Sign refinement for combinatorial link Floer homology

ÉTIENNE GALLAIS

Link Floer homology is an invariant for links which has recently been described entirely in a combinatorial way. Originally constructed with mod 2 coefficients, it was generalized to integer coefficients thanks to a sign refinement. In this paper, thanks to the spin extension of the permutation group we give an alternative construction of the combinatorial link Floer chain complex associated to a grid diagram with integer coefficients. In particular we prove that the sign refinement comes from a 2–cohomological class corresponding to the spin extension of the permutation group.

1 Introduction

Heegaard–Floer homology (Ozsváth–Szabó [9]) is an invariant for closed oriented 3-manifolds which was extended to give an invariant for null-homologous oriented links in such manifolds called link Floer homology (Ozsváth–Szabó [8; 10], Rasmussen [11]). It gives the Seifert genus $g(K)$ of a knot K (Ozsváth–Szabó [7]), detects fibered knots (Ghiggini [2] in the case where $g(K) = 1$ and Ni [6] in general) and its graded Euler characteristic gives the Alexander polynomial [8; 11]. Recently, a combinatorial description of link Floer homology was given (Manolescu–Ozsváth–Sarkar [4]) and its topological invariance was proved in a purely combinatorial way (Manolescu–Ozsváth–Sarkar–Thurston [5]). The purpose of this paper is to give an alternative description of combinatorial link Floer homology with \mathbb{Z} coefficients. This point of view was recently used by Audoux [1] to describe combinatorial Heegaard–Floer homology for singular knots.

Let first recall the context of combinatorial link Floer homology: we follow conventions of [5]. A planar grid diagram G lies in a square on the plane with $n \times n$ squares where n is the complexity of G. Each square is decorated with an X, an O or nothing in such a way that each row and each column contains exactly one X and one O. We number the X and the O from 1 to n and denote X the set $\{X_i\}_{i=1}^n$ and O the set $\{O_i\}_{i=1}^n$.

Published: 15 September 2008 DOI: 10.2140/agt.2008.8.1581
Given a grid diagram G, we place it in standard position on the plane as follows: the bottom left corner is at the origin and each cell is a square of length one. We construct a planar link projection by drawing horizontal segments from the O to the X in each row and vertical segments from the X to the O in each column. At each intersection point, the vertical segment is over the horizontal one. This gives an oriented link \tilde{L} in S^3 and we say that \tilde{L} has a grid presentation given by G.

![Figure 1: Grid presentation of the Hopf link.](image)

We place the grid diagram on the oriented torus T by making the usual identification of the boundary of the square. We endow T with the orientation induced by the planar orientation. Let \mathcal{H} be the collection of the horizontal circles and the collection of the vertical ones. We associate with G a chain complex \mathcal{C}; it is the group ring of \mathfrak{S}_n over $\mathbb{Z}/2\mathbb{Z} = \mathbb{Z}_2$, where \mathfrak{S}_n is the permutation group of n elements. A generator $x \in \mathfrak{S}_n$ is given on G by its graph: we place dots in points $(i, x(i))$ for $i = 0, \ldots, n-1$ (thus the fundamental domain of G is the square minus the right vertical segment and the top horizontal segment).

For A, B two finite sets of points in the plane we define $I(A, B)$ to be the number of pairs $(a, b) \in A \times B$ such that $a < b$. Let $J(A, B) = (I(A, B) + I(B, A))/2$. We provide the set of generators with a Maslov degree M given by

$$M(x) = J(x - \emptyset, x - \emptyset) + 1$$

where we extend J by bilinearly over formal sums (or differences) of subsets. Each variable U_{O_i} has a Maslov degree equal to -2 and constants have Maslov degree equal to zero. Let $M_S(x)$ be the same as $M(x)$ with the set S playing the role of \emptyset.

We provide the set of generators with an Alexander filtration A given by $A(x) = (A_1(x), \ldots, A_l(x))$ with

$$A_i(x) = J(x - \frac{1}{2}(X + \emptyset), X_i - \emptyset_i) - \frac{n_i - 1}{2}$$
where when we number the components of \(\mathcal{L} \) from 1 to \(\ell \), \(O_i \subset \mathcal{O} \) (resp. \(X_i \subset \mathcal{X} \)) is the subset of \(\mathcal{O} \) (resp. \(\mathcal{X} \)) which belongs to the \(i \)th component of \(\mathcal{L} \) and \(n_i \) is the number of horizontal segments which belongs to the \(i \)th component. We let \(A(U_{O_j}) = (0, \ldots, -1, 0, \ldots, 0) \) where \(-1\) corresponds to the \(i \)th coordinate if \(O_j \) belongs to the \(i \)th component.

