the reality of an edge
e . We remark that, for an enhanced constituent link .L; �/, edges whose realities are 1

form a constituent link of L. Let E be a diagram of an enhanced constituent link
.L; �/. We denote by A.E/ the set of the arcs of E , where an arc is a piece of a curve
such that its endpoint is an undercrossing or a vertex. The reality of an arc is defined
by that of an edge such that the arc originates from the edge, which is denoted by using
the same symbol � .

D

�!
E1 , E2 ,

E3 , E4

Figure 6

A kei [5; 6; 14] is a nonempty set X with a binary operation .a; b/ 7! a� b satisfying
the following axioms:

(K1) For any a 2X , a� aD a.

(K2) For any a; b 2X , .a� b/� b D a.

(K3) For any a; b; c 2X , .a� b/� c D .a� c/� .b � c/.
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In this paper, we suppose that a kei is finite. Set a �0 b WD a and a �1 b WD a � b .
A map C W A.E/! X is an X –coloring of a diagram E representing an enhanced
constituent link .L; �/ if

C.�1/�
�.�1/ C.�1/D C.�2/ at each crossing �,

C.!1/D C.!2/D C.!3/ at each vertex !,

where �1; �2 and �1 are the under-arcs and the over-arc at a crossing �, and !1; !2; !3

are the arcs incident to a vertex ! . See Figure 7, where an underline indicates the
reality of an arc. The axiom (K2) implies that the X –coloring is well defined. We call
C.˛/ the color of an arc ˛ . We denote by ColX .E/ the set of X –colorings of E .

a s

b t

a�t b s

a s a t

a sC t

Figure 7

We denote by EC.D/ the set of enhanced constituent link diagrams obtained from
a spatial trivalent graph diagram D , and denote by #A the number of elements in a
set A.

Theorem 5 Let D be a diagram of a spatial trivalent graph L. Let D0 be a diagram
obtained by applying one of the moves R1–R6 to D once. Then we have the following.

� For E 2EC.D/, there is a unique enhanced constituent link diagram ED;D0 2

EC.D0/ such that the realities are preserved in the outside of the neighborhood
in which the move is applied: There is a one-to-one correspondence between
EC.D/ and EC.D0/.

� For C 2 ColX .E/, there is a unique X –coloring CD;D0 2 ColX .ED;D0/ such
that the colors are preserved in the outside of the neighborhood in which the
move is applied: There is a one-to-one correspondence between ColX .E/ and
ColX .ED;D0/.

Thus, for a finite kei X , the multiset f# ColX .E/ jE 2 EC.D/g is an invariant for
any spatial graph obtained from L by contraction moves, and for its neighborhood
equivalence class.

We note that the multiset is an invariant for a handlebody-link.
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Proof The one-to-one correspondences are obtained from Figure 8. They are well
defined, since we have the following equalities:

(K1 0 ) For any a 2X and s 2 Z=2Z, a�saD a.

(K2 0 ) For any a; b 2X and s 2 Z=2Z, .a�sb/�sb D a.

(K3 0 ) For any a; b; c 2X and s; t 2 Z=2Z, .a�sb/�tc D .a�tc/�s.b �tc/.

(K4 0 ) For any a; b 2X and s; t 2 Z=2Z, a�.sCt/ b D .a�sb/�tb .

Then the multiset is an invariant of a spatial trivalent graph L, which is invariant under
IH-moves.

5 Colorings by the dihedral kei

The dihedral kei of order p , denoted by Rp , is a kei consisting of the set Z=pZ with
the binary operation defined by a� b D 2b� a. We suppose that p is an odd prime.
Let E be an enhanced constituent link diagram. The coloring system of E is the
system of linear equations obtained from the coloring relations at crossings and vertices
of E . The set ColRp

.E/ is a vector space over Z=pZ, since it is a solution space
of the coloring system of E . Then, for a spatial trivalent graph L represented by a
diagram D , we define the polynomial fp.LI t/ D

P
E2EC.D/ tm.E/ , where m.E/

is the integer satisfying ColRp
.E/Š .Z=pZ/m.E/C1 . By Theorem 5, fp.LI t/ is an

invariant of L, and its neighborhood equivalence class. Then fp.LI t/ is defined for
any spatial graph L.

