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Marked tubes and the graph multiplihedron

SATYAN DEVADOSS

STEFAN FORCEY

Given a graph G , we construct a convex polytope whose face poset is based on
marked subgraphs of G . Dubbed the graph multiplihedron, we provide a realization
using integer coordinates. Not only does this yield a natural generalization of the
multiplihedron, but features of this polytope appear in works related to quilted disks,
bordered Riemann surfaces and operadic structures. Certain examples of graph
multiplihedra are related to Minkowski sums of simplices and cubes and others to the
permutohedron.

52B11; 18D50, 55P48

1 Introduction

The associahedron has continued to appear in a vast number of mathematical fields
since its debut in homotopy theory; see Stasheff [16]. Stasheff classically defined the
associahedron Kn as a CW–ball with codim k faces corresponding to using k sets of
parentheses meaningfully on n letters; Figure 1(a) shows the picture of K4 . Indeed,

.ab/.cd/

..ab/c/d

.a.bc//da..bc/d/

a.b.cd//

.f .a/f .b//f .c/ f .a/.f .b/f .c//

f .a/f .bc/

f .a.bc//f ..ab/c/

f .ab/f .c/

Figure 1: The two-dimensional (a) associahedron K4 and (b) multiplihedron J3

the associahedron appears as a tile of SM0;n.R/, the compactification of the real moduli
space of punctured Riemann spheres; see Devadoss [4]. Given a graph G , the graph
associahedron KG is a convex polytope generalizing the associahedron, with a face
poset based on the connected subgraphs of G ; see Carr and Devadoss [3]. For instance,
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when G is a path, a cycle or a complete graph, KG results in the associahedron,
cyclohedron and permutohedron, respectively. In [5], the first author gave a geometric
realization of KG , constructing this polytope from truncations of the simplex. Indeed,
KG appears as tilings of minimal blow-ups of certain Coxeter complexes [3], which
themselves are natural generalizations of the moduli spaces SM0;n.R/.

Our interests in this paper lie with the multiplihedron Jn , a polytope introduced by
Stasheff [17] in order to define A1 maps between A1 spaces. Boardman and Vogt [1]
fleshed out the definition in terms of painted trees; a detailed combinatorial description
was then given by Iwase and Mimura [10]. Saneblidze and Umble relate the multi-
plihedron to co-bar constructions of category theory and the notion of permutohedral
sets. In particular, Jn is a polytope of dimension n� 1 whose vertices correspond to
the ways of bracketing n variables and applying a morphism f (seen as an A1 map).
Figure 1(b) shows the two-dimensional hexagon which is J3 . Recently, Forcey [8]
has provided a realization of the multiplihedron, establishing it as a convex polytope.
Moreover, Mau and Woodward [13] have shown Jn as the compactification of the
moduli space of quilted disks.

In this paper, we generalize the multiplihedron to graph multiplihedra JG . Indeed,
the graph multiplihedra are already beginning to appear in literature; for instance, in
Devadoss, Heath and Vipismakul [6], they arise as realizations of certain bordered
Riemann disks of Liu [11]. Similar to multiplihedra, the graph multiplihedra degenerates
into two natural polytopes; these polytopes are akin to one measuring associativity in
the domain of the morphism f and the other in the range (see Forcey [7]).

An overview of the paper is as follows: Section 2 describes the graph multiplihedron
as a convex polytope based on marked tubes, given by Theorem 6. Section 3 then
follows with numerous examples. When G is a graph with no edges, we relate JG to
Minkowski sums of cubes and simplices; when G is a complete graph, JG appears
as the permutohedron, the only graph multiplihedron which is a simple polytope. In
Section 4, geometric properties of the facets of graph multiplihedra are discussed.
A realization of JG with integer coordinates is introduced in Section 5 along with
constructions of two related polytopes. Finally, the proof of the key theorems are
provided in Section 6.

