Small exotic 4–manifolds

ANAR AKHMEDOV

In this article, we construct the first example of a simply-connected minimal symplectic 4–manifold that is homeomorphic but not diffeomorphic to $3\mathbb{C}P^2 \# 7\mathbb{C}P^2$. We also construct the first exotic minimal symplectic $\mathbb{C}P^2 \# 5\mathbb{C}P^2$.

57N65, 57N13; 57M50

1 Introduction

Over the past several years, there has been a considerable amount of progress in the discovery of exotic smooth structures on simply-connected 4–manifolds with small Euler characteristic. In early 2004, Jongil Park [15] has constructed the first example of exotic smooth structure on $\mathbb{C}P^2 \# 7\mathbb{C}P^2$, i.e. 4–manifold homeomorphic but not diffeomorphic to $\mathbb{C}P^2 \# 7\mathbb{C}P^2$. Later that year, András Stipsicz and Zoltán Szabó used a similar technique to construct an exotic smooth structure on $\mathbb{C}P^2 \# 6\mathbb{C}P^2$ [18]. Then Fintushel and Stern [5] introduced a new technique, the double node surgery, which demonstrated that in fact $\mathbb{C}P^2 \# k\mathbb{C}P^2$, $k = 6, 7$ and 8 have infinitely many distinct smooth structures. Using the double node surgery technique [5], Park, Stipsicz and Szabó constructed infinitely many smooth structures on $\mathbb{C}P^2 \# 5\mathbb{C}P^2$ [17]. The examples in [17] are not known if symplectic. Based on similar ideas, Stipsicz and Szabó constructed the exotic smooth structures on $3\mathbb{C}P^2 \# k\mathbb{C}P^2$ for $k = 9$ [19] and Park for $k = 8$ [16]. In this article, we construct an exotic smooth structure on $3\mathbb{C}P^2 \# 7\mathbb{C}P^2$. We also construct an exotic symplectic $\mathbb{C}P^2 \# 5\mathbb{C}P^2$, the first known such symplectic example.

Our approach is different from the above constructions in the sense that we do not use any rational-blowdown surgery (Fintushel and Stern [3], Jongil [14]). Also, in contrary to the previous constructions, we use non-simply connected building blocks (Akhmedov [1], Matsumoto [11]) to produce the simply-connected examples. The main surgery technique used in our construction is the symplectic fiber sum operation (Gompf [7], McCarthy and Wolfson [12]) along the genus two surfaces. Our results can be stated as follows.

Published: 9 October 2008 DOI: 10.2140/agt.2008.8.1781
Theorem 1.1 There exist a smooth closed simply-connected minimal symplectic 4–manifold X that is homeomorphic but not diffeomorphic to $3 \mathbb{C}P^2 \# 7 \overline{\mathbb{C}P^2}$.

Theorem 1.2 There exist a smooth closed simply-connected minimal symplectic 4–manifold Y which is homeomorphic but not diffeomorphic to the rational surface $\mathbb{C}P^2 \# 5 \overline{\mathbb{C}P^2}$.

This article is organized as follows. The first two sections give a quick introduction to Seiberg–Witten invariants and a fiber sum operation. In Section 4, we review the symplectic building blocks for our construction. Finally, in Section 5 and Section 6, we construct minimal symplectic 4–manifolds X and Y homeomorphic but not diffeomorphic to $3 \mathbb{C}P^2 \# 7 \overline{\mathbb{C}P^2}$ and $\mathbb{C}P^2 \# 5 \overline{\mathbb{C}P^2}$, respectively.

Acknowledgments I would like to thank John Etnyre, Ron Stern and András Stipsicz for their interest in this work and for their encouragement. Also, I am grateful to B Doug Park for the comments on the first draft of this article, kindly pointing out some errors in the fundamental group computations and for the corrections. Finally, I wish to thank the referee for many helpful suggestions which improved the exposition of this article. This work is partially supported by NSF grant FRG-0244663.

Dedication Dedicated to Professor Ronald J Stern on the occasion of his sixtieth birthday.

2 Seiberg–Witten Invariants

In this section, we briefly recall the basics of Seiberg–Witten invariants introduced by Seiberg and Witten. Seiberg–Witten invariant of a smooth closed oriented 4–manifold X with $b_2^+(X) > 1$ is an integer valued function which is defined on the set of spinc structures over X (Witten [23]). For simplicity, we assume that $H_1(X, \mathbb{Z})$ has no 2–torsion. Then there is a one-to-one correspondence between the set of spinc structures over X and the set of characteristic elements of $H^2(X, \mathbb{Z})$.