A spatial graph is neighborhood trivial if it is neighborhood equivalent to a spatial
graph embedded in a plane. The spatial trivalent graph K represented by the diagram
D of Figure 6 is knotted, since a constituent link of K is the trefoil knot. However
this does not imply that K is not neighborhood trivial.

We evaluate the invariant f3.KI t/, and show that K is not neighborhood trivial. For
an enhanced constituent link diagram in Figure 6, let al (resp. ar ) be the color of arcs
incident to the left (resp. right) vertex, and let at be the color of the top arc, and let ab

be the color of the other arc. The coloring system of E1 is

2at � al � ar D 0; at � ab D 0; 2al � at � ar D 0; 2ab � al � ar D 0;

2ar � al � ab D 0:
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Figure 8

Then we have the following .5; 4/–matrix over Z=3Z representing this system:

A1 WD

0BBBB@
�1 �1 2 0

0 0 1 �1

2 �1 �1 0

�1 �1 0 2

�1 2 0 �1

1CCCCA :
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Since rankA1D 2, we have ColR3
.E1/Š .Z=3Z/2 . Let Ai be the matrix over Z=3Z

representing the coloring system of the enhanced constituent link diagram Ei for
i D 2; 3; 4. Since the matrices A2;A3;A4 are respectively given by0BBBB@

�1 �1 2 0

0 2 �1 �1

0 �1 1 0

�1 �1 0 2

�1 2 0 �1

1CCCCA ;
0BBBB@

1 �1 0 0

0 2 �1 �1

2 �1 �1 0

1 �1 0 0

�1 0 0 1

1CCCCA ;
0BBBB@

1 �1 0 0

0 0 1 �1

0 �1 1 0

1 �1 0 0

�1 0 0 1

1CCCCA ;
we have rankAi D 3 and then ColR3

.Ei/Š Z=3Z for i D 2; 3; 4. Thus we have

f3.KI t/D t C 3:

On the other hand, we have
fp.OgI t/D 2g;

where Og is the spatial graph depicted in Figure 9. Then K is not neighborhood trivial,
since any neighborhood trivial spatial connected graph is neighborhood equivalent to
Og for some g .

„ ƒ‚ …
g

Figure 9

The tunnel number t.L/ of a spatial graph L is the minimum number of disjoint
properly embedded edges in the exterior of L such that the edges and L form a
neighborhood trivial spatial connected graph (see Kawauchi [8, p 207]). We remark
that, a spatial graph is connected and neighborhood trivial if and only if the complement
of a neighborhood of the spatial graph is a handlebody, since there is only one Heegaard
splitting of S3 for each genus [19].

Proposition 6 For a spatial graph L, we have

t.L/� degfp.LI t/:

Proof For a spatial graph L, we have a sequence LDL0; : : : ;Lt.L/ DO such that
LiC1 is a spatial graph obtained by attaching an edge to Li , where O is a neighborhood
trivial spatial connected graph. If two spatial graphs M1 and M2 are neighborhood
equivalent, then t.M1/D t.M2/ and fp.M1I t/D fp.M2I t/. Hence we assume that
L0; : : : ;Lt.L/ are spatial trivalent graphs.
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The spatial trivalent graphs Li and LiC1 respectively have diagrams Di and D0i
which are identical except in the neighborhood of a point where they differ as shown
in Figure 10. Let Ei be an enhanced constituent link diagram of Di such that

ColRp
.Ei/Š .Z=pZ/degfp.Li It/C1:

There is a unique enhanced constituent link diagram E0i 2EC.D0i/ which is obtained
by attaching an edge of reality 0 to Ei . Since the coloring system of E0i is obtained
from that of Ei by adding one relation, we have

ColRp
.E0i/Š .Z=pZ/degfp.Li It/ or .Z=pZ/degfp.Li It/C1:

Hence, we have
degfp.LiC1I t/� degfp.Li I t/� 1;

which implies
0D degfp.OI t/� degfp.LI t/� t.L/:

Di D0i

Figure 10

Since the tunnel number of a spatial graph depends on its neighborhood equivalence
class, the tunnel number is defined for a handlebody-link, and the same inequality in
Proposition 6 holds for handlebody-links.