Given two generators \(x \) and \(y \) and an immersed rectangle \(r \) in the torus whose edges are arcs in the horizontal and vertical circles, we say that \(r \) connects \(x \) to \(y \) if \(y \cdot x^{-1} \) is a transposition, if all four corners of \(r \) are intersection points in \(x \cup y \), and if we traverse each horizontal boundary component of \(r \) in the direction dictated by the orientation of \(r \) induced by \(T \), then the arc is oriented from a point in \(x \) to the point in \(y \). Let \(\text{Rect}(x, y) \) be the set of rectangles connecting \(x \) to \(y \): either it is the empty set or it consists of exactly two rectangles. Here a rectangle \(r \in \text{Rect}(x, y) \) is said to be empty if there is no point of \(x \) in its interior. Let \(\text{Rect}^e(x, y) \) be the set of empty rectangles connecting \(x \) to \(y \).

The differential \(\partial^- : C^-(G) \to C^-(G) \) is given on the set of generators by

\[
\partial^- x = \sum_{y \in \mathcal{G}} \sum_{r \in \text{Rect}^e(x, y)} U_{O_1(r)}^{O_1} \ldots U_{O_n(r)}^{O_n} \cdot y
\]

where \(O_i(r) \) is the number of times \(O_i \) appears in the interior of \(r \).

Theorem 1.1 (Manolescu–Ozsváth–Sarkar [4]) \((C^-(G), \partial^-) \) is a chain complex for \(CF^-(S^3) \) with homological degree induced by \(M \) and filtration level induced by \(A \) which coincides with the link filtration of \(CF^-(S^3) \).

In [5], the authors define a sign assignment for empty rectangles \(S : \text{Rect}^e \to \{ \pm 1 \} \). Then, by considering \(C^-(G) \) the group ring of \(\mathcal{G} \) over \(\mathbb{Z}[U_{O_1}, \ldots, U_{O_n}] \) and the
differential $\partial^- : C^-(G) \to C^-(G)$ given by
\[
\partial^- x = \sum_{y \in \mathfrak{g}_n} \sum_{r \in \text{Rec}^0(x,y)} S(r).U_{O_i}^{O_1(r)} \ldots U_{O_n}^{O_n(r)}.y
\]
they obtain the following result.

Theorem 1.2 (Manolescu–Ozsváth–Szabó–Thurston [5]) Let \overrightarrow{L} be an oriented link with ℓ components. We number the \mathfrak{g}_0 so that O_1, \ldots, O_ℓ correspond to the different components of \overrightarrow{L}. Then the filtered quasi-isomorphism type of $C^-(G) / \partial^-$ over $\mathbb{Z} [U_{O_1}, \ldots, U_{O_\ell}]$ is an invariant of the link.

In this paper, we give a way to refine the complex over \mathbb{Z} thanks to \mathfrak{S}_n the spin extension of \mathfrak{S}_n which is a non-trivial central extension of \mathfrak{S}_n by $\mathbb{Z} / 2\mathbb{Z}$. In Section 2 we define the spin extension \mathfrak{S}_n and make some algebraic calculus. Let z be the unique non-trivial central element of \mathfrak{S}_n and $\Lambda = \mathbb{Z} [U_{O_1}, \ldots, U_{O_n}]$. In Section 3 we define a filtered chain complex $(\widetilde{C}^-(G), \widetilde{\partial}^-)$ where $\widetilde{C}^-(G)$ is the quotient module of the free Λ–module with generating set \mathfrak{S}_n by the submodule generated by $\{z + 1\}$. Finally, in Section 4, we prove that our chain complex defines a sign assignment in the sense of [5] and that $(\widetilde{C}^-(G), \widetilde{\partial}^-)$ is filtered quasi-isomorphic to $(C^-(G), \partial^-)$ with coefficients in \mathbb{Z}.