In this set up, we can view the Seiberg–Witten invariant as an integer valued function

$$\text{SW}_X: \{k \in H^2(X, \mathbb{Z}) | k \equiv w_2(TX) \pmod{2}\} \rightarrow \mathbb{Z}.$$

The Seiberg–Witten invariant SW_X is a diffeomorphism invariant. We call β a basic class of X if $\text{SW}_X(\beta) \neq 0$. It is a fundamental fact that the set of basic classes is finite. Also, if β is a basic class, then so is $-\beta$ with

$$\text{SW}_X(-\beta) = (-1)^{(e+\sigma)(X)/4} \text{SW}_X(\beta).$$
where $e(X)$ is the Euler characteristic and $\sigma(X)$ is the signature of X.

Theorem 2.1 (Taubes [20]) Suppose that (X, ω) is a closed symplectic 4–manifold with $b_2^+(X) > 1$ and the canonical class K_X. Then $SW_X(\pm K_X) = \pm 1$.

3 Fiber Sum

Definition 3.1 Let X and Y be closed, oriented, smooth 4–manifolds each containing a smoothly embedded surface Σ of genus $g \geq 1$. Assume Σ represents a homology class of infinite order and has self-intersection zero in X and Y, so that there exist a tubular neighborhood, say $\nu \Sigma \cong \Sigma \times D^2$, in both X and Y. Using an orientation-reversing and fiber-preserving diffeomorphism $\psi: S^1 \times \Sigma \rightarrow S^1 \times \Sigma$, we can glue $X \setminus \nu \Sigma$ and $Y \setminus \nu \Sigma$ along the boundary $\partial(\nu \Sigma) \cong \Sigma \times S^1$. This new oriented smooth 4–manifold $X \#_\psi Y$ is called a generalized fiber sum of X and Y along Σ, determined by ψ.

Definition 3.2 Let $e(X)$ and $\sigma(X)$ denote the Euler characteristic and the signature of a closed oriented smooth 4–manifold X, respectively. We define

$$c_1^2(X) := 2e(X) + 3\sigma(X), \quad \chi_h(X) := \frac{e(X) + \sigma(X)}{4}.$$

In the case that X is a complex surface, then $c_1^2(X)$ and $\chi_h(X)$ are the self-intersection of the first Chern class $c_1(X)$ and the holomorphic Euler characteristic, respectively.

Lemma 3.3 Let X and Y be closed, oriented, smooth 4–manifolds containing an embedded surface Σ of self-intersection 0. Then

$$c_1^2(X \#_\psi Y) = c_1^2(X) + c_1^2(Y) + 8(g - 1),$$

$$\chi_h(X \#_\psi Y) = \chi_h(X) + \chi_h(Y) + (g - 1),$$

where g is the genus of the surface Σ.

Proof The above simply follows from the well-known formulas

$$e(X \#_\psi Y) = e(X) + e(Y) - 2e(\Sigma), \quad \sigma(X \#_\psi Y) = \sigma(X) + \sigma(Y). \quad \Box$$

If X, Y are symplectic manifolds and Σ is an embedded symplectic submanifold in X and Y, then according to theorem of Gompf [7] $X \#_\psi Y$ admits a symplectic structure.

We will use the following theorem of M Usher [21] to show that the symplectic manifolds constructed in Section 5 and Section 6 are minimal. Here we slightly abuse the above notation for the fiber sum.
Theorem 3.4 (Usher [21], Minimality of Symplectic Sums) Let $X = X_1 \#_{F_1} F_2 X_2$ be symplectic fiber sum of manifolds X_1 and X_2.

(i) If either $X_1 \setminus F_1$ or $X_2 \setminus F_2$ contains an embedded symplectic sphere of square -1, then X is not minimal.

(ii) If one of the summands X_i (say X_1) admits the structure of an S^2–bundle over a surface of genus g such that F_i is a section of this fiber bundle, then X is minimal if and only if X_2 is minimal.

(iii) In all other cases, X is minimal.

4 Building blocks

The building blocks for our construction will be as follows.

(i) The manifold $T^2 \times S^2 \# 4\mathbb{CP}^2$ equipped with the genus two Lefschetz fibration of Matsumoto [11].

(ii) The symplectic manifolds X_K and Y_K [1]. For the convenience of the reader, we recall the construction in [1].