2 Definitions

2.1 Tubes

We begin with motivating definitions of graph associahedra; the reader is encouraged
to refer to Carr and Devadoss [3, Section 1] for details.
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Definition 1 Let G be a finite graph. A tube is a set of nodes of G whose induced
graph is a connected subgraph of G . Two tubes u1 and u2 may interact on the graph
as follows:

(1) Tubes are nested if u1 � u2 .

(2) Tubes intersect if u1\u2 ¤∅ and u1 6� u2 and u2 6� u1 .

(3) Tubes are adjacent if u1\u2 D∅ and u1[u2 is a tube in G .

Tubes are compatible if they do not intersect and they are not adjacent. A tubing U of
G is a set of tubes of G such that every pair of tubes in U is compatible.

Remark For the sake of clarity, a slight alteration of this definition is needed. Hence-
forth, the entire graph (whether it be connected or not) will itself be considered a tube,
called the universal tube. Thus all other tubes of G will be nested within this tube.
Moreover, we force every tubing of G to contain (by default) its universal tube.

When G is a disconnected graph with connected components G1 , . . . , Gk , an additional
condition is needed: If ui is the tube of G whose induced graph is Gi , then any tubing
of G cannot contain all of the tubes fu1; : : : ;ukg. Thus, for a graph G with n nodes,
a tubing of G can at most contain n tubes. Parts (a)–(c) of Figure 2 shows examples
of allowable tubings, whereas (d)-(f) depict the forbidden ones.

(a) (b) (c) (d) (e) (f)

Figure 2: (a)–(c) Allowable tubings and (d)–(f) forbidden tubings

Theorem 2 [3, Section 3] For a graph G with n nodes, the graph associahedron KG

is a simple, convex polytope of dimension n� 1 whose face poset is isomorphic to the
set of tubings of G , ordered such that U � U 0 if U is obtained from U 0 by adding
tubes.

Example Figure 3 shows two examples of graph associahedra, having underlying
graphs as paths and cycles, respectively, with three nodes. These turn out to be the
associahedron [16] and cyclohedron [2] polytopes.
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Figure 3: Graph associahedra of a path and a cycle as underlying graphs

2.2 Marked tubes

The notion of a tube is now extended to include markings.

Definition 3 A marked tube of G is a tube with one of three possible markings:

(1) a thin tube given by a solid line,

(2) a thick tube given by a double line, and

(3) a broken tube given by fragmented pieces.

Marked tubes u and v are compatible if

(1) u and v do not intersect,

(2) u and v are not adjacent, and

(3) if u� v where v is not thick, then u must be thin.

A marked tubing of G is a collection of pairwise compatible marked tubes of G .

Figure 4 shows the nine possibilities of marking two nested tubes. Out of these, row
(a) shows allowable marked tubings, and row (b) shows those forbidden.

A partial order is now given on marked tubings of a graph G . This poset structure
is then used to construct the graph multiplihedron below. We start with a definition
however.

Definition 4 Let U be a tubing of graph G containing tubes u and v . We say u is
closely nested within v if u is nested within v but not within any other tube of U that
is nested within v . We denote this relationship as u b v .
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(a)

(b)

Figure 4: (a) Allowable marked tubings and (b) forbidden marked tubings

Definition 5 The collection of marked tubings on a graph G can be given the structure
of a poset. A marked tubings U � U 0 if U is obtained from U 0 by a combination of
the following three moves. Figure 5 provides the appropriate illustrations, with the top
row depicting U 0 and the bottom row U .

(1) Resolving markings: A broken tube becomes either a thin tube (Figure 5(a)) or a
thick tube (Figure 5(b)).

(2) Adding thin tubes: A thin tube is added inside either a thin tube (Figure 5(c)) or
broken tube (Figure 5(d)).

(3) Adding thick tubes: A thick tube is added inside a thick tube (Figure 5(e)).

(4) Adding broken tubes: A collection of compatible broken tubes fu1; : : : ;ung is
added simultaneously inside a broken tube v only when ui b v and v becomes
a thick tube; two examples are given in (Figure 5(f)) and (Figure 5(g)).