2 Algebraic preliminaries

Let \mathfrak{S}_n be the group of bijections of a set with n elements numbered from 0 to $n - 1$. It is given in terms of generators and relations where the set of generators is $\{\tau_i\}_{i=0}^{n-2}$ with τ_i the transposition which exchanges i and $i+1$ and relations are

\[
\begin{align*}
\tau_i^2 &= 1 \quad 0 \leq i \leq n - 2 \\
\tau_i \tau_j &= \tau_j \tau_i \quad |i - j| > 1, \quad 0 \leq i, j \leq n - 2 \\
\tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \quad 0 \leq i \leq n - 3.
\end{align*}
\]

Theorem 2.1 The group given by generators and relations

\[
\mathfrak{S}_n = \langle \tau_0, \ldots, \tau_{n-2}, z \mid z^2 = 1, z\tau_i = \tau_i z, \tau_i^2 = z, \quad 0 \leq i \leq n - 2; \tau_i \tau_j = z \tau_j \tau_i \quad |i - j| > 1, \quad 0 \leq i, j \leq n - 2; \tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1} \quad 0 \leq i \leq n - 3 \rangle
\]
is a non-trivial central extension $(n \geq 4)$ of \mathfrak{S}_n by $\mathbb{Z} / 2\mathbb{Z}$ called the spin extension of \mathfrak{S}_n.
Remark 2.2 A proof of this theorem can be found in Karpilovsky [3, Theorem 2.12.3]. To see that it is a non-trivial extension, one can notice the following: let \mathbb{Q}_8 be the subgroup of \mathbb{H}/\mathbb{Z} generated by $\overline{e}_0, \overline{e}_2, z$. Then \mathbb{Q}_8 is isomorphic to the unit sphere in the space of quaternions intersected with the lattice \mathbb{Z}^4 by a morphism Φ such that $\Phi(\overline{e}_0) = i$, $\Phi(\overline{e}_2) = j$, $\Phi(\overline{e}_0, \overline{e}_2) = k$ and $\Phi(z) = -1$. Therefore \mathbb{H}/\mathbb{Z} is non-trivial.

Remark 2.3 Cases $n = 2$ and $n = 3$ are not interesting in our situation: the only knot which can be represented by a grid diagram of complexity 2 or 3 is the trivial knot. Nevertheless, the group given by generators and relations above still exists: in the case $n = 2$, it is isomorphic to $\mathbb{Z}/4\mathbb{Z}$, in the case $n = 3$, it is isomorphic to a subgroup of $GL(2, \mathbb{C})$ (see [3, Lemma 2.12.2]).

For $i < j$, define

$$\overline{e}_{i,j} = \overline{e}_i \cdot \overline{e}_{i+1} \cdot \ldots \cdot \overline{e}_{j-2} \cdot \overline{e}_{j-1} \cdot \overline{e}_j \cdot \overline{e}_{j+1} \cdot \overline{e}_l$$

and $\overline{e}_{j,i} = z \cdot \overline{e}_{i,j}$.

Let $\varepsilon: \mathcal{G}_n \to \{0, 1\}$ be the signature morphism.

Lemma 2.4 Let $\overline{x} = \overline{e}_{i_1}, \overline{e}_{i_2}, \ldots, \overline{e}_{i_k}$ be an element in \mathcal{G}_n and $x = p(\overline{x}) \in \mathcal{G}_n$. Then for any $0 \leq i \neq j \leq n - 1$

$$\overline{x} \cdot \overline{e}_{i,j} \cdot \overline{x}^{-1} = z^{\varepsilon(x)} \overline{e}_{x(i),x(j)}$$

Proof Since $\overline{x} = \overline{e}_{i_1}, \overline{e}_{i_2}, \ldots, \overline{e}_{i_k}$, $\overline{x}^{-1} = z^{\varepsilon(x)} \overline{e}_{i_k}, \ldots, \overline{e}_{i_1}$. We prove by induction on $k \geq 1$ that for any $i, j \in \{0, \ldots, n - 1\}$ we have $\overline{x} \cdot \overline{e}_{i,j} \cdot \overline{x}^{-1} = z^{\varepsilon(x)} \overline{e}_{x(i),x(j)}$.

- **Initialization** Let $\overline{x} = \overline{e}_l$ and $0 \leq i < j \leq n - 1$. So $\overline{e}_{l}^{-1} = z \cdot \overline{e}_l$ and $\varepsilon(x) = 1$.

There are several cases.

