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The homology of the stable nonorientable
mapping class group

OSCAR RANDAL-WILLIAMS

Combining results of Wahl, Galatius–Madsen–Tillmann–Weiss and Korkmaz, one
can identify the homotopy type of the classifying space of the stable nonorientable
mapping class group N1 (after plus-construction). At odd primes p , the Fp –
homology coincides with that of Q0.H P1C / , but at the prime 2 the result is less
clear. We identify the F2 –homology as a Hopf algebra in terms of the homology of
well-known spaces. As an application we tabulate the integral stable homology of
N1 in degrees up to six.

As in the oriented case, not all of these cohomology classes have a geometric in-
terpretation. We determine a polynomial subalgebra of H�.N1IF2/ consisting of
geometrically-defined characteristic classes.

57R20, 55P47; 55S12, 55T20

1 Introduction

The mapping class groups Ng of nonorientable surfaces are not as widely studied as
their counterparts for oriented surfaces, but with Wahl’s proof [16] of homological
stability for these groups, one can apply the machinery of Madsen and Weiss [12] used
to prove the Mumford conjecture or its more concise variant by Galatius, Madsen,
Tillman and Weiss [8] to study their stable homology. Together these results show that
the homology of N1 coincides with that of a component of an infinite loop space,
�1

0
MTO.2/, which we define in Section 2.2.

Inspired by Galatius’ calculation [7] of the homology of the stable oriented mapping
class group �1 , we calculate the mod 2 homology of the stable nonorientable mapping
class group N1 . The odd-primary homology is much simpler: it coincides with that
of Q0.HP1C / and is discussed in Section 5.1. Here Q.X / WD colim�n†nX denotes
the free infinite loop space on the space X , the subscript 0 denotes the connected
component of the constant loop and the subscript C denotes the addition of a disjoint
basepoint. The homology H�.Q.X /IFp/ is completely known by Cohen, Lada and
May [4] as a functor of H�.X IFp/.
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1812 Oscar Randal-Williams

We adopt the convention that all (co)homology groups are with F2 coefficients unless
otherwise stated. Our main theorems give a determination of the F2 –homology of
�1

0
MTO.2/ as a Hopf algebra:

Theorem A There is an exact sequence of Hopf algebras

F2 �!H�.�
1
0 MTO.1//

x!�
�!H�.Q0.BO1C//

x@�
�!H�.Q0.S

0// �! F2

which is split as algebras.

Theorem B There is an exact sequence of Hopf algebras

F2 �!H�.�
1
0 MTO.2//

!�
�!H�.Q0.BO2C//

@�
�!H�.�

1
0 MTO.1// �! F2

which is split as algebras.

We also give formulae for the maps x@� and @� . Although these theorems determine
the required homology groups, they do not do so in a very explicit manner. Thus we
tabulate the first six (co)homology groups:

Degree i 1 2 3 4 5 6

Rank QHi.�
1
0

MTO.2/IF2/ 1 2 3 3 5 6

Rank Hi.�
1
0

MTO.2/IF2/ 1 3 6 12 23 45

Hi.�
1
0

MTO.2/IZ/ Z2 Z2
2

Z3
2
˚Z12 Z7

2
˚Z Z16

2
Z29

2

H i.�1
0

MTO.2/IZ/ 0 Z2 Z2
2

Z3
2
˚Z12˚Z Z7

2
Z16

2

The integral homology can be calculated via the Bockstein spectral sequence. Only the
primes 2 and 3 appear in this range: for the prime 3 the homology coincides with that of
Q.H P1C / and the Bockstein spectral sequence can be calculated from the known one
for H P1 , which is degenerate from the first page. For the prime 2 we compare the
Bockstein spectral sequence for Q.BO2C/ with the representing elements for classes
belonging to �1

0
MTO.2/. We find that it degenerates at the E3 page, giving the

claimed homology groups.

We also study a family of mod 2 characteristic classes of surface bundles, �i , defined
as follows. For a surface bundle F �!E

�
�!B there is an associated vector bundle

V of first real cohomologies, with fibre H 1.FbIR/ over b 2 B . We can define

�i.E/ WD wi.V / 2H i.BIF2/
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The homology of the stable nonorientable mapping class group 1813

the i –th Stiefel–Whitney class of V . The main theorem is that these are stably indepen-
dent for the nonorientable mapping class groups, so account for one indecomposable
generator of the cohomology of BN1 in each dimension.

Theorem C In the nonorientable mapping class groups, the map

F2Œ�1; �2; �3; :::� �!H�.BNgIF2/

is an injection in the stable range � � .g� 3/=4.

Acknowledgements I gratefully acknowledge the support of an EPSRC Studentship,
DTA grant number EP/P502667/1. I would like to thank the anonymous referee for
their many helpful comments and suggestions.

2 Recollections

2.1 Homological stability

Write Ng;b for the nonorientable surface consisting of the connected sum of g copies
of RP2 with b discs removed. We call g the genus of the surface, and b the number of
boundary components, which we suppress in notation if it is 0. The mapping class group
of Ng;b is the group of components of the topological group of self-diffeomorphisms
that fix the boundary pointwise

Ng;b WD �0.Diff.Ng;b; @Ng;b//:

As long as b � 1 there are two stabilisation maps between these groups, obtained by
gluing either a N1;2 or a N0;3 to a boundary component and extending diffeomorphisms
by the identity to the new surface

˛W Ng;b �!NgC1;b

ˇW Ng;b �!Ng;bC1

and ˇ has a left inverse obtained by gluing a disc over a boundary component

ıW Ng;bC1 �!Ng;b:

We quote below the theorem of Wahl on the effect on these maps on group homology.