(a) (b) (c) (d) (e) (f) (g)

Figure 5: The top row are the tubings and bottom row their refinements

We are now in position to state one of our key theorems:

Theorem 6 For a graph G with n nodes, the graph multiplihedron JG is a convex
polytope of dimension n whose face poset is isomorphic to the set of marked tubings
of G with the poset structure given above.

Corollary 7 The codimension k faces of JG correspond to marked tubings with
exactly k nonbroken tubes.

The proof of the theorem, along with the corollary, follows from the geometric realiza-
tion of the graph multiplihedron given by Theorem 17. We postpone its proof until the
end of the paper.
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3 Examples

3.1 Classical multiplihedron

The multiplihedron Jn serves as a parameter space for homotopy multiplicative mor-
phisms. From a certain perspective, as shown in [15], it naturally lies between the
associahedron and the permutohedron. If G is a path with n� 1 nodes, it is easy to
see that JG produces the classical multiplihedron Jn of dimension n�1. Figure 6(a)
shows the one-dimensional multiplihedron J2 as the interval, with endpoints labeled
by legal tubings of a vertex. The two-dimensional multiplihedron J3 is given in
Figure 6(b) with labeling by marked tubings; compare this with Figure 1(b). Notice
that each vertex of JG corresponds to maximally resolved marked tubings, those with
only thin or thick tubes. The thick tubes capture multiplication in the domain of the
morphism f , whereas the thin ones record the range.

Figure 6: The graph multiplihedron of a path with (a) one vertex J2 and (b)
two vertices J3 , along with labelings of faces by marked tubings

Figure 7 shows two different labelings of J3 . The left picture depicts the labeling
using painted diagonals of a polygon; these are dual to the painted trees of Boardman
and Vogt [1] and Forcey [8]. The right hexagon in Figure 7 is labeled using the quilted
disk moduli spaces of Mau and Woodward [13]. We leave it to the reader to construct
bijections between these labelings of Jn and marked tubings on paths.

3.2 Permutohedron

There are only two kinds of graph multiplihedra JG when G contains two nodes,
one with G disconnected and the other with G being a path. It is interesting to note
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(a) (b)

Figure 7: The multiplihedron J3 labelings by (a) painted diagonals of poly-
gons and (b) quilted disks

that in both cases, JG is the hexagon, with labeling identical to Figure 6. This
low-dimensional case is an anomaly, however. Figure 8 shows the four different
types of graph multiplihedra when G contains three vertices. Notice that all of them
but the rightmost polyhedron (when G is a complete graph) are not simple. Indeed,
the rightmost graph multiplihedron of Figure 8 is combinatorially equivalent to the
permutohedron. This is true in general as we now show.

Figure 8: The four possible three-dimensional graph multiplihedra

Theorem 8 Let G be a complete graph on n� 1 vertices. The graph multiplihedron
JG is combinatorially equivalent to the permutohedron Pn .

Proof Let H be a complete graph on n vertices and let x be a node of H . Let G

be the complete graph on n� 1 vertices obtained from deleting x from H . We use
the fact from [5] that the permutohedron Pn is equivalent to the graph associahedron
KH . Now we define a poset isomorphism  x from the KH (tubings of H ) to JG

(marked tubings of G ).
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Let T be a tubing of H (an element of KH ) and let ".x/ be the smallest tube of T

containing x . Then  x.T / is the marked tubing of G (an element of JG ), with tubes
fu�xg for tubes u in T , where the marking of u�x is

(1) thick if ".x/� u,

(2) broken if ".x/D u and u�x is not in T , and

(3) thin otherwise.

Figure 9 shows four examples where the top row shows tubings of H and the bottom
row shows the image in  x ; in all four cases, x is the top most point in the complete
graph on four vertices. Notice that if ".x/D u, the marked tubing u�x in  x.T / will
be broken only if there is another node whose smallest tube is u; otherwise ".x/�x

will be the same as some tube u0 not containing x . With these facts in mind, it is
straightforward to check that  x is an isomorphism of posets.