- **Case 1**: $l < i - 1$ or $l > j$ \[\overline{x} \cdot \overline{e}_{i,j} \cdot \overline{x} = z \cdot \overline{e}_{i,j}. \]

- **Case 2**: $l = i - 1$ \[\overline{x} \cdot \overline{e}_{i,j} \cdot \overline{x} = z^{\varepsilon(x)} \overline{e}_{i-1,j} \cdot \overline{e}_{i,j}^{-1} = z^{\varepsilon(x)} \overline{e}_{i-1,j} \text{ by definition.} \]

- **Case 3**: $l = i$ \[\overline{x} \cdot \overline{e}_{i,j} \cdot \overline{x} = z \cdot \overline{e}_{i+1,j}. \]

- **Case 4**: $i < l < j - 1$ We prove by induction on $l - i \geq 1$ for i, j fixed that $\overline{e}_{i,j} \cdot \overline{e}_{i,j} \cdot \overline{e}_{i,j}^{-1} = z^{\varepsilon(x)} \overline{e}_{x(i),x(j)}$. For $l = i + 1$ then we have

$$\overline{e}_{i+1,j} \cdot \overline{e}_{i,j} \cdot \overline{e}_{i+1,j}^{-1} = z^{\varepsilon(x)} \overline{e}_{i+1,j} \cdot \overline{e}_{i+1,2,j} \cdot \overline{e}_{i,j} \cdot \overline{e}_{i+1,j}^{-1} = z^{\varepsilon(x)} \overline{e}_{i+1,j} \cdot \overline{e}_{i+1,2,j} \cdot \overline{e}_{i+1,j}^{-1} = z^{\varepsilon(x)} \overline{e}_{i,j}.$$
Suppose it is proved until rank \((l - 1) - i\). Then for \(\bar{x} = \bar{t}_l\) with \(l < j - 1\) we have

\[
\bar{x}.\bar{t}_l.\bar{x} = z\bar{t}_j.\bar{t}_{i,j}.\bar{t}_l = z(\bar{t}_j, \ldots, \bar{t}_{j-2}).(\bar{t}_{j-1}j).(\bar{t}_l.\bar{t}_{l-1}.\bar{t}_{l-1}).(\bar{t}_{l-2}j).
\]

\[
= z(\bar{t}_j, \ldots, \bar{t}_{j-2}).(\bar{t}_{j-1}j).(\bar{t}_l.\bar{t}_{l-1}.\bar{t}_{l-1}).(\bar{t}_{l-2}j).\bar{t}_{l-1}.j.(\bar{t}_j.\bar{t}_{j-1}).\bar{t}_{j-1}j.
\]

\[
= z(\bar{t}_j, \ldots, \bar{t}_{j-1}).j.(\bar{t}_j.\bar{t}_{j-1})\text{ by induction}
\]

\[
= z\bar{t}_{l,j}\text{ by case 2.}
\]

- **Case 5:** \(l = j - 1\)

\[
\bar{t}_{l-1}.\bar{t}_{l,j}.\bar{t}_{l-1} = z(\bar{t}_j, \ldots, \bar{t}_{j-3}).\bar{t}_{j-2}.\bar{t}_{j-1}.\bar{t}_{l-1}.\bar{t}_{j-1}.(\bar{t}_{j-3}j)
\]

\[
= z\bar{t}_{l,j-1}.
\]

- **Case 6:** \(l = j\)

\[
\bar{t}_j.\bar{t}_{i,j}.\bar{t}_j = z(\bar{t}_j, \ldots, \bar{t}_{j-2}).\bar{t}_j.\bar{t}_{j-1}.\bar{t}_j.(\bar{t}_{j-2}j)
\]

\[
= z\bar{t}_{l,j+1}.
\]

- **Heredity** Suppose the property is true until rank \(k\). Let \(\bar{x} = \bar{t}_{i_1}.\bar{t}_{i_2}.\ldots.\bar{t}_{i_k}\) and \(\bar{t}_{i,j}\) be two elements in \(\tilde{G}_n\). Denote \(\bar{y} = \bar{t}_{i_2}.\ldots.\bar{t}_{i_k}\). Then \(\bar{x}.\bar{t}_{i,j}.\bar{x}^{-1} = \bar{t}_{i_1}.\bar{y}.\bar{t}_{i,j}.\bar{y}^{-1}.z\bar{t}_{i_1}\). By induction hypothesis,

\[
\bar{y}.\bar{t}_{i,j}.\bar{y}^{-1} = z^{e(y)}(\bar{t}_{y(i)}y(j)).
\]

So, \(\bar{x}.\bar{t}_{i,j}.\bar{x}^{-1} = \bar{t}_{i_1}.z^{e(y)}(\bar{t}_{y(i)}y(j)).z\bar{t}_{i_1}\). By induction hypothesis one more time,

\[
\bar{x}.\bar{t}_{i,j}.\bar{x}^{-1} = z^{e(y)+1}\bar{t}_{t_{y(i)}y(i)j} = z^{e(x)}(\bar{t}_{x(i)}x(j)).
\]