Theorem 2.1 (Theorem A of [16]) For b � 1, on homology:

(1) ˛ gives a surjection in degrees � � g=4 and an isomorphism in degrees � �
.g� 3/=4.
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(2) ˇ gives an isomorphism in degrees � � .g� 3/=4.

(3) ı gives a surjection in degrees � � .g � 1/=4 and an isomorphism in degrees
� � .g� 5/=4.

We will say “the stable range” to indicate the range � � .g� 3/=4 in which ˛ induces
an isomorphism.

2.2 The homotopy type of the stable nonorientable mapping class group

Once we have homological stability for Ng , the machinery of Galatius, Madsen,
Tillmann and Weiss [8] identifies the stable homology of these groups.

In order to describe the result we must first introduce the spectrum MTO.2/. Let
U?n �! Gr2.R

nC2/ be the n–dimensional complement to the tautological 2–plane
bundle U2 . The inclusion Gr2.R

nC2/�!Gr2.R
nC1C2/ pulls back U?

nC1
to �1˚U?n ,

so there is an induced map on Thom spaces

Th.�1
˚U?n /Š S1

^Th.U?n / �! Th.U?nC1/:

This defines the spectrum MTO.2/ with .nC 2/–nd space Th.U?n /. It is not hard to
check that �0.MTO.2//ŠZ, using the cofibre sequences of spectra ((2–2) and (2–1))
in the next section.

Let Ng �!E �! B be a smooth fibre bundle with fibre Ng a nonorientable surface
of genus g . There is an embedding of E in RnC2 � B over B , with a tubular
neighbourhood homeomorphic to NvE , the vertical normal bundle of E . A Pontrjagin–
Thom collapse gives a map

SnC2
^BC �! Th.NvE/

and the vertical normal bundle can be classified by a map f W E �!G2.R
nC2/ such

that f �U?n Š NvE . Thus f �U2 is TvE , the vertical tangent bundle. Composing
with the classifying map we have a map

SnC2
^BC �! Th.U?n /

with adjoint B �! �nC2 Th.U?n /. Following this with the stabilisation map to
�1MTO.2/ defines the Madsen–Tillmann map

˛E W B �!�1MTO.2/:

Applying this to the universal Fg bundle over BNg gives

˛gW BNg �!�1MTO.2/

Algebraic & Geometric Topology, Volume 8 (2008)
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and similarly ˛1 . The source spaces are connected and so land in a single component:
it is not hard to see that it is the component of the Euler characteristic �.Ng/. However
all components of an infinite loop space are homotopy equivalent, so we can translate
so that the maps ˛E always land in the 0 component of �1MTO.2/. Together,
Theorem B of [16] and Section 7 of [8] assert that the map

˛1W BN1 �!�10 MTO.2/

is a homology equivalence.

One can immediately upgrade this theorem: Korkmaz [9] proves that for g � 7 the
index 2 normal subgroup of Ng generated by Dehn twists is perfect, and that the first
group homology in this range is Z=2, so this subgroup is the maximal perfect subgroup.
There is then a map

˛C1W BNC1 �!�10 MTO.2/

from the plus-construction with respect to this maximal perfect subgroup (obtained by
extending ˛1 to the plus-construction, as the map has target an infinite loop space). This
is still a homology isomorphism, and �1.�

1
0

MTO.2//ŠH1.�
1
0

MTO.2//Š Z=2
so it is also a �1 –isomorphism, so a homotopy equivalence.

The rational cohomology of �1
0

MTO.2/ is not hard to determine: it is a polynomial
algebra on the reductions of certain integral classes �i 2H 4i.�1

0
MTO.2/IZ/. The

author and J Ebert [6] have studied the divisibility of these classes in the integral
cohomology of the stable nonorientable mapping class group: they are indivisible.

2.3 The spectra MTX.d/ and tools from stable homotopy theory

There are two less well-known spectra appearing in this paper, all of the form MTO.d/.
The first is MTO.2/ and has been introduced in the last section. The second is
MTO.1/1 which is constructed in the same way using the unoriented Grassmannians
Gr1.R

nC1/. A full description of these spectra is available in [8]. We collect here
some of their properties.

For a spectrum ED fEng the associated infinite loop space is

�1E WD hocolim�nEn

where the homotopy colimit, or mapping telescope, is taken using the adjoints En �!

�EnC1 of the structure maps. This construction sends cofibre sequences of spectra to

1This spectrum is also known in homotopy theory as RP1
�1

, though we do not use this notation.
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fibre sequences of infinite loop spaces. By [8] there are cofibre sequences of spectra

MTO.2/
!
�!†1BO2C

@
�!MTO.1/(2–1)

MTO.1/
x!
�!†1BO1C

x@
�!†1S0(2–2)

and so fibre sequences of associated infinite loop spaces. It should be noted that
�0.MTO.1//D 0, but we will still write �1

0
MTO.1/ to remind the reader that this

space is connected.

The evaluation maps †n�nEn �!En give maps on reduced homology

zH�.�
nEn/Š zH�Cn.†

n�nEn/ �! zH�Cn.En/

and taking direct limits on both sides gives a map

��W zH�.�
1E/ �!H

spec
� .E/

to the spectrum homology of E. This is known as the homology suspension. There is
an analogous cohomology suspension

��W H�spec.E/ �! zH�.�1E/:

If E is the suspension spectrum of a based space X , then H
spec
� .E/Š zH�.X / and the

inclusion
i�W zH�.X / �! zH�.Q.X //D zH�.�

1E/

gives a right inverse for �� . Similarly for the cohomology suspension.