4.1 Matsumoto fibration

First, recall that the manifold $Z = T^2 \times S^2 \# 4\mathbb{CP}^2$ can be described as the double branched cover of $S^2 \times T^2$ where the branch set $B_{2,2}$ is the union of two disjoint copies of $S^2 \times \{pt\}$ and two disjoint copies of $\{pt\} \times T^2$. The branch cover has 4 singular points, corresponding to the number of the intersections points of the horizontal lines and the vertical tori in the branch set $B_{2,2}$. After desingularizing the above singular manifold, one obtains $T^2 \times S^2 \# 4\mathbb{CP}^2$. The vertical fibration of $S^2 \times T^2$ pulls back to give a fibration of $T^2 \times S^2 \# 4\mathbb{CP}^2$ over S^2. A generic fiber of the vertical fibration is the double cover of T^2, branched over 2 points. Thus a generic fiber will be a genus two surface. According to Matsumoto [11], this fibration can be perturbed to be a Lefschetz fibration over S^2 with the global monodromy $(\beta_1 \beta_2 \beta_3 \beta_4)^2 = 1$, where the curves β_1, β_2, β_3 and β_4 are shown in Figure 1.

Let us denote the regular fiber by Σ'_2 and the images of standard generators of the fundamental group of Σ'_2 as a_1, b_1, a_2 and b_2. Using the homotopy exact sequence for a Lefschetz fibration,

$$\pi_1(\Sigma'_2) \longrightarrow \pi_1(Z) \longrightarrow \pi_1(S^2)$$
we have the following identification of the fundamental group of Z [13]:

$$\pi_1(Z) = \pi_1(\Sigma'_2)/\langle \beta_1, \beta_2, \beta_3, \beta_4 \rangle.$$

(1) $\beta_1 = b_1 b_2$,
(2) $\beta_2 = a_1 b_1 a_1^{-1} b_1^{-1} = a_2 b_2 a_2^{-1} b_2^{-1}$,
(3) $\beta_3 = b_2 a_2 b_2^{-1} a_1$,
(4) $\beta_4 = b_2 a_2 a_1 b_1$.

Hence $\pi_1(Z) = \langle a_1, b_1, a_2, b_2 \mid b_1 b_2 = [a_1, b_1] = [a_2, b_2] = a_1 a_2 = 1 \rangle$.

Note that the fundamental group of $T^2 \times S^2 \# 4\overline{\mathbb{CP}^2}$ is $\mathbb{Z} \oplus \mathbb{Z}$, generated by two of these standard generators (say a_1 and b_1). The other two generators a_2 and b_2 are the inverses of a_1 and b_1 in the fundamental group. Also, the fundamental group of the complement of $\nu \Sigma'_2$ is $\mathbb{Z} \oplus \mathbb{Z}$. It is generated by a_1 and b_1. The normal circle $\lambda' = pt \times \partial D^2$ to Σ'_2 can be deformed using one of the exceptional spheres, thus is trivial in $\pi_1(T^2 \times S^2 \# 4\overline{\mathbb{CP}^2} \setminus \nu \Sigma'_2) = \mathbb{Z} \oplus \mathbb{Z}$.

Lemma 4.1 $c_1^2(Z) = -4$, $\sigma(Z) = -4$ and $\chi_h(Z) = 0$.

Proof We have $c_1^2(Z) = c_1^2(T^2 \times S^2) - 4 = -4$, $\sigma(Z) = \sigma(T^2 \times S^2) - 4 = -4$ and $\chi_h(Z) = \chi_h(T^2 \times S^2) = 0$. \hfill \Box

Note that this Lefschetz fibration can be given a symplectic structure. This means that Z admits a symplectic structure such that the regular fibers are symplectic submanifolds. We consider such a symplectic structure on Z.
4.2 Symplectic 4–manifolds cohomology equivalent to \(S^2 \times S^2 \)

Our second building block will be \(X_K \), the symplectic cohomology \(S^2 \times S^2 \) [1], or the symplectic manifold \(Y_K \), an intermediate building block in that construction [1], (see also Fintushel and Stern [4]). For the sake of completeness, the details of this construction are included below. We refer the reader to [1] for more details and for the generalization of these symplectic building blocks.

Let \(K \) be a fibered knot of genus one (ie, the trefoil or the figure eight knot) in \(S^3 \) and \(m \) be a meridional circle to \(K \). We perform 0–framed surgery on \(K \) and denote the resulting 3–manifold by \(M_K \). Since \(K \) is fibered and has genus one, it follows the 3–manifold \(M_K \) is a torus bundle over \(S^1 \), hence the 4–manifold \(M_K \times S^1 \) is a torus bundle over a torus. Furthermore, \(M_K \times S^1 \) admits a symplectic structure, and both the torus fiber and the torus section \(T_m = m \times S^1 = m \times x \) are symplectically embedded and have a self-intersection zero. The first homology of \(M_K \times S^1 \) is generated by the standard first homology generators \(m \) and \(x \) of the torus section. On the other hand, the classes of circles \(\gamma_1 \) and \(\gamma_2 \) of the fiber \(F \), coming from the Seifert surface, are trivial in homology. In addition, \(M_K \times S^1 \) is minimal symplectic, ie, it does not contain symplectic \(-1\) sphere.