The group \(\tilde{G}_n\) has another presentation in terms of generators and relations. Take \(\{z\} \cup \{\bar{t}_{i,j}\}_{i \neq j}\) where \(0 \leq i, j \leq n - 1\) as the set of generators with the following relations:

1. \(z' \cdot z' = \bar{t}' \quad z'\bar{t}_{i,j} = \bar{t}'_{i,j}z' \quad \bar{t}_{i,j} = z'\bar{t}_{i,j} \quad \bar{t}_{i,j} = z' \quad \text{for any } i, j\) \hspace{1cm} (2–1)
2. \(\bar{t}_{i,j}\bar{t}_{k,l} = z^{e(y)}(\bar{t}_{y(i)}y(j)).z\bar{t}_{i_1}\) \hspace{1cm} for any \(i, j, k, l\) if \(\{i, j\} \cap \{k, l\} = \emptyset\) \hspace{1cm} (2–2)
3. \(\bar{t}_{i,j}\bar{t}_{j,k} = z^{e(y)}(\bar{t}_{y(i)}y(j)).z\bar{t}_{i,k} \quad \text{for any } i, j, k\) \hspace{1cm} (2–3)

Proof Let \(G_n\) the group with \(z\) and \(\bar{t}_i\) as generators and \(G'_n\) the other one. Define \(\phi: \tilde{G}_n \rightarrow \tilde{G}'_n\) given on generators by \(\phi(\bar{t}_i) = \bar{t}_{i,i+1}'\), \(\phi(z) = z'\). For \(i < j\), let \(\phi(\bar{t}_{i,j}) = \bar{t}_{i,j}'\). By definition, (2–1) is verified. Lemma 2.4 gives equations (2–2) and (2–3). So the map \(\phi\) extends to a group isomorphism. \(\square\)
In what follows, we drop the prime exponent and only refer to $\tilde{t}_{i,j}$ and z (\tilde{t}_i means $\tilde{t}_{i,i+1}$).

3 The chain complex

Let G be a grid presentation with complexity n of the link \tilde{L}. Let Λ denote the ring $\mathbb{Z}[U_{O_1}, \ldots, U_{O_n}]$. We define $\widehat{C}^- (G)$ to be the free Λ–module with generating set \mathcal{S}_n quotiented by the submodule generated by $\{z+1\}$ i.e.

$$\widehat{C}^- (G) = \Lambda[\mathcal{S}_n]/ < z + 1 > .$$

Considered as module, $\widehat{C}^- (G)$ coincides with the free Λ–module with generating set \mathcal{S}_n. But we can also consider the structure of algebra of $\widehat{C}^- (G)$ over Λ. In this case, one can think of $\widehat{C}^- (G)$ as the group algebra of \mathcal{S}_n over Λ where the product is twisted by a non-trivial 2–cocycle (see Section 4).

We endow the set of generators with a Maslov grading M and an Alexander filtration A given by $M(\tilde{x}) = M(x)$ and $A(\tilde{x}) = A(x)$.

Let \tilde{x} be an element of \mathcal{S}_n and let $\text{Rect}(\tilde{x})$ be the set of rectangles starting at \tilde{x}: by definition it is the set $\{\tilde{t}_{i,j}\}_{0 \leq i < j \leq n-1}$. If we consider the set $\text{Rect}(\tilde{x}, \tilde{y})$ of rectangles connecting x to y (where $y = x, t_{i,j}$) as in [5], either it is the empty set, or it consists of two rectangles. We interpret the rectangle $\tilde{t}_{i,j}$ in the oriented torus T as the rectangle whose bottom left corner belongs to the ith vertical circle. So in the case where $\text{Rect}(x, y) = \{r_1, r_2\}$ the two corresponding rectangles are $\tilde{t}_{i,j}$ and $\tilde{t}_{j,i}$. Let r be the rectangle of $\text{Rect}(x, y)$ corresponding to \tilde{r}. A rectangle $\tilde{r} \in \text{Rect}(\tilde{x})$ is said to be empty if the corresponding rectangle $r \in \text{Rect}(x, y)$ is empty. The set of empty rectangles starting at \tilde{x} is denoted $\text{Rect}^e(\tilde{x})$.