For a proper smooth fibre bundle pW E �! X with fibre F (in other words, F is a
compact smooth manifold without boundary), there is a stable map trfpW †1XC �!

†1EC the Becker–Gottlieb transfer. There is a simple description in the case that the
base X is compact: then there is an embedding of E into X �Rn over X , for some
n. Choose a tubular neighbourhood U of E in X �Rn , which is diffeomorphic to the
normal bundle of E in X �Rn . Restricted to a fibre Fx embedded in Rn this bundle
is simply the normal bundle, so the direct sum with the vertical tangent bundle TvE is
trivial. Thus we write �TvE for the bundle diffeomorphic to U . A Pontrjagin–Thom
collapse map gives the pretransfer

prtW †n.XC/ �! UC Š Th.�TvE/:

The inclusion map �TvE�!TvE˚�TvE is proper, so on one-point compactification
gives the inclusion

incW Th.�TvE/ �!†n.EC/:
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The Becker–Gottlieb transfer is the composition inc ı prtW †n.XC/�!†n.EC/, or its
extension to suspension spectra. If the base X is not compact but admits an exhaustion
by compact subspaces, then one has a similar definition. In this case one only obtains
a map on suspension spectra.

We gather below some results on the Becker–Gottlieb transfer.

Lemma 2.2 [1; 3, Equation (2.3), page 137] Let p be a fibre bundle as above. The
composition of the induced maps in cohomology trf�p ıp

� is multiplication by �.F /,
the Euler characteristic of the fibre. Furthermore, if qW zE �! E is another smooth
proper fibre bundle, then p ı qW zE �! X is also a smooth proper fibre bundle and
trfpıq and trfp ı trfq are homotopic.

If E is oriented then the effect of the transfer on cohomology is given by

(2–3) trf�p.x/D p!.x � e.TvE//

where p! is the Gysin or fibre-integration map corresponding to p , and e.TvE/ is the
Euler class of the vertical tangent bundle.

2.4 Universal definition of characteristic classes

If c 2H i.BO2IR/ is a characteristic class of unoriented 2–plane bundles we can define
a characteristic class of unoriented surface bundles: let E

�
�!B be a surface bundle

then �c.E/ WD trf��.c.TvE// 2 H i.BIR/ is a characteristic class, by the naturality
properties of the transfer. Classes that arise in this manner have a good interpretation
in terms of the spectrum MTO.2/.

Definition 2.3 Define a cohomology class x�c in �1
0

MTO.2/ by the image of c

under

H�.BO2IR/
��

�!H�.Q0.BO2C/IR/
!�

�!H�.�10 MTO.2/IR/:

Theorem 2.4 If ˛E W B �!�1
0

MTO.2/ is the Madsen–Tillmann map for a surface
bundle E

�
�!B then ˛�

E
.x�c/D �c.E/. Thus the x�c are universal characteristic classes,

in the sense that they do not depend on the genus of the fibre of � .
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Proof Let T W E!BO2 classify TvE , and �W Th.�TvE/�!MTO.2/ be given by
the maps classifying each vertical normal bundle. Then the diagram below commutes.

†1EC
†1T- †1BO2C

Th.�TvE/

inc
6

� - MTO.2/

!
6

†1BC

prt
6 ˛]

.......
.......

.......
.....-

By definition �c D trf�.c.TvE//, and so it is also given by .˛]/�!�.c/. We wish
to identify �c via maps of spaces. Note that the adjoint of ˛] is the map ˛E . The
following diagram commutes by the naturality of the cohomology suspension.

H�spec.†
1BC/ D H�.B/

H�spec.MTO.2//

.˛]/�
6

��- H�.�1MTO.2//

˛�
E

6

H�spec.†
1BO2C/

!
6

��- H�.Q.BO2C//

�1!�
6

Thus �c D ˛
�
E
.�1!/���.c/D ˛�

E
.x�c/.

Example 2.5 The powers of the first Pontrjagin class pi
1
2 H 4i.BO2IZ/ give the

characteristic classes �i defined by Wahl [16].

Example 2.6 The Stiefel–Whitney classes wi
1
w

j
2
2 H iC2j .BO2IF2/ define char-

acteristic classes �i;j . Even the classes �i;0 are difficult to analyse. They satisfy
relations �2

i;0
D �2i;0 , as the cohomology suspension �� commutes with Steenrod

squares, but the algebraic dependence between the odd classes �2iC1;0 is not known.

Example 2.7 The same result is true in the oriented case, with BO2 replaced by
BSO2 . Here the powers of the first Chern class ci

1
2H 2i.BSO2IZ/ define integral

characteristic classes �i which in the oriented mapping class groups give the Miller–
Morita–Mumford classes.

2.5 Hopf algebras

We will make much use of the structure of Hopf algebras over a field F . Let us fix
notation, which coincides with that of the classic reference on Hopf algebras of Milnor
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and Moore [14]. Recall that an abelian Hopf algebra is one that is commutative and
cocommutative. All Hopf algebras appearing in this paper are homology groups of
infinite loop spaces and as such are abelian. We write  W X �! X ˝ X for the
coproduct of a coalgebra X , and  Y W Y �! X ˝Y for the coaction of the coalgebra
X on a right comodule Y .

For a coalgebra A, a left A–comodule B and a right A–comodule C , the cotensor
product B�AC is defined as the kernel of

B˝C
 B˝idC � idB˝ C
�������������! B˝A˝C:

In general B�AC is just a vector space, but if A is cocommutative then it is again an
A–comodule.

