Volume 8, issue 3 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Surgery description of colored knots

R A Litherland and Steven D Wallace

Algebraic & Geometric Topology 8 (2008) 1295–1332
Abstract

The pair (K,ρ) consisting of a knot K S3 and a surjective map ρ from the knot group onto a dihedral group of order 2p for p an odd integer is said to be a p–colored knot. In [Algebr. Geom. Topol. 6 (2006) 673–697] D Moskovich conjectures that there are exactly p equivalence classes of p–colored knots up to surgery along unknots in the kernel of the coloring. He shows that for p = 3 and 5 the conjecture holds and that for any odd p there are at least p distinct classes, but gives no general upper bound. We show that there are at most 2p equivalence classes for any odd p. In [Math. Proc. Cambridge Philos. Soc. 131 (2001) 97–127] T Cochran, A Gerges and K Orr, define invariants of the surgery equivalence class of a closed 3–manifold M in the context of bordism. By taking M to be 0–framed surgery of S3 along K we may define Moskovich’s colored untying invariant in the same way as the Cochran–Gerges–Orr invariants. This bordism definition of the colored untying invariant will be then used to establish the upper bound as well as to obtain a complete invariant of p–colored knot surgery equivalence.

Keywords
p-colored knot, Fox coloring, surgery, bordism
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 57M27, 55N22, 57M12
References
Publication
Received: 7 October 2007
Revised: 29 May 2008
Accepted: 1 June 2008
Published: 8 August 2008
Authors
R A Litherland
Department of Mathematics
Louisiana State University
Baton Rouge
Louisiana 70803
http://www.math.lsu.edu/~lither
Steven D Wallace
Department of Mathematics
Louisiana State University
Baton Rouge
Louisiana 70803
http://www.math.lsu.edu/~wallace