Figure 9: Examples of tubings ofH (top row) and their images in  x (bottom row)

Corollary 9 The graph multiplihedron is a simple polytope only when G is a complete
graph.

Proof Let G not be a complete graph, and let a; b be two of the n nodes of G not
connected by an edge. Consider a maximal marked tubing T on G (corresponding
to some vertex of JG ) consisting of n thick tubes, two of which are the precisely
the tubes fag and fbg. We claim there are at least nC 1 marked tubings S such that
T � S and there exists no other tubing S 0 where T � S 0 � S . Find n� 1 of them
by removing any of the thick tubes except the universal one. Find the other two by
making fag or fbg into a broken tube. Thus the vertex labeled by T is contained in
at least nC 1 edges, so JG is not simple. The converse follows from the previous
theorem.
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3.3 Minkowski sums

Let rn denote the graph multiplihedron for the graph with n disjoint nodes. The right
side of Figure 6 shows r2 , Figure 8(a) displays r3 , and the left side of Figure 13
provides the four-dimensional r4 polytope. We show an alternate construction of rn

using Minkowski sums.

Definition 10 The Minkowski sum of two point sets A and B in Rn is

A˚B WD fxCy j x 2A;y 2 Bg;

where xCy is the vector sum of the two points.

Example The left side of Figure 10 shows two sets A and B , the decomposition
of the square into two simplices. The middle two figures display the sum of B with
certain labeled points of A, whereas the Minkowski sum A˚B is given in the right
as the hexagon.

A

B

a

b

c

a

b

c

d
e

d

e

Figure 10: The Minkowski sum of the two sets A and B on the left is given
in the right

Proposition 11 If Cn is the n–cube Œ0; 1�n in Rn , then the hyperplane
P

xi D 1

cuts Cn into two polytopes, the simplex �n and its complement Cn � �n . The
polytope rn is combinatorially equivalent to �n˚ .Cn��n/.

Proof We will demonstrate an isomorphism between vertex sets of the two polytopes
(from rn to the above Minkowski sum) which preserves facet inclusion of vertices.
The vertices come in two groupings, and the bijection may be described piecewise on
those sets.

Group I In the Minkowski sum, the first grouping consists of n vertices resulting
from adding the origin to the vertices of the .n� 1/–simplex facet of Cn ��n: In
rn , the first grouping consists of the n vertices which correspond to the entirely thin
maximal tubings; of course, for our edgeless graph, proper tubes consist of a single
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node. For each node vi , there is one of these tubings which does not include vi itself
as a tube. Map the vertex of rn corresponding to node vi not being a tube to the vertex
of the Minkowski sum which lies on the xi –axis.

Group II The second grouping of vertices in rn consists of vertices with associated
tubing containing the thick universal tube and all but one of the single nodes as either
thick or thin tubes. Thus there are n � 2n�1 of these: Choose the node that will not
be a tube, then choose a (possibly empty) subset of the remaining nodes to be thick
tubes. The second grouping of vertices in the Minkowski sum are those resulting
from a nonzero vertex of �n being added to a nonzero vertex of Cn: The geometry
dictates that for each facet of Cn which is parallel to but not contained in a coordinate
hyperplane, there will be 2n�1 vertices of the Minkowski sum — one for each vertex
of that facet of Cn: These result from adding the vertex of �n which lies in the axis
perpendicular to the facet of Cn to each of the vertices of that facet. Thus there are
n�2n�1 vertices in this second grouping. The bijection takes the vertex of rn associated
to the tubing without the tube vp but with the thick tubes vi1

; : : : ; vik
to a vertex of

the Minkowski sum formed by adding the vertex of �n which lies in the xp –axis to
the vertex of Cn which lies in the subspace spanned by the axes fxp;xi1

; : : : ;xik
g.