The Hopf algebra kernel and cokernel of a map f W A �! B of Hopf algebras are
Annf WD A�BF and B==f WD B ˝A F respectively. When A and B are abelian,
kernels and cokernels are again (abelian) Hopf algebras. We will write PA and QA

for the vector spaces of primitive and indecomposable elements respectively.

We will make use of two corollaries of Borel’s structure theorem for finite-type abelian
Hopf algebras over a perfect field [14, Theorem 7.11].

Lemma 2.8 Firstly, a Hopf subalgebra of a polynomial algebra is again polynomial.
Secondly, if f W A �! B is an injective homomorphism of Hopf algebras, then B is a
free A–module. Dually, if f is surjective then A is a free B –comodule.

2.6 The Eilenberg–Moore spectral sequence

In this section all homology is with coefficients in some field F . For a fibration
sequence F �!E

�
�!B of connected spaces, the Eilenberg–Moore spectral sequence

is
E2

p;q D CotorH�.B/
p;q .H�.E/;F /)HpCq.F /

where the subscript on Cotor denotes the degree q part of the p–th derived functor of
��H�.B/F . The H�.B/–comodule structure on H�.E/ is induced by the map �� .
The usual requirement for convergence is that B be simply connected, but we will use
the exotic convergence of [5]: base spaces will have Z=2 as fundamental group, which
always acts nilpotently on any finitely-generated F2 –homology group.

When the fibration is one of connected components of infinite loop spaces,

�10 F �!�10 E
�
�!�10 B

Algebraic & Geometric Topology, Volume 8 (2008)
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coming from a cofibre sequence of finite-type spectra, all the F –homology groups are
finite-type abelian Hopf algebras over F . Suppose that some condition guaranteeing the
convergence of the Eilenberg–Moore spectral sequence holds. If ��W H�.�10 EIF /�!
H�.�

1
0

BIF / is surjective then Lemma 2.8 implies that H�.�
1
0

EIF / is a free
H�.�

1
0

BIF /–comodule. Thus the E2 –term of the Eilenberg–Moore spectral se-
quence is

Cotor
H�.�

1
0

BIF /
p;q .H�.�

1
0 EIF /;F /DH�.�

1
0 EIF /�H�.�

1
0

BIF /F

DH�.�
1
0 EIF /nn��

concentrated in the line p D 0, so the spectral sequence collapses. Thus

F �!H�.�
1
0 FIF / �!H�.�

1
0 EIF /

��
�!H�.�

1
0 BIF / �! F

is a short exact sequence of Hopf algebras.

2.7 Araki–Kudo operations and the homology of Q.YC/

An infinite loop space X has a rich structure on its F2 –homology. Firstly the H-space
structure gives the homology the structure of a Hopf algebra, with the Pontrjagin
product denoted �. Secondly there are Araki–Kudo operations [10]: these are a family
of homomorphisms

Qs
W Hi.X IF2/ �!HiCs.X IF2/

that are natural for maps of infinite loop spaces. These have formal properties similar
to the Steenrod squares: a Cartan formula and Adém relations. The reference is Cohen,
Lada and May [4], and we will use many properties of these operations. We recall some
elementary notions. The sequence I D .s1; :::; sk/ is called admissible if si � 2siC1

for all i . The excess of such a sequence is the integer e.I/ WD s1�
Pk

iD2 si . The length
of I is l.I/ WD k . The degree of I is d.I/ WD

P
i si . We write QI DQs1 � � �Qsk .

We write R for the algebra of all operations, and call it the Dyer–Lashof algebra.

For a space Y , the F2 –homology of Q.YC/ has a (non functorial) description as
follows. Let B be a homogenous basis for H�.Y IF2/. Then the F2 –homology of
Q.YC/ is the polynomial algebra on the set

fQI .x/ j x 2 B; I admissible; e.I/ > jxjg:

If the space Y is connected, �0.Q.YC//ŠZ and we write Œn� for the image of n2�0

in H0.Q.YC//. The F2 –homology of the 0 component Q0.YC/ is then the polynomial
algebra on the set

fQI .x/� Œ�2l.I /� j x 2 B; I admissible; e.I/ > jxj; jQI .x/j> 0g:

Algebraic & Geometric Topology, Volume 8 (2008)



The homology of the stable nonorientable mapping class group 1821

3 Mod 2 homology of �1

0
MTO.1/

It is clear that the map
x@W Q0.BO1C/ �!Q0.S

0/

is the transfer for the double covering EO1 �! BO1 , t W Q.BO1C/ �!Q.S0/. The
effect of this map on homology has been calculated by Mann, Miller and Miller [13]:

Lemma 3.1 Let ei 2 Hi.BO1IF2/ be the unique nontrivial class. Then t�.ei/ D

Qi.Œ1�/.

Corollary 3.2 Thus the map x@W Q0.BO1C/ �!Q0.S
0/ on homology is

x@�.ei � Œ�1�/DQi.Œ1�/� Œ�2�

so is surjective, as these elements generate H�.Q0.S
0// over the Dyer–Lashof algebra.

Proof of Theorem A The Eilenberg–Moore spectral sequence for the fibration

�10 MTO.1/ �!Q0.BO1C/
x@
�!Q0.S

0/

converges to H�.�
1
0

MTO.1// as the base space has fundamental group Z=2. By
Corollary 3.2, x@� is surjective, so by the discussion in Section 2.6 we obtain the short
exact sequence of Hopf algebras.

Finally, H�.Q0.S
0// is a free algebra so the sequence splits as algebras.