We form a twisted fiber sum of two copies of the manifold \(M_K \times S^1 \), we identify the fiber \(F \) of one fibration to the section \(T_m \) of other. Let \(Y_K \) denote the mentioned twisted fiber sum \(Y_K = M_K \times S^1 \#_{F=T_m} M_K \times S^1 \). It follows from Gompf’s theorem [7] that \(Y_K \) is symplectic and by Usher’s Theorem 3.4 that \(Y_K \) is minimal symplectic.

Let \(T_1 \) be the section of the first copy of \(M_K \times S^1 \) and \(T_2 \) be the fiber in the second copy. Then the genus two surface \(\Sigma_2 = T_1 \# T_2 \) symplectically embeds into \(Y_K \) and has self-intersection zero. Let \(X_K \) be a symplectic 4–manifold constructed as follows: Take two copies of \(Y_K \) and form the fiber sum along the genus two surface \(\Sigma_2 \) using the special glueing diffeomorphism \(\phi \), the vertical involution of \(\Sigma_2 \) with two fixed points. Thus \(X_K := Y_K \# \phi Y_K \). Let \(m \), \(x \), \(\gamma_1 \) and \(\gamma_2 \) denote the generators of \(\pi_1(\Sigma_2) \) under the inclusion. The diffeomorphism \(\phi: T_1 \# T_2 \to T_1 \# T_2 \) of \(\Sigma_2 \) maps on the generators as follows: \(\phi_*(m') = \gamma_1 \), \(\phi_*(x') = \gamma_2 \), \(\phi_*(\gamma_1') = m \) and \(\phi_*(\gamma_2') = x \). In [1] we show that the manifold \(X_K \) has first Betti number zero and has the integral cohomology of \(S^2 \times S^2 \). Furthermore, \(H_2(X_K, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} \), where the basis for the second homology are the classes of \(\Sigma_2 = S \) and the new genus two surface \(T \) resulting from the last fiber sum operation (two punctured genus one surfaces glues to form a genus two surface). Also, \(S^2 = T^2 = 0 \) and \(S \cdot T = 1 \). Furthermore, \(c_1^2(X_K) = 8 \), \(\sigma(X_K) = 0 \) and \(\chi_b(X_K) = 1 \). Since \(Y_K \) is minimal symplectic, it follows from Theorem 3.4 that \(X_K \) is minimal symplectic as well.
4.2.1 Fundamental Group of $M_K \times S^1$ We will assume that K is the trefoil knot. Let a, b and c denote the Wirtinger generators of the trefoil. The knot group of the trefoil has the following presentations: $\pi_1(K) = \langle a, b , c \mid ab = bc, ca = ab \rangle = \langle a, b \mid aba = bab \rangle = \langle u, v \mid u^2 = v^3 \rangle$ where $u = bab$ and $v = ab$. The homotopy classes of the meridian and the longitude of the trefoil are given as follows: $m = uv^{-1} = b$ and $l = u^2(uv^{-1})^{-6} = ab^2ab^{-4}$ (Burde and Zieschang [2]). Also, the homotopy classes of γ_1 and γ_2 are given as follows: $\gamma_1 = a^{-1}b$ and $\gamma_2 = b^{-1}aba^{-1}$. Notice that the fundamental group of M_K, 0–surgery on the trefoil, is obtained from the knot group of the trefoil by adjoining the relation $l = u^2(uv^{-1})^{-6} = ab^2ab^{-4} = 1$. Thus, we have $\pi_1(M_K) = \langle u, v \mid u^2 = v^3, \quad u^2(uv^{-1})^{-6} = 1 \rangle = \langle a, b \mid aba = bab, \quad ab^2a = b^4 \rangle$ and $\pi_1(M_K \times S^1) = \langle a, b, x \mid aba = bab, \quad ab^2a = b^4, \quad [x, a] = [x, b] = 1 \rangle$.

4.2.2 Fundamental Group of Y_K The next step is to take two copies of the manifold $M_K \times S^1$ and perform the fiber sum along symplectic tori. In the first copy of $M_K \times S^1$, we take a tubular neighborhood of the torus section T_m, remove it from $M_K \times S^1$ and denote the resulting manifold by C_S. In the second copy, we remove a tubular neighborhood of the fiber F and denote it by C_F. Notice that $C_S = M_K \times S^1 \setminus vT_m = (M_K \setminus v(m)) \times S^1$. We have $\pi_1(C_S) = \pi_1(K) \oplus \langle x \rangle$ where x is the generator corresponding to the S^1 copy. Also using the above computation, we easily derive: $H_1(C_S) = H_1(M_K) = \langle m \rangle \oplus \langle x \rangle$.