Facet inclusion We check that the bijection of vertices preserves facet inclusion. To
check the first grouping of vertices, note that the nC 1 lower facets of rn are given
by a choice of a single thin single-node tube. The nC1 lower facets of the Minkowski
sum correspond to adding the origin to a facet from Cn��n , either to the facet which
it shared with �n or to one which lay in a coordinate hyperplane. To check the second
grouping of vertices, note first that in the Minkowski sum, the facets of Cn ��n in
the coordinate hyperplanes are extended by the vectors of �n which lie in the same
coordinate hyperplane. Moreover, the 2n� 1 upper facets of rn correspond to subsets
of nodes which will be the broken tubes. The 2n� 1 upper facets of the Minkowski
sum correspond to adding the face of Cn determined by intersecting a nonempty subset
of the facets of Cn which do not lay in a coordinate hyperplane to the orthogonal face
of �n . It is straightforward to verify that our bijection takes the vertices of a facet of
rn to the vertices of a facet of the Minkowski sum.

Remark The construction of r2 using this method is given in Figure 10.

Remark In [14] Postnikov defines the generalized permutohedra, a class which
encompasses a great many varieties of combinatorially defined polytopes. A subclass
of these named nestohedra, which include examples such as the graph associahedra
and the Stanley–Pittman polytopes, are based on nested sets as in Definition 7.3 of [14].
For the nestohedra, Postnikov gives a realization formulated as a Minkowski sum of

Algebraic & Geometric Topology, Volume 8 (2008)



Marked tubes and the graph multiplihedron 2091

simplices. A question deserving of further thought is whether there is a consistent
definition of marked nested sets, fitting into the scheme of generalized permutohedra,
which would specialize to our marked tubings. It would be especially interesting to
elucidate whether the Minkowski sum for rn discussed here has a nice generalization
in that context.

4 Geometry of the facets

4.1 Upper and lower facets

The discussion and results in this section can be interpreted as describing either the
poset of marked tubings of a graph G or (after using Theorem 6) as describing the
polytope which realizes this poset as its set of faces ordered by inclusion. Therefore
we will abuse notation and use JG to mean either the marked tubings themselves or
the face poset labeled by them. Our main concern here is regarding the facets of JG ,
the codimension one faces. It follows immediately from the poset ordering given in
Definition 5 that the facets of JG are the tubings which contain exactly one unbroken
tube. We refine the facets further:

Definition 12 The facets can be partitioned into two classes: The upper tubings
contain exactly one thick universal tube and the lower tubings contain exactly one thin
tube.1

Figure 11(a)–(d) shows examples of upper tubings, whereas (e)–(g) show lower tubings.
Parts (a) and (e) show the universal thick and thin tubes, respectively.

(a) (b) (c) (d) (e) (f) (g)

Figure 11: Examples of (a)–(d) upper and (e)–(g) lower tubings

Lemma 13 Let G be a graph with n nodes.

(1) The number of upper facets of JG is 2n�1 .

(2) The number of lower facets of JG equals one more than the number of facets
of KG .

1We abuse terminology by calling them upper and lower facets as well.
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Proof The number of upper facets correspond to the number of ways to choose a
nonempty set of nodes of G . Since for each choice there is exactly one way to enclose
the chosen nodes in a set of compatible broken tubes, we obtain 2n�1 . There exists a
lower facet of JG (and a facet of KG ) for each tube of G . However, JG has the
additional lower facet corresponding to the thin universal tube.

4.2 Product structures

Before describing the geometry of the facets of JG , a definition from [3, Section 2] is
needed.

Definition 14 For graph G and a collection of nodes t , construct a new graph G�.t/

called the reconnected complement: If V is the set of nodes of G , then V � t is the set
of nodes of G�.t/. There is an edge between nodes a and b in G�.t/ if either fa; bg
or fa; bg[ t is connected in G .