Remark 3.3 If I is some sequence, QI is an Araki–Kudo operation and one can
iteratively apply Adém relations to write it as a linear combination of QJ with J

admissible. We write QI D
P

J �
I
J

QJ where the � are the coefficients needed to
express QI as admissible monomials. We adopt the convention that we sum over all
J , and that �I

J
D 0 if J is not admissible. Adém relations decrease excess, so �I

J
D 0

if e.J / > e.I/ also.

For a sequence I and an integer i such that I is admissible, e.I/ > i and .I; i/ is
not admissible, there is an element vI;i in QH�.Q0.BO1C// given by

vI;i
WDQI .ei/� Œ�21Cl.I /�C

X
J ;j

�
I;i
J ;j

QJ .ej /� Œ�21Cl.J /�

where the sum is over all sequences .J; j /. This clearly lies in the kernel of Q.x@�/.
We adopt the convention that vI;i is also defined for .I; i/ admissible, and is 0. This
is the natural extension, as QI Qi is already written in terms of admissibles.
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Theorem 3.4 The Hopf algebra H�.�
1
0

MTO.1/IF2/ is polynomial on a set

fV I;i
j I admissible; e.I/ > i; .I; i/ not admissibleg

where x!�.V I;i/D vI;i modulo decomposables.

Proof It is now clear that H�.�
1
0

MTO.1// is a polynomial algebra, as for Hopf
algebras over F2 a Hopf subalgebra of a polynomial algebra is again polynomial. Fur-
thermore as the sequence splits as algebras there is an exact sequence of indecomposable
quotients

0 �!QH�.�
1
0 MTO.1//

Q.x!�/
����!QH�.Q0.BO1C//

Q.x@�/
����!QH�.Q0.S

0// �! 0:

The elements vI;i described earlier are indecomposable and lie in the kernel of Q.x@�/.
Thus there are polynomial generators V I;i such that Q.x!�/.V

I;i/D vI;i . The theorem
follows from the following Lemma.

Lemma 3.5 The vI;i form an additive basis of Ker.Q.x@�//.

Proof Let v D
P
�I;iQ

I .ei/ � Œ�21Cl.I /� be an element in the kernel of Q.x@�/.
Then

0D x@�.v/D
X
I;i

�I;iQ
I Qi.Œ1�/� Œ�21Cl.I /�

D

X
I;i

�I;i

X
J ;j

�
I;i
J ;j

QJ Qj .Œ1�/� Œ�21Cl.J /�

D

X
J ;j

�X
I;i

�I;i�
I;i
J ;j

�
QJ Qj .Œ1�/� Œ�21Cl.J /�:

so
P

I;i �I;i�
I;i
J ;j
D 0 for each .J; j / admissible and of positive excess. Now consider

v�
X
I;i

�I;iv
I;i
D

X
I;i

�I;i

�X
J ;j

�
I;i
J ;j

QJ .ej /

�
� Œ�21Cl.J /�

D

X
J ;j

�X
I;i

�I;i�
I;i
J ;j

�
QJ .ej /� Œ�21Cl.J /�

D 0:

So the vI;i span the kernel of the map Q.x@�/.
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Now let
P

I;i �I;iv
I;i D 0, soX

�I;iQ
I .ei/� Œ�21Cl.I /�D

X
I;i

�I;i

X
J ;j

�
I;i
J ;j

QJ .ej /� Œ�21Cl.J /�

D

X
J ;j

�X
I;i

�I;i�
I;i
J ;j

�
QJ .ej /� Œ�21Cl.J /�:

If .I; i/ is not admissible then QI .ei/� Œ�21Cl.I /� does not appear on the right hand
side, so �I;i D 0. So all the coefficients are 0 and the vI;i are linearly independent.

It will also be important later to understand the action of the Araki–Kudo operations
on the polynomial generators vI;i and V I;i .

Theorem 3.6 If .l; I/ is an admissible sequence then in QH�.Q0.BO2C//

Ql.vI;i/D v.l;I /;i C
X

j ;J ;J 0

�
I;i
J ;j
�

l;J
J 0
vJ 0;j

and the same formula holds for V I;i in QH�.�
1
0

MTO.1//. Furthermore, if �I;i
J ;j
¤ 0

then j > i .

Proof Firstly we analyse the effect of Ql on vI;i � Œ21Cl.I /�.

Ql.vI;i
� Œ21Cl.I /�/DQlQI .ei/C

X
J ;j

�
I;i
J ;j

QlQJ .ej /

DQ.l;I /.ei/C
X
J ;j

�
I;i
J ;j

X
J 0

�
l;J
J 0

QJ 0.ej /:

Note that this element is in the kernel of x@� , as vI;i is and x@� commutes with Araki–
Kudo operations and the Pontrjagin product. Thus

0DQ.l;I /Qi.Œ1�/C
X

J 0;J ;j

�
I;i
J ;j
�

l;J
J 0

QJ 0Qj .Œ1�/

DQ.l;I;i/.Œ1�/C
X

J 00;J 0;J ;j

�
I;i
J ;j
�

l;J
J 0
�

J 0;j
J 00

QJ 00.Œ1�/

and the terms in the summation are all admissible. Thus this is the unique way to
express Q.l;I;i/ in terms of admissible operations, so

�
l;I;i
J 00
D

X
J 0;J ;j

�
I;i
J ;j
�

l;J
J 0
�

J 0;j
J 00

:
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Secondly we analyse the expression for v.l;I /;i � Œ22Cl.I /�.