We endow $\widehat{C}^- (G)$ with a differential $\tilde{\partial}^-$ given on elements of \mathcal{S}_n by:

$$\tilde{\partial}^- \tilde{x} = \sum_{\tilde{r} \in \text{Rect}^e(\tilde{x})} U_{O_{O_1}}(\tilde{r}) \ldots U_{O_{O_n}}(\tilde{r}) \tilde{x} \tilde{r}$$

where $O_k(\tilde{r})$ is the number of times O_k appears in the interior of r.

Proposition 3.1 The differential $\tilde{\partial}^-$ drops the Maslov degree by one and respect the Alexander filtration.

Proof It is a straightforward consequence of calculus done in [5].

Algberaic & Geometric Topology, Volume 8 (2008)
Figure 3: Rectangles. Black dots represent \(x \) and white dots \(y \). The two hatched regions correspond to rectangles \(\tau_{0,2} \in \text{Rect}(\bar{x}) \) and \(\tau_{2,0} \in \text{Rect}(\bar{x}) \). The rectangle \(\tau_{0,2} \) is an empty rectangle while \(\tau_{2,0} \) is not.

Proposition 3.2 The endomorphism \(\tilde{\partial}^\sim \) of \(\tilde{C}^\sim (G) \) is a differential, i.e.

\[
\tilde{\partial}^\sim \circ \tilde{\partial}^\sim = 0.
\]

Proof Let \(\bar{x} = s(x) \in \tilde{C}_n \), viewed as a generator of \(\tilde{C}^\sim (G) \). Then

\[
\tilde{\partial}^\sim \circ \tilde{\partial}^\sim (\bar{x}) = \sum_{\tilde{r}_2 \in \text{Rect}^\sim(\bar{x}, \bar{r}_1)} \sum_{\bar{r}_1 \in \text{Rect}^\circ(\bar{x})} U_{\bar{O}_1} \tilde{O}_1(\tilde{r}_1) + U_{\bar{O}_2} \tilde{O}_2(\tilde{r}_2) + \ldots + U_{\bar{O}_n} \tilde{O}_n(\tilde{r}_2). \]

There are different cases which are illustrated by Figure 4.

Cases 1,2 The rectangles corresponding to \(\bar{\tau}_{i,j} \) and \(\bar{\tau}_{k,l} \) give the elements \(\bar{z}_1 = \bar{x} \cdot \bar{\tau}_{k,l} \cdot \bar{\tau}_{i,j} \) and \(\bar{z}_2 = \bar{x} \cdot \bar{\tau}_{i,j} \cdot \bar{\tau}_{k,l} \). By equation (2–2) contribution to \(\tilde{\partial}^\sim \circ \tilde{\partial}^\sim (\bar{x}) \) is null.

Case 3 Supports of the rectangles have a common edge. The two corresponding elements are \(\bar{z}_1 = \bar{x} \cdot \bar{\tau}_{i,j} \cdot \bar{\tau}_{k,l} \) and \(\bar{z}_2 = \bar{x} \cdot \bar{\tau}_{i,j} \cdot \bar{\tau}_{k,l} \). By equation (2–3), \(\bar{z}_1 = z \bar{z}_2 \) and so the contribution is null. Other cases work in a similar way.

Case 4 The vertical annulus is of width 1 and corresponds to \(\bar{z}_1 = U_{\bar{O}_m} \bar{x} \cdot \bar{\tau}_{i,j} \cdot \bar{\tau}_l \) (it is a consequence of the condition on rectangles to be empty).

To this vertical annulus corresponds the horizontal annulus of height 1 which contains \(O_m \). This horizontal annulus contributes for \(U_{\bar{O}_m} \bar{x} \cdot \bar{\tau}_{i,k} \cdot \bar{\tau}_{k,l} \) for a pair \(k < l \in \{0, \ldots, n-1\} \). So, the contribution of each vertical annulus is canceled by the corresponding horizontal annulus. The global contribution to \(\tilde{\partial}^\sim \circ \tilde{\partial}^\sim (\bar{x}) \) is null. □
4 Sign assignment induced by the complex

In this section we prove that the chain complex \(\tilde{C}^- (G) \) coincides with the chain complex \(C^- (G) \) over \(\mathbb{Z} \) after a choice of a sign assignment.