Figure 12 illustrates some examples on graphs along with their reconnected comple-
ments. For a given tube t and a graph G , let G.t/ denote the induced subgraph on the
graph G . By abuse of notation, we sometimes refer to G.t/ as a tube.

Figure 12: Examples of tubes and their reconnected complements

Proposition 15 Let V be a lower facet of JG and let t be the thin tube of V . The
face poset of V is isomorphic to JG�.t/�KG.t/. In particular, if t is the universal
thin tube, then V is isomorphic to KG .

Proof The last statement is easiest to verify. For the tubing V consisting of the thin
universal tube, any refinement of this tubing must be accomplished by adding more
thin tubes. Thus the collection of refinements is just the poset of (all thin) tubings of G ,
and trivially isomorphic to KG by forgetting marking.

Now for the case in which the universal tube is broken, the marked tubings U � V are
those that contain the thin tube t . First, any tubing ftig of KG.t/ becomes a marked
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tubing of JG by marking all the tubes as thin. Let �.ti/ denote the marked tube of
JG.t/ achieved by assigning the thin marking. Consider the map

� W f marked tubes of G�.t/ g ! f marked tubes of G containing t g

�.t 0/D

(
t 0[ t if t 0[ t is connected in G or if t 0 DG�.t/

t 0 otherwise:
given by

Here �.t 0/ is defined to have the same marking as t 0 . Now define a map

(4–1) y� W JG�.t/�KG.t/! V; .T;W / 7!
[

tj2T

�.tj / [
[

ti2W

�.ti/:

This is an isomorphism of posets by comparison to Theorem 2.9 of [3].

Proposition 16 Let V be an upper facet of JG and let t1; : : : ; tk be the broken tubes
of V . Let t be the union of ftig. The face poset of V is isomorphic to

KG�.t/�JG.t1/� � � � �JG.tk/:

In particular, if V has no broken tubes, then V is isomorphic to KG .

Proof Again, we verify the last statement first. For the tubing V with the only tube
being the thick universal one, any refinement of this tubing must be accomplished by
adding more thick tubes. Thus the collection of refinements is just the poset of (all
thick) tubings of G , and isomorphic to KG by forgetting marking.

Let t be the union of the broken tubes t1; : : : ; tk . Consider the map

�W f unmarked tubes of G�.t/ g ! f marked tubes of G containing t g

�.t 0/D

(
G if t 0 is universal

t 0 [
S
fti j 9 u 2 t 0 with ti [u connected g otherwise:

where

Here �.t 0/ is defined to have the thick marking. Now if t 00 is a marked tube of G.ti/

then t 00 is also a marked tube of G . Define a map

y�W KG�.t/�JG.t1/� � � � �JG.tk/! V;

.S;T1; : : : ;Tk/ 7!
[
t 02S

�.t 0/ [
[

iD1:::k

Ti ;
(4–2)

where the universal tube G in the image is marked as thick. This is poset isomorphism.

Remark Propositions 15 and 16 can be seen as generalizations of the product structure
of associahedra and cyclohedra as given in [12].
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4.3 Into four dimensions

It turns out that the three-dimensional graph multiplihedra, all depicted in Figure 8,
do not yield complicated combinatorial structures. It is not until four dimensions
that certain ideas become transparent as given by Figure 13. The left side of this
picture2 shows r4 whereas the right side portrays the classical multiplihedron J5 .
This perspective of the Schlegel diagram was chosen since the facets visible are the
upper facets. Indeed, apparent from the two Propositions above, the complexity of
JG is most prevalent in the structure of upper tubings. Certain upper facets of r4 are
shaded here, with their corresponding facets similarly shaded on the right side.

Example Figure 14 analyzes the labeled facets in Figure 13, the left side providing the
geometry and the tubing label when G has no edges and the right side when G is a path.
The geometry of these upper facets of JG can be calculated using Proposition 16. In
what follows, understand that whenever the n–simplex �n is mentioned, it arises from
the graph associahedron KG , where G is the graph with nC 1 disjoint nodes.