v.l;I /;i � Œ22Cl.I /�DQ.l;I /.ei/C
X

J 000;j 0

�
l;I;i
J 000;j 0

QJ 000.ej 0/

DQ.l;I /.ei/C
X

J 000;j 0

� X
J 0;J ;j

�
I;i
J ;j
�

l;J
J 0
�

J 0;j
J 000;j 0

�
QJ 000.ej 0/

DQ.l;I /.ei/C
X

J 0;J ;j

�
I;i
J ;j
�

l;J
J 0

� X
J 000;j 0

�
J 0;j
J 000;j 0

QJ 000.ej 0/

�
DQ.l;I /.ei/C

X
J 0;J ;j

�
I;i
J ;j
�

l;J
J 0

�
vJ 0;j

� Œ21Cl.J 0/�CQJ 0.ej /
�

DQ.l;I /.ei/C
X
J ;j

�
I;i
J ;j

Q.l;J /.ej /

C

X
J 0;J ;j

�
I;i
J ;j
�

l;J
J 0
vJ 0;j

� Œ21Cl.J 0/�

DQl.vI;i
� Œ21Cl.I /�/C

X
J 0;J ;j

�
I;i
J ;j
�

l;J
J 0
vJ 0;j

� Œ21Cl.J 0/�:

Then Ql.vI;i � Œ21Cl.I /�/DQl.vI;i/� Œ22Cl.I /� modulo decomposables, so the result
follows after translating back to the 0 component, as l.J 0/D l.I/C 1.

Finally, as .I; i/ is not admissible but I is, to write Q.I;i/ as admissibles an Adém
relation must be applied involving the last term Qi . Applying an Adém relation to
QaQb gives monomials QAQB with B strictly larger than b , so if �I;i

J ;j
¤ 0 then

j > i .

4 The map @ on homology

We wish to study the composition

Q.BO2C/
@
�!�1MTO.1/

x!
�!Q.BO1C/

and as @ is the pretransfer for the circle bundle S1 �!BO1 �!BO2 , it then follows
that x! ı @ is the transfer for this bundle.

Remark 4.1 In general there are fibre bundles Sn�1 �! S.
n/
�
�! BOn and a map

f W S.
n/ �! BOn�1 classifying the vertical tangent bundle. Then the composition

Q.BOnC/
trf�
�!Q.S.
n/C/

f
�!Q.BOn�1C/
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coincides with the composition

Q.BOnC/
@
�!�1MTO.n� 1/

!
�!Q.BOn�1C/

of maps occurring in the analogs of the fibrations (2–1) and (2–2).

To evaluate this transfer we will use the technique of Brumfiel and Madsen [3] of
reducing it to a transfer for a finite-sheeted cover. Thus we must find a nondegenerate
vector field on the fibre that is equivariant for the action of the structure group. We
can not do this directly as S1 does not admit any O2 –invariant nondegenerate vector
fields, so instead we consider the pullback bundle via d W BO1 �BO1 �! BO2 , the
map classifying 
1 � 
1 ,

S1
�! S.
1 � 
1/ �! BO1 �BO1:

There is a nondegenerate O1 �O1 –invariant vector field on S1 . It has 4 singular
points split into two orbits of two each, having opposite indices. Thus the singular
locus † � S.
1 � 
1/ is simply EO1 �BO1

`
BO1 �EO1 . We can thus compute

the transfer for this bundle in terms of the transfer map t of Section 3.

Proposition 4.2 The composition BO1 �BO1
d
�!BO2

T
�!Q.BO1C/ is homotopic

to

BO1 �BO1
�
�! BO1 �BO1 �BO1 �BO1

.t^id/�.id^t/
���������!Q2.EO1 �BO1C/�Q2.BO1 �EO1C/

id��
���!Q2.BO1C/�Q�2.BO1C/

�
�!Q0.BO1C/:

Proof This is an elementary application of Theorem 2.10 of [3]. We are aware that
there has been a correction to this paper in [11], but our indices are very simple and
there is no difference.

We can now effectively identify the map @� . The map d� is surjective and we proved
in the last section that x!� is injective, so the map T� ı d� determines @� .

Theorem 4.3 The composition

H�.BO1 �BO1/
d�
�!H�.BO2/ �!H�.Q1.BO2C//

x!�@�
���!H�.Q0.BO1C//
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is given by

ei ˝ ej 7!

iX
aD0

jX
bD0

bX
sD0

aX
tD0

�
b� s

s

��
a� t

t

�
Qi�aCs.eb�s/��

�
Qj�bCt .ea�t /

�
which modulo decomposables is

jX
sD0

�
j � s

s

�
QiCs.ej�s/� Œ�2�C

iX
tD0

�
i � t

t

�
QjCt .ei�t /� Œ�2�:

Proof Applying the description of the composition from the previous proposition
gives

ei ˝ ej 7!

iX
aD0

jX
bD0

�
Qi�a.Œ1�/^ eb

�
��

�
ea ^Qj�b.Œ1�/

�
:

We then use the following formulae from [4] for evaluating the smash product on
homology:

.a� b/^ c D
X

.a^ c0/� .b ^ c00/ when ��.c/D
X

c0˝ c00

Qi.x/^y D
X

QiCt .x ^Sqt
�.y//:

Qi�a.Œ1�/^ eb D

bX
sD0

Qi�aCs.Œ1�^Sqs
�.eb//So

which can be expressed as

bX
sD0

�
b� s

s

�
Qi�aCs.eb�s/;

as Sqs
�.eb/ D

�
b�s

s

�
eb�s . This gives the first expression. The expression modulo

decomposables follows immediately, using the fact that �.ei/ D ei � Œ�2� modulo
decomposables.