Definition 4.1 A sign assignment is a function \(S : \text{Rect}^\circ \rightarrow \{ \pm 1 \} \) such that

- (Sq) for any distincts \(r_1, r_2, r'_1, r'_2 \in \text{Rect}^\circ \) such that \(r_1 \ast r_2 = r'_1 \ast r'_2 \) we have
 \[
 S(r_1).S(r_2) = -S(r'_1).S(r'_2).
 \]

- (V) if \(r_1, r_2 \in \text{Rect}^\circ \) are such that \(r_1 \ast r_2 \) is a vertical annulus then
 \[
 S(r_1).S(r_2) = -1.
 \]

- (H) if \(r_1, r_2 \in \text{Rect}^\circ \) are such that \(r_1 \ast r_2 \) is a horizontal annulus then
 \[
 S(r_1).S(r_2) = +1.
 \]
Let \(s: \mathfrak{S}_n \to \widetilde{\mathfrak{S}}_n \) be a section of the map \(p \) that is \(p \circ s = \text{id}_{\mathfrak{S}_n} \).

\[
1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{i} \widetilde{\mathfrak{S}}_n \xrightarrow{p_s} \mathfrak{S}_n \longrightarrow 1
\]

To define the sign assignment we need the 2–cocycle \(c \in C^2(\mathfrak{S}_n, \mathbb{Z}/2\mathbb{Z}) \) associated to the map \(s \) given by

\[
s(x).s(y) = (i \circ c(x, y))s(x, y).
\]

(4–1) The cohomological class of \(c \) measures how \(s \) fails to be a group morphism. In particular, it is non-trivial \((n \geq 4)\) since \(\mathfrak{S}_n \) is a non-trivial central extension of \(\mathfrak{S}_n \) by \(\mathbb{Z}/2\mathbb{Z} \).

We say that a rectangle \(r \) is horizontally torn if given the coordinates \((i_{hl}, j_{hl})\) of its bottom left corner and \((i_{tr}, j_{tr})\) of its top right corner then \(i_{hl} > i_{tr} \). Otherwise, \(r \) is said to be not horizontally torn.

Lemma 4.2 The complex \((\mathcal{C}^+, \widetilde{\mathcal{D}}^-)\) induces a sign assignment in the sense of Definition 4.1: for all \((x, y) \in \mathfrak{S}^2_n\) and all \(r \in \text{Rect}^\circ(x, y)\)

\[
S(r) = \varepsilon(r).c(x^{-1}, y, x)
\]

where \(\varepsilon(r) = +1 \) if \(r \) is a rectangle not horizontally torn and \(\varepsilon(r) = -1 \) otherwise.

Remark The sign assignment in the sense of Definition 4.1 is unique up to a 1–coboundary: if \(S_1 \) and \(S_2 \) are two sign assignments then there exists an application \(f: \mathfrak{S}_n \to \{\pm 1\} \) such that for all rectangles \(r \in \text{Rect}^\circ(x, y)\), \(S_1(r) = f(x).f(y).S_2(r) \).

It is a consequence of the fact that the central extension corresponds to a 2–cohomological class in \(H^2(\mathfrak{S}_n, \mathbb{Z}/2\mathbb{Z}) \) (compare with [5, Theorem 4.2]). Here, we construct explicitly a map \(s: \mathfrak{S}_n \to \widetilde{\mathfrak{S}}_n \) such that \(p \circ s = \text{id} \) which means making a choice of a representative of this class, another choice must differ by a 1–coboundary.

Proof Since \(c \) is 2–cocycle we have \(\delta c = 1 \) ie for all \((x, y, z) \in \mathfrak{S}^3_n\)

\[
\delta c(x, y, z) = c(y, z).c(x, y, z).c(x, y, z).c(x, y) = 1.
\]

By definition we have \(c(x, 1) = c(1, x) = 1 \) and \(c(\tau_{i,j}, \tau_{i,j}) = -1 \). Let's prove that \(S \) satisfy properties (Sq), (V) et (H).

(Sq) Let any four distincts rectangles \(S r_1, r_2, r'_1, r'_2 \in \text{Rect}^\circ \) such that \(r_1 \ast r_2 = r'_1 \ast r'_2 \).