To compute the fundamental group of the C_F, we will use the following observation: vF is the preimage of the small disk on $T_{m'} = m' \times y$. The elements y and $m' = d$ of the $\pi_1(C_F)$ do not commute anymore, but y still commutes with generators γ_1' and γ_2'. The fundamental group and the first homology of the C_F will be isomorphic to the following: $\pi_1(C_F) = \langle d, y, \gamma_1', \gamma_2' \mid [y, \gamma_1'] = [y, \gamma_2'] = [y_1', y_2'] = 1, \quad d \gamma_1'^{-d} = \gamma_1' \gamma_2', \quad d \gamma_2'^{-d} = (y_1')^{-1} \rangle$ and $H_1(C_F) = \langle d \rangle \oplus \langle y \rangle$.

We use the Van Kampen’s Theorem to compute the fundamental group of Y_K.

$$\pi_1(Y_K) = \pi_1(C_F) *_{\pi_1(K)} \pi_1(C_F)$$

$$= \langle d, y, \gamma_1', \gamma_2' \mid [y, \gamma_1'] = [y, \gamma_2'] = [y_1', y_2'] = 1, \quad d \gamma_1'^{-d} = \gamma_1' \gamma_2', \quad d \gamma_2'^{-d} = 1 \rangle$$

$$= \langle a, b, x, \gamma_1', \gamma_2', d, y \mid aba = bab, \quad [x, a] = [x, b] = 1 \rangle$$

$$= \langle a, b, x, \gamma_1', \gamma_2', d, y \mid aba = bab, \quad [x, a] = [x, b] = 1 \rangle$$

$$= \langle a, b, x, \gamma_1', \gamma_2' \mid \gamma_1' = 1, \quad d \gamma_1'^{-d} = \gamma_1' \gamma_2', \quad d \gamma_2'^{-d} = (y_1')^{-1}, \quad \gamma_1' = x, \gamma_2' = b, \quad [y_1', y_2'] = [d, y] \rangle.$$
homomorphism maps the standard generators of $\pi_1(\Sigma_2)$ to $a^{-1}b$, $b^{-1}aba^{-1}$, d and y in $\pi_1(Y_K)$.

Lemma 4.2 ([1]) There are nonnegative integers m and n such that

\[
\pi_1(Y_K \setminus \nu\Sigma_2) = \langle a, b, x, d, y; g_1, \ldots, g_m \mid aba = bab, \n\]
\[
[y, x] = [y, b] = 1, \quad dxd^{-1} = xb, \quad dbd^{-1} = x^{-1}, \n\]
\[
ab^2ab^{-4} = [d, y], \quad r_1 = \cdots = r_n = 1, \quad r_{n+1} = 1, \n\]

where the generators g_1, \ldots, g_m and relators r_1, \ldots, r_n all lie in the normal subgroup N generated by the element $[x, b]$ and the relator r_{n+1} is a word in x, a and elements of N. Moreover, if we add an extra relation $[x, b] = 1$, then the relation $r_{n+1} = 1$ simplifies to $[x, a] = 1$.

Proof This follows from Van Kampen’s Theorem. Note that $[x, b]$ is a meridian of Σ_2 in Y_K. Hence setting $[x, b] = 1$ should turn $\pi_1(Y_K \setminus \nu\Sigma_2)$ into $\pi_1(Y_K)$. Also note that $[x, a]$ is the boundary of a punctured section in $C_S \setminus \nu(\text{fiber})$ and is no longer trivial in $\pi_1(Y_K \setminus \nu\Sigma_2)$. By setting $[x, b] = 1$, the relation $r_{n+1} = 1$ is to turn into $[x, a] = 1$.

It remains to check that the relations in $\pi_1(Y_K)$ other than $[x, a] = [x, b] = 1$ remain the same in $\pi_1(Y_K \setminus \nu\Sigma_2)$. By choosing a suitable point $\theta \in S^1$ away from the image of the fiber that forms part of Σ_2, we obtain an embedding of the knot complement $(S^3 \setminus \nu K) \times \{\theta\} \hookrightarrow C_S \setminus \nu(\text{fiber})$. This means that $aba = bab$ holds in $\pi_1(Y_K \setminus \nu\Sigma_2)$. Since $[\Sigma_2]^2 = 0$, there exists a parallel copy of Σ_2 outside $\nu\Sigma_2$, wherein the identity $ab^2ab^{-4} = [d, y]$ still holds. The other remaining relations in $\pi_1(Y_K)$ are coming from the monodromy of the torus bundle over a torus. Since these relations will now describe the monodromy of the punctured torus bundle over a punctured torus, they hold true in $\pi_1(Y_K \setminus \nu\Sigma_2)$. \hfill \Box