Corollary 4.4 The formula in Theorem 4.3 for the indecomposable part of the image
of ei ˝ ej lies in the kernel of Q.x@�/ and so can be expressed as a linear combination
of the vI;i . This expression is simply

jX
sD0

�
j � s

s

�
viCs;j�s

C

iX
tD0

�
i � t

t

�
vjCt;i�t :

Thus e0˝ ei maps to vi;0 modulo decomposables.
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Proof Similarly to the proof of Lemma 3.5, consider

Q.@�x!�d�/.ei ˝ ej /C

jX
sD0

�
j � s

s

�
viCs;j�s

C

iX
tD0

�
i � t

t

�
vjCt;i�t

which by the definition of the vI;i can be written as

jX
sD0

�
j � s

s

�X
a;b

�
iCs;j�s

a;b
Qa.eb/� Œ�2�C

iX
tD0

�
i � t

t

�X
a;b

�
jCt;i�t

a;b
Qa.eb/� Œ�2�

so the coefficient of Qa.eb/� Œ�2� is

jX
sD0

�
j � s

s

�
�

iCs;j�s

a;b
C

iX
tD0

�
i � t

t

�
�

jCt;i�t

a;b
:

This element lies in the kernel of x@� , and the Qa.eb/ are sent to Q.a;b/.Œ1�/ � Œ�4�

where .a; b/ is admissible. These are linearly independent in the homology of Q0.S
0/

and so all the coefficients are 0. Thus the expression above is identically 0, and the
result follows.

Proposition 4.5 The map Q.@�/W QH�.Q0.BO2C//�!QH�.�
1
0

MTO.1// is sur-
jective.

Proof Define an increasing filtration Gi WD hV a;b j b � i i of G1 WD hV a;b i �

QH�.�
1
0

MTO.1//. The previous corollary implies that G0 is in the image of Q.@�/.
Consider the indecomposable element V i�a;a , so i � a> 2a, and a< i=3. Then

Q.@�d�/.ea˝ ei�a/D

i�aX
sD0

�
i � a� s

s

�
V aCs;i�a�s

C

aX
tD0

�
a� t

t

�
V i�aCt;a�t :

Either 2sC a > i , so s > i � a� s and the binomial coefficient in the first sum is
0, or 2sC a � i . This together with a < i=3 implies that aC s � 2.i � a� s/, so
.aC s; i � a� s/ is admissible and V aCs;i�a�s is 0. Thus the first sum is 0. The
second sum is

V i�a;a
C

aX
tD1

�
a� t

t

�
V i�aCt;a�t

so is V i�a;a modulo Ga�1 . Thus by induction along the filtration G� , G1 D hV a;bi

is in the image of Q.@�/. The map @ is an infinite loop map, so commutes with
Araki–Kudo operations: thus R �G1 is also in the image.
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Now we introduce a new filtration F i WD hV I;j j j � i i of QH�.�
1
0

MTO.1//. This
filtration is decreasing, with F0 the whole vector space, but it has the property that in
any fixed degree n the filtration F�n is has finite length. In particular

Fn
n WD hV

I;j
j j � n; d.I/C j D n i D f0g

as d.I/> 0. We will proceed by induction up the filtration in each degree. By Theorem
3.6, for .l; I/ admissible,

Ql.V I;i/D V .l;I /;i
C

X
j ;J ;J 0

�
I;i
J ;j
�

l;J
J 0

V J 0;j

and for each term in the sum j > i . In particular the sum lies in F iC1 , so Ql.V I;i/D

V .l;I /;i modulo F iC1 . Thus by iterating,

V .I;k/;i
DQI .V k;i/ modulo F iC1

and so F i �R �G1CF iC1 . In degree n, Fn
n D f0g is in the image of Q.@�/, so

by this inclusion Fn�1
n is too, and so on: thus F0

n is in the image. This holds in all
degrees n so F0 is in the image, but this is the entire space QH�.�

1
0

MTO.1//.

5 The homology of �1

0
MTO.2/

Proof of Theorem B We now study the Eilenberg–Moore spectral sequence for the
fibration

�10 MTO.2/ �!Q0.BO2C/
@
�!�10 MTO.1/

noting that �1.�
1
0

MTO.1//ŠZ=2 and so by the discussion in Section 2.6 the spectral
sequence converges to H�.�

1
0

MTO.2//. By Proposition 4.5, @� is surjective, so by
the discussion in Section 2.6 we obtain the short exact sequence of Hopf algebras.

Finally, H�.�
1
0

MTO.1// is a polynomial algebra, so free, so the sequence is split as
algebras.

Corollary 5.1 It now follows that H�.�
1
0

MTO.1/IF2/ is also dual to a polyno-
mial algebra, as H�.�1

0
MTO.1/IF2/ injects into H�.Q0.BO2C/IF2/, which is

polynomial.

5.1 Remarks on integral (co)homology

Write X Œ1
2
� for the ZŒ1

2
�–localisation in spaces or spectra. The spectrum MTO.1/Œ1

2
�

is contractible (this follows immediately from Corollary 6.3 of [16]), so

MTO.2/Œ1
2
�
'
�!†1BO2CŒ

1
2
�
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is an equivalence. There is a zig-zag

BO2 �! BSO3 � BSU2 DHP1

of maps that induce homology equivalences with ZŒ1
2
�–coefficients, so a zig-zag of

homotopy-equivalences after ZŒ1
2
�–localisation. Thus

�1MTO.2/Œ1
2
�'Q.HP1C /Œ

1
2
�

and on homology H�.�
1
0

MTO.2/IZŒ1
2
�/ŠH�.Q0.HP1C /IZŒ

1
2
�/ as Hopf algebras.