(a) On the left, the geometry of this upper facet is K2�J2�J2�J2 . Since K2 is
a point and J2 is an edge, this is equivalent to a cube. On the right, however,
the three disjoint broken tubes combine into one large broken tube with three
vertices. Thus the geometry becomes K2�J4 , resulting in the three-dimensional
multiplihedron J4 .

(b) The left side labeling yields the same product structure as (a), resulting in a cube.
However, for the right side, one obtains K2 �J3 �J2 , a hexagonal prism.

(c) On the left, this facet is given by �1 �J2 �J2 . For the right side, we obtain
K3 �J3 , a hexagonal prism like (b). Note that although both (b) and (c) result
in geometrically identical prisms, they encode different combinatorial data.

(d) Both kinds of facets are cubes. The left is identical to part (c), whereas the right
is K3 �J2 �J2 .

(e) The left side labeling yields �2 �J2 , a triangular prism. This transforms into a
pentagonal prism K4 �J2 on the right.

(f) The 3–simplex on the left becomes K5 on the right.

2The Polymake software [9] was used to construct these Schlegel diagrams with inputs of coordinates
given by the realization of JG in Theorem 17.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 13: The left side shows the Schlegel diagram of r4 and the right side
the classical four-dimensional multiplihedron. Compare with Figure 14.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 14: Certain shaded upper facets of r4 and J5 given in Figure 13
along with their labels by tubings

5 Realizations

5.1 Basic construction

Thus far, our focus has been on the combinatorial structure of the graph multiplihedron
based on marked tubings. This section provides a geometric backbone giving JG

a realization with integer coordinates. Let G be a graph with n nodes, denoted
v1; v2; : : : vn . Let MG be the collection of maximal marked tubings of G . Indeed,
elements of MG will correspond to the vertices of JG . Notice that each tubing U

in MG contains exactly n tubes, with each tube being either thin or thick. So U

assigns a unique tube ".v/ to each node v of G , where ".v/ is the smallest tube in U

containing v . Parts (a)–(c) of Figure 2 shows examples of maximal tubings of G .

For each tubing U in MG , we define a function fU from the nodes of G to the integers
as follows:

fU .v/D 3j".v/j�1
�

X
sb".v/

3jsj�1:
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Note that fU is defined independently of the markings associated to the tubes of U .
Figure 15 gives some examples of integer values of nodes associated to tubings.

1 1 1 24

1

1

1 24

1

1

7

18

1

1

7

18

1 23 1 2

1

6

2

Figure 15: Integer values of nodes associated to tubings

Let G be a graph with an ordering v1; v2; : : : ; vn of its nodes. Define a map

cW MG!Rn; U 7! .x1; : : : ;xn/(5–1)

xi D

�
fU .vi/ if ".vi/ is thin,

3 �fU .vi/ if ".vi/ is thick.
where

We are now in position to state the main theorem:

Theorem 17 For a graph G with n nodes, the convex hull of the points c.MG/ in
Rn yields the graph multiplihedron JG .

Remark This theorem implies that the convex hull of the points c.MG/ will produce
a convex polytope whose face poset structure is given by JG . Thus, this geometric
result immediately implies the combinatorial result of Theorem 6. The proof of this
theorem is given in Section 6, at the end of the paper.

Example Figure 16 shows an example of this realization. The left side displays the
hexagon poset given in Figure 6, along with labels of the vertices. The right side
constructs the convex hull using integer coordinates on R2 , with appropriate labelings
of the vertices.

It is not hard to describe an affine subspace of Rn for any marked tubing which will
contain the face of JG corresponding to that tubing.

Definition 18 Let G be a graph with n nodes vi ; : : : vn , and let U be any marked
tubing of G . Let ".vi/ be the smallest tube containing node vi : We define an affine
subspace HU �Rn by the following equations:

(1) One equation for each thin tube u given by:X
".vi /Du

xi D 3juj�1
�

X
sbu

3jsj�1:
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EF

Figure 