Volume 8, issue 3 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The $5$–local homotopy of $eo_4$

Michael A Hill

Algebraic & Geometric Topology 8 (2008) 1741–1761
Abstract

We compute the cohomology of a 5–local analogue of the Weierstrass Hopf algebroid used to compute tmf–homology. We also compute the Adams–Novikov differentials for various stages, finding the homotopy, V (0)–homology and V (1)–homology of the putative spectrum eo4. We also link this computation to the homotopy of the higher real K–theory spectrum EO4.

Keywords
Bockstein, K-theory, Hopkins–Miller
Mathematical Subject Classification 2000
Primary: 55T25, 18G40, 55N35
Secondary: 55Q51, 18G60
References
Publication
Received: 18 August 2008
Revised: 29 August 2008
Accepted: 1 September 2008
Published: 9 October 2008
Authors
Michael A Hill
Department of Mathematics
University of Virginia
PO Box 400137
Charlottesville, VA 22904
USA
http://people.virginia.edu/~mah7cd