6 A cocycle invariant

Let E be a diagram of an enhanced constituent link .L; �/. We denote by zA.E/ the
union of A.E/ and the set of connected regions of the complement of the underlying
immersed graph of E . A map C W zA.E/ ! X is a shadow X –coloring of E if
C jA.E/ 2 ColX .E/ and

C.r1/�
�.˛/ C.˛/D C.r2/;

where r1; r2 are regions sharing an arc ˛ . See the left diagram of Figure 11, where a
rectangle indicates the color of a region. The equalities (K2 0 )–(K4 0 ) imply that the
shadow X –coloring is well defined: (K2 0 ) at an arc, (K3 0 ) at a crossing, and (K4 0 ) at
a vertex. We denote by eColX .E/ the set of shadow X –colorings of E .
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a

a�sb

b s

a

b s

c t

Figure 11

Let �.x;y; z/ 2 ZŒx;y; z� be the polynomial determined by

.x�y/
.2z�y/pCyp � 2zp

p
;

where we remark that the numerator is divisible by p . Put

�p.a; b; c/D �.a; b; c/ mod p;

which is Mochizuki’s 3–cocycle. For C 2eColRp
.E/, the Boltzmann weight B.�IC /2

Z=pZ at a crossing � is defined by

B.�IC /D �p.a; b; c/;

where a; b; c are the colors of a region, an under-arc, and the over-arc at the crossing
� as shown in the right diagram of Figure 11. The Boltzmann weight does not depend
on the choice of the under-arc (and the region), since we have the equality

�p.a; b; c/D �p.2c � 2bC a; 2c � b; c/:

A crossing of an enhanced constituent link diagram is said to be real if the crossing
consists of three arcs of reality 1. For C 2eColRp

.E/, set

B.C / WD
X
�

B.�IC /;

where � runs over all real crossings. Then, for a spatial trivalent graph L represented
by a diagram D , we define the p–variable polynomial

p̂.DIx0;x1; : : : ;xp�1/D
X

E2EC.D/

Y
C2eColRp .E/

xB.C / :

Theorem 7 Let D be a diagram of a spatial trivalent graph L. The p–variable
polynomial p̂.DIx0;x1; : : : ;xp�1/ is an invariant for any spatial graph obtained
from L by contraction moves, and for its neighborhood equivalence class.

By this theorem, we denote by p̂.LIx0;x1; : : : ;xp�1/ the p–variable polynomial
of D . We note that the p–variable polynomial is an invariant for a handlebody-link.
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Proof Let D0 be a diagram obtained by applying one of the moves R1–R6 to D once.
As in the case of X –colorings, for E 2EC.D/ and C 2eColRp

.E/, there is a unique
shadow Rp –coloring CD;D0 2eColRp

.ED;D0/ such that the colors are preserved in the
outside of the neighborhood in which the move is applied. It is sufficient to show that
B.C /D B.CD;D0/.

Let x be the color of the leftmost region in each diagram of Figure 8. For the moves
R1 and R4, the equality B.C /D B.CD;D0/ follows from the equality

�p.x; a; a/D 0:

For the moves R2 and R5, the equality B.C /D B.CD;D0/ follows from the equality

�p.2a�x; b; a/C �p.x; 2a� b; a/D 0:

For the move R3, the equality B.C /D B.CD;D0/ follows from the equality

�p.x; a; b/C �p.2b�x; 2b� a; c/C �p.x; b; c/

D �p.2a�x; b; c/C �p.x; a; c/C �p.2c �x; 2c � a; 2c � b/;

that is the cocycle condition of �p . Therefore p̂.DIx0;x1; : : : ;xp�1/ is an invariant
of L.

We denote by L� the mirror image of a spatial graph L. Then we have the following
proposition.