The homology of Q0.H P1C / can be completely calculated integrally by piecing
together its Fp homologies, as its Bockstein spectral sequence is a functor of that
of HP1 . This determines the integral homology of �1

0
MTO.2/ except for its 2-

torsion. By Theorem B the map �1
0

MTO.2/ �!Q0.BO2C/ gives an injection on
the E1 pages of their Bockstein spectral sequences, but it is not clear what happens on
subsequent pages.

In the range �� 6 only the primes 2 and 3 contribute. The Bockstein spectral sequence
for Q0.H P1C / at the prime 3 collapses at the E2 page, so the only odd primary
contribution is a Z=3 in degree 3. In this range one can deduce the Bockstein spectral
sequence for �1

0
MTO.2/ at the prime 2, as the map above still gives an injection on

the E2 page, and it collapses at the E3 page. The only unusual contribution is a Z=4
in degree 3.

6 A polynomial family in the mod 2 cohomology of the stable
nonorientable mapping class group

Let F �! E
�
�! B be a bundle of surfaces. We can define mod 2 characteristic

classes as follows. There is an associated first real cohomology bundle V , with fibre
H 1.FbIR/ over the point b 2 B . Define

�i.E/ WD wi.V / 2H i.BIF2/

the i –th Stiefel–Whitney class of this vector bundle. The main result is that in the stable
nonorientable mapping class group these account for one indecomposable generator in
each dimension, and are stably independent.

Theorem 6.1 In the nonorientable mapping class groups, the map

F2Œ�1; �2; �3; :::� �!H�.BNgIF2/

is an injection in the stable range � � .g� 3/=4.
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The theorem of Korkmaz given in Section 2.2 implies that H 1.BNgIF2/ Š F2 for
g � 7, so �1 is the generator. This gives another interpretation of �1 : it is the
obstruction to reducing the structure group of a bundle of nonorientable surfaces to the
index 2 subgroup of the mapping class group generated by Dehn twists.

The proof of the theorem is somewhat indirect. There is a class 1 2KO0.E/ repre-
senting the trivial 1–dimensional bundle, and applying the Becker–Gottlieb transfer
in real K-theory we obtain a virtual bundle trf��.1/ 2 KO0.B/. An application of
the Atiyah–Singer index theorem for families due to Becker and Schultz implies the
following theorem, which gives a homotopy-theoretic characterisation of the virtual
bundle V .

Theorem 6.2 Suppose the surface bundle E
�
�! B is smooth and the fibres are

compact, connected and nonorientable. Then the K-theory class trf��.1/ coincides with
1�V in KO0.B/. In particular �i.E/D wi.� trf��.1// in H i.BIF2/.

Proof By [2, Theorem 6.1], trf��.1/ D
P

i.�1/i ŒH i.FbIR/�. In our situation this
sum is 1� V as ŒH 0.FbIR/� is the constant rank 1 vector bundle, ŒH 1.FbIR/� is
the vector bundle V , and the higher terms are 0 as the fibres Fb are nonorientable
surfaces.

The virtual bundle � trf��.1/ is classified by

B
trf
�!Q.EC/

collapse
����!Q.S0/

Q.i/
���! Z�BO

�
�! Z�BO

where Q.i/ is the extension to the free infinite loop space of the inclusion i of S0

to the 0 and 1 components of Z�BO , and � is the inversion map on Z�BO . The
discussion in Section 2.4 implies that the above composition is homotopic to

B
˛E
��!�1MTO.2/

!
�!Q.BO2C/

collapse
����!Q.S0/

Q.i/
���! Z�BO

�
�! Z�BO

as the collapse map E �! � can be taken to factor through the map E �! BO2

classifying the vertical tangent bundle. Define x�i 2 H i.�1
0

MTO.2/IF2/ to be the
pullback of the i –th Stiefel–Whitney class wi by the composition. We call x�i the
universal �i class, as by the previous theorem ˛�

E
.x�i/D �i.E/ 2H i.BIF2/ for any

smooth, nonorientable surface bundle with compact fibres.

Lemma 6.3 The composition Q.i/ ı collapse ı!W �1
0

MTO.2/ �! BO is injective
on F2 –cohomology. The same is true after applying the inversion map �, as it is a
homotopy equivalence.
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Proof It is enough to show that the map is surjective on F2 –homology, and to do this
it is enough to show that the composition

�1MTO.2/
!
�!Q.BO2C/

collapse
����!Q.S0/

Q.i/
���! Z�BO

without restriction to 0 components is surjective on F2 –homology. The action of
the Dyer–Lashof algebra on the F2 –homology of Z � BO has been computed by
Priddy [15], and it is generated over the Dyer–Lashof algebra (and Pontrjagin product)
by the class x0 2 H0.Z �BOIF2/ representing the component f1g �BO . As the
composition is a map of infinite loop spaces, it is enough to show that the class x0 is
in the image.

The composition

�0.B/
�0.˛E/
�����! �0.�

1MTO.2//Š Z �! �0.Q.S
0//Š Z

for a surface bundle E
�
!B picks out the Euler characteristic of the fibre. In particular,

any bundle with fibre RP2 lands in the 1 component, and so the top composition is an
isomorphism on �0 . In particular, the class x0 is in the image.

The lemma implies that

F2Œx�1; x�2; x�3; :::� �!H�.�10 MTO.2/IF2/

is injective, because the Stiefel–Whitney classes are algebraically independent in
H�.BOIF2/. Theorem 6.1 follows by the homology stability of Section 2.1.
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