Suppose \(\bar{r}_{i,j} = \tau_{i} \in \text{Rect}^\circ(\bar{x}) \) corresponds to \(r_1 \) and \(\bar{r}_{k,l} = \tau_{k,l} \in \text{Rect}^\circ(\bar{x}, \tau_{i,j}) \) corresponds to \(r_2 \). Then \(\bar{r}'_1 = \tau_{k,l} \in \text{Rect}^\circ(\bar{x}) \) corresponds to \(r'_1 \) and \(\bar{r}'_2 = \tau_{i,j} \in \text{Rect}^\circ(\bar{x}) \).
Rect\(^c\)(\(\tilde{X}, \tilde{T}_{k,l}\)) corresponds to \(r'_2\). There are several cases to verify, as for the proof of \(\tilde{\partial}^{-} \circ \tilde{\partial}^{-} = 0\) but all cases can be verified in a similar way. We verify the case \(i < j < k < l\). We calculate \(\delta c(\tau_{k,l}, \tau_{i,j}, x)\) and \(\delta c(\tau_{i,j}, \tau_{k,l}, x)\). With equalities \(c(\tau_{i,j}, \tau_{k,l}, x) = c(\tau_{k,l}, \tau_{i,j}, x)\) and \(c(\tau_{i,j}, \tau_{k,l}) = -c(\tau_{k,l}, \tau_{i,j})\) we get

\[
S(r_1)S(r_2) = -S(r'_1)S(r'_2).
\]

(V) Let \(r_1, r_2 \in \text{Rect}^c\) such that \(r_1 \ast r_2\) is a vertical annulus. Suppose that \(\tilde{r}_1 = \tilde{t}_i \in \text{Rect}^c(\tilde{X})\) corresponds to \(r_1\) and \(\tilde{r}_2 = \tilde{t}_j \in \text{Rect}^c(\tilde{X}, \tilde{T}_i)\) corresponds to \(r_2\). We calculate \(\delta c(\tau_{i,j}, \tau_{i,j}, x)\) and with equalities \(c(x, 1) = 1, c(\tau_{i,j}, \tau_{i,j}) = -1\) we get

\[
S(r_1)S(r_2) = -1.
\]

(H) Let \(r_1, r_2 \in \text{Rect}^c\) such that \(r_1 \ast r_2\) is a horizontal annulus (of height one). Suppose \(\tilde{r}_1 = \tilde{t}_{i,j} \in \text{Rect}^c(\tilde{X})\) corresponds to \(r_1\) and \(\tilde{r}_2 = \tilde{t}_{j,k} \in \text{Rect}^c(\tilde{X}, \tilde{T}_{i,j})\) corresponds to \(r_2\). We calculate \(\delta c(\tau_{i,j}, \tau_{i,j}, x)\) and with equalities \(c(x, 1) = 1, c(\tau_{i,j}, \tau_{i,j}) = -1\) we get

\[
S(r_1)S(r_2) = +1.
\]

\[\Box\]

Proposition 4.3 The filtered chain complex \((\tilde{C}^{-}(G), \tilde{\partial}^{-})\) is filtered isomorphic to the filtered chain complex \((C^{-}(G), \partial^{-})\).

Proof The map \(s: \mathfrak{S}_n \to \tilde{\mathfrak{S}}_n\) extends linearly with respect to \(\mathbb{Z}[U_1, \ldots, U_n]\) uniquely to a map \(s: C^{-}(G) \to \tilde{C}^{-}(G)\) which is an isomorphism of modules. It commutes with the differentials \(ie s \circ \partial^{-} = \tilde{\partial}^{-} \circ s\) where the sign assignment \(S\) is given by equation (4–2). By definition, \(s\) respects the Alexander filtration and the Maslov grading. So \(s\) defines a filtered isomorphism between the complexes \((C^{-}(G), \partial^{-})\) and \((\tilde{C}^{-}(G), \tilde{\partial}^{-})\). \[\Box\]

A consequence of the above proposition and [5, Theorem 1.2] is the following.

Corollary 4.4 Let \(\hat{L}\) be an oriented link with \(\ell\) components. We number the \(\bigcirc\) so that \(O_1, \ldots, O_\ell\) correspond to the different components of \(\hat{L}\). Then the filtered quasi-isomorphism type of \((\tilde{C}^{-}(G), \tilde{\partial}^{-})\) over \(\mathbb{Z}[U_{O_1}, \ldots, U_{O_\ell}]\) is an invariant of the link.

Remark The proof of this theorem can also be done by adapting the original proof in [5], sometimes with slightly simplified arguments.

Algebraic & Geometric Topology, Volume 8 (2008)
Étienne Gallais

References

Laboratoire de Mathématiques Jean Leray (LMJL), UFR Sciences et Techniques
2 rue de la Houssinière - BP 92208, 44 322 Nantes Cedex 3, France
Etienne.Gallais@univ-nantes.fr
http://www.math.sciences.univ-nantes.fr/~gallais/

Received: 4 July 2007 Revised: 30 May 2008

Algebraic & Geometric Topology, Volume 8 (2008)