Proposition 8 For a spatial graph L, we have

p̂.L
�
Ix0;x1; : : : ;xp�1/D p̂.LIx0;x�1; : : : ;x�.p�1//;

where we note that x�i D xn�i .

Proof Let D be a diagram of L. We suppose that D is depicted in an xy–plane.
Let ' be the involution .x;y/ 7! .�x;y/. For E 2 EC.D/ and C 2eColRp

.E/,
we have '.E/ 2 EC.'.D// and C ı ' 2eColRp

.'.E//, where the reality of an
arc ˛ of '.E/ is given by that of the arc '.˛/ of E 2 EC.D/. By the equality
�p.a; b; c/D��p.2b�a; b; c/, we have B.�;C /D�B.'.�/;C ı'/ for each crossing
� of D (see Figure 12). Thus, we have the equality

p̂.L
�
Ix0;x1; : : : ;xp�1/D p̂.LIx0;x�1; : : : ;x�.p�1//:
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a
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c t b s

$

a

a�sb

b s c t

Figure 12

A spatial graph L is chiral if L and L� are not equivalent. Let K be the spatial
trivalent graph represented by the diagram D of Figure 6. Then we have

ˆ3.KIx0;x1;x2/D x9
0x18

2 C 3x9
0 ;

ˆ3.K
�
Ix0;x1;x2/D x9

0x18
1 C 3x9

0 :

This implies not only that K is chiral as a spatial graph but also that K is chiral as a
handlebody-link. We can check the chirality of K as a spatial graph without invariants,
since the only nontrivial constituent link of K is the trefoil knot, that is chiral. However
it is not easy to check the chirality of a knotted handlebody, since invariants derived
from its complement does not work. The invariant p̂ is the first polynomial invariant
which detects the chirality of a knotted handlebody.

Acknowledgments The author would like to thank Masahide Iwakiri, Akio Kawauchi,
Kazuyuki Kuwako, Hiromasa Moriuchi, Takuji Nakamura, Yasutaka Nakanishi, Makoto
Sakuma, Shin Satoh, Shinichi Suzuki, Kouki Taniyama, and Ryosuke Yamamoto for
their helpful comments. This research is partially supported by Grant-in-Aid for JSPS
Research Fellowships for Young Scientists.

References
[1] J S Carter, D Jelsovsky, S Kamada, L Langford, M Saito, Quandle cohomology

and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355
(2003) 3947–3989 MR1990571

[2] J S Carter, S Kamada, M Saito, Geometric interpretations of quandle homology, J.
Knot Theory Ramifications 10 (2001) 345–386 MR1825963

[3] R Fenn, C Rourke, Racks and links in codimension two, J. Knot Theory Ramifications
1 (1992) 343–406 MR1194995

[4] Y Ishii, A Yasuhara, Color invariant for spatial graphs, J. Knot Theory Ramifications
6 (1997) 319–325 MR1457191

[5] D Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23
(1982) 37–65 MR638121

Algebraic & Geometric Topology, Volume 8 (2008)

http://dx.doi.org/10.1090/S0002-9947-03-03046-0
http://dx.doi.org/10.1090/S0002-9947-03-03046-0
http://www.ams.org/mathscinet-getitem?mr=1990571
http://dx.doi.org/10.1142/S0218216501000901
http://www.ams.org/mathscinet-getitem?mr=1825963
http://dx.doi.org/10.1142/S0218216592000203
http://www.ams.org/mathscinet-getitem?mr=1194995
http://dx.doi.org/10.1142/S0218216597000224
http://www.ams.org/mathscinet-getitem?mr=1457191
http://dx.doi.org/10.1016/0022-4049(82)90077-9
http://www.ams.org/mathscinet-getitem?mr=638121


1418 Atsushi Ishii

[6] S Kamada, Knot invariants derived from quandles and racks, from: “Invariants of
knots and 3–manifolds (Kyoto, 2001)”, Geom. Topol. Monogr. 4, Geom. Topol. Publ.,
Coventry (2002) 103–117 MR2002606

[7] L H Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311
(1989) 697–710 MR946218

[8] A Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel (1996) MR1417494
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