4.2.3 Fundamental Group of X_K Finally, we carry out the computations of the fundamental group and the first homology of X_K. Suppose that e, f, z, s and t are the generators of the fundamental group in the second copy of Y_K corresponding to the generators a, b, x, d and y as in above discussion. Our gluing map ϕ maps the generators of $\pi_1(\Sigma_2)$ as follows:

\[
\phi_*(a^{-1}b) = s, \quad \phi_*(b^{-1}aba^{-1}) = t, \quad \phi_*(d) = e^{-1}f, \quad \phi_*(y) = f^{-1}efe^{-1}. \n\]
By Van Kampen’s Theorem and Lemma 4.2, we have
\[
\pi_1(X_K) = \langle a, b, x, d, y; e, f, z, s, t; g_1, \ldots, g_m; h_1, \ldots, h_m \mid \begin{align*}
aba &= bab, \ [y, x] = [y, b] = 1, \\
dxd^{-1} &= xb, \ dbd^{-1} = x^{-1}, \ ab^2ab^{-4} = [d, y], \\
r_1 &= \cdots = r_{n+1} = 1, \ r'_1 = \cdots = r'_{n+1} = 1, \\
efe &= fef, \ [t, z] = [t, f] = 1, \\
szs^{-1} &= zf, \ sfs^{-1} = z^{-1}, \ ef^2ef^{-4} = [s, t], \\
d &= e^{-1}f, \ y = f^{-1}efe^{-1}, \ a^{-1}b = s, \ b^{-1}aba^{-1} = t, \\
[x, b] &= [z, f] \rangle,
\]
where the elements \(g_i, h_i \ (i = 1, \ldots, m) \) and \(r_j, r'_j \ (j = 1, \ldots, n + 1) \) all are in the normal subgroup generated by \([x, b] = [z, f])

Notice that it follows from our gluing that the images of standard generators of the fundamental group of \(\Sigma_2 \) are \(a^{-1}b, b^{-1}aba^{-1}, d \) and \(y \) in \(\pi_1(X_K) \). By abelianizing \(\pi_1(X_K) \), we easily see that \(H_1(X_K, \mathbb{Z}) = 0 \).

5 Construction of an exotic \(3 \mathbb{C}P^2 \# 7 \overline{\mathbb{C}P}^2 \)

In this section, we construct a simply-connected minimal symplectic 4–manifold \(X \) homeomorphic but not diffeomorphic to \(3 \mathbb{C}P^2 \# 7 \overline{\mathbb{C}P}^2 \). Using Seiberg–Witten invariants, we will distinguish \(X \) from \(3 \mathbb{C}P^2 \# 7 \overline{\mathbb{C}P}^2 \).

Our manifold \(X \) will be the symplectic fiber sum of \(X_K \) and \(Z = T^2 \times S^2 \# 4\overline{\mathbb{C}P}^2 \) along the genus two surfaces \(\Sigma_2 \) and \(\Sigma'_2 \). Recall that \(a^{-1}b, b^{-1}aba^{-1}, d, y \) and \(\lambda = \{pt\} \times S^1 = [x, b][z, f]^{-1} \) generate the inclusion-induced image of \(\pi_1(\Sigma_2 \times S^1) \) inside \(\pi_1(X_K \setminus \nu \Sigma_2) \). Let \(a_1, b_1, a_2, b_2 \) and \(\lambda' = 1 \) be generators of \(\pi_1(Z \setminus \nu \Sigma'_2) \) as in Section 4.1. We choose the gluing diffeomorphism \(\psi: \Sigma_2 \times S^1 \to \Sigma'_2 \times S^1 \) that maps the fundamental group generators as follows:

\[
\psi_*(a^{-1}b) = a_2, \ \psi_*(b^{-1}aba^{-1}) = b_2, \ \psi_*(d) = a_1, \ \psi_*(y) = b_1, \ \psi_*(\lambda) = \lambda'.
\]

\(\lambda \) and \(\lambda' \) above denote the meridians of \(\Sigma \) and \(\Sigma'_2 \) in \(X_K \) and \(Z \), respectively.

It follows from Gompf’s theorem [7] that \(X = X_K \# \psi(T^2 \times S^2 \# 4\overline{\mathbb{C}P}^2) \) is symplectic.

Lemma 5.1 \(X \) is simply connected.
Proof By Van Kampen’s theorem, we have
\[
\pi_1(X) = \frac{\pi_1(X_K \setminus v\Sigma_2) * \pi_1(Z \setminus v\Sigma'_2)}{\{a^{-1}b = a_2, b^{-1}aba^{-1} = b_2, d = a_1, y = b_1, \lambda = 1\}}.
\]

Since \(\lambda'\) is nullhomotopic in \(Z \setminus v\Sigma'_2\), the normal circle \(\lambda\) of \(\pi_1(X_K \setminus v\Sigma_2)\) becomes trivial in \(\pi_1(X)\). Also, using the relations \(b_1b_2 = [a_1, b_1] = [a_2, b_2] = b_2a_2b_2^{-1}a_1 = a_1a_2 = 1\) in \(\pi_1(Z \setminus v\Sigma'_2)\), we get the following relations in the fundamental group of \(X\): \(a^{-1}bd = [a^{-1}b, b^{-1}aba^{-1}] = [d, y] = [d, b^{-1}aba^{-1}] = yb^{-1}aba^{-1} = 1\). Note that the fundamental group of \(Z\) is an abelian group of rank two. In addition, we have the following relations in \(\pi_1(X)\) coming from the fundamental group of \(\pi_1(X_K \setminus v\Sigma_2)\):

\[
\begin{align*}
aba & = bab,
dfe = fef,
[y, b] = [f, t] = 1,
dbd^{-1} & = x^{-1},
dxd^{-1} = xb,
sfs^{-1} = z^{-1},
szs^{-1} = zf,
a^{-1}b = s,
b^{-1}aba^{-1} = t,
y = f^{-1}efe^{-1}
\end{align*}
\]

These are the relations that give rise to the following identities:

\[
\begin{align*}
yab & = ba,
a & = bd,
yb & = by,
aba & = bab.
\end{align*}
\]

Next, multiply the relation (5) by \(a\) from the right and use \(aba = bab\). We have \(yaba = ba^2 \implies yabab = ba^2\). By cancelling the element \(b\), we obtain \(yab = a^2\). Finally, applying the relation (5) again, we have \(ba = a^2\). The latter implies that \(b = a\). Since \(a = bd, dbd^{-1} = x^{-1}, dxd^{-1} = xb, aba = bab\) and \(yb^{-1}aba^{-1} = 1\), we obtain \(d = y = x = b = a = 1\). Furthermore, using the relations \(a^{-1}b = s, b^{-1}aba^{-1} = t, efe = fef, e^{-1}f = d, sfs^{-1} = z^{-1}\) and \(zszs^{-1} = zf\), we similarly have \(s = t = z = f = e = 1\). Thus, we can conclude that the elements \(a, b, x, d, y, e, f, z, s\) and \(t\) are all trivial in the fundamental group of \(X\). Since we identified \(a^{-1}b\) and \(b^{-1}aba^{-1}\) with generators \(a_2\) and \(b_2\) of the group \(\pi_1(Z \setminus v\Sigma'_2) = \mathbb{Z} \oplus \mathbb{Z}\), it follows that \(a_2\) and \(b_2\) are trivial in the fundamental group of \(X\) as well. This proves that \(X\) is simply connected.

Lemma 5.2 \(c_1^2(X) = 12, \sigma(X) = -4\) and \(\chi_h(X) = 2\).

Proof We have \(c_1^2(X) = c_1^2(X_K) + c_1^2(T^2 \times S^2 \# 4\mathbb{CP}^2) + 8, \sigma(X) = \sigma(X_K) + \sigma(T^2 \times S^2 \# 4\mathbb{CP}^2)\) and \(\chi_h(X) = \chi_h(X_K) + \chi_h(T^2 \times S^2 \# 4\mathbb{CP}^2) + 1\). Since \(c_1^2(X_K) = 8, \sigma(X_K) = 0\) and \(\chi_h(X_K) = 1\), the result follows from Lemma 3.3 and Lemma 4.1.
By Freedman’s theorem [6], Lemma 5.1 and Lemma 5.2, X is homeomorphic to $3\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$. It follows from Taubes Theorem 2.1 that $SW_X(K_X) = \pm 1$. Next we apply the connected sum theorem for the Seiberg–Witten invariant and show that SW function is trivial for $3\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$. Since the Seiberg–Witten invariants are diffeomorphism invariants, we conclude that X is not diffeomorphic to $3\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$. Notice that case (i) of Theorem 3.4 does not apply and X_K is a minimal symplectic manifold. Thus, we can conclude that X is minimal. Since symplectic minimality implies irreducibility for simply-connected 4–manifolds with $b_2^+ > 1$ (Kotschick [9]), it follows that X is also smoothly irreducible.

6 Construction of an exotic symplectic $\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$

In this section, we construct a simply-connected minimal symplectic 4–manifold Y homeomorphic but not diffeomorphic to $\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$. Using Usher’s Theorem [21], we will distinguish Y from $\mathbb{CP}^2\#5\overline{\mathbb{CP}}^2$.

The manifold Y will be the symplectic fiber sum of Y_K and $T^2 \times S^2 \#4\overline{\mathbb{CP}}^2$ along the genus two surfaces Σ_2 and Σ'_2. Let us choose the gluing diffeomorphism $\varphi: \Sigma_2 \times S^1 \to \Sigma'_2 \times S^1$ that maps the generators $a^{-1}b, b^{-1}aba^{-1}, d, y$ and μ of $\pi_1(Y_K \setminus \nu \Sigma_2)$ to the generators a_1, b_1, a_2, b_2 and μ' of $\pi_1(Z \setminus \nu \Sigma'_2)$ according to the following rule:

$$\varphi^*(a^{-1}b) = a_2, \quad \varphi^*(b^{-1}aba^{-1}) = b_2, \quad \varphi^*(d) = a_1, \quad \varphi^*(y) = b_1, \quad \varphi^*(\mu) = \mu'.$$

Here, μ and μ' denote the meridians of Σ and Σ'_2.

Again, by Gompf’s theorem [7], $Y = Y_K\#_q(T^2 \times S^2 \#4\overline{\mathbb{CP}}^2)$ is symplectic.

Lemma 6.1 Y is simply connected.

Proof By Van Kampen’s theorem, we have

$$\pi_1(Y) = \frac{\pi_1(Y_K \setminus \nu \Sigma_2) \ast \pi_1(Z \setminus \nu \Sigma'_2)}{(a^{-1}b = a_2, \ b^{-1}aba^{-1} = b_2, \ d = a_1, \ y = b_1, \ \lambda = 1)}.$$

The following set of relations hold in $\pi_1(Y)$.

(9) \hspace{1cm} a = bd, \\
(10) \hspace{1cm} yb = by, \\
(11) \hspace{1cm} aba = bab, \\
(12) \hspace{1cm} yab = ba.$
Using the same argument as in proof of Lemma 5.1, we have \(a = b = x = d = y = 1 \). Thus \(\pi_1(Y) = 0 \). \(\square \)

Lemma 6.2 \(c_1^2(Y) = 4 \), \(\sigma(Y) = -4 \) and \(\chi_h(Y) = 1 \).

Proof We have \(c_1^2(Y) = c_1^2(Y_K) + c_1^2(T^2 \times S^2 \# 4\mathbb{CP}^2) + 8 \), \(\sigma(Y) = \sigma(Y_K) + \sigma(T^2 \times S^2 \# 4\mathbb{CP}^2) \) and \(\chi_h(Y) = \chi_h(Y_K) + \chi_h(T^2 \times S^2 \# 4\mathbb{CP}^2) + 1 \). Since \(c_1^2(Y_K) = 0 \), \(\sigma(Y_K) = 0 \) and \(\chi_h(Y_K) = 0 \), the result follows from Lemma 3.3 and Lemma 4.1. \(\square \)

By Freedman’s classification theorem [6], Lemma 6.1 and Lemma 6.2 above, \(Y \) is homeomorphic to \(\mathbb{CP}^2 \# 5 \mathbb{CP}^2 \). Notice that \(Y \) is a fiber sum of the non-minimal manifold \(Z = T^2 \times S^2 \# 4\mathbb{CP}^2 \) with the minimal manifold \(Y_K \). All 4 exceptional spheres \(E_1 \), \(E_2 \), \(E_3 \) and \(E_4 \) in \(Z \) meet with the genus two fiber \(2T + S - E_1 - E_2 - E_3 - E_4 \). Also, any embedded symplectic \(-1\) sphere in \(T^2 \times S^2 \# 4\mathbb{CP}^2 \) is of the form \(mS \pm E_i \), thus intersect non-trivially with the fiber class \(2T + S - E_1 - E_2 - E_3 - E_4 \). It follows from Theorem 3.4 that \(Y \) is a minimal symplectic manifold. Since symplectic minimality implies irreducibility for simply-connected 4–manifolds for \(b^+ = 1 \) [8], it follows that \(Y \) is also smoothly irreducible. We conclude that \(Y \) is not diffeomorphic to \(\mathbb{CP}^2 \# 5 \mathbb{CP}^2 \).

Remark Alternatively, one can apply the concept of symplectic Kodaira dimension to prove the exoticness of \(X \) and \(Y \). We refer the reader to the articles by Li and Yau [10] and Usher [22] for a detailed treatment of how the Kodaira dimension behaves under the symplectic fiber sum.

References

Algebraic & Geometric Topology, Volume 8 (2008)
Small exotic 4–manifolds

[22] M Usher, Kodaira dimension and Symplectic Sums, to appear in Commentarii Mathematici Helvetici

Anar Akhmedov

Mathematics Department, Columbia University, New York, NY 10027, USA
anar@math.columbia.edu

Received: 12 March 2007 Revised: 7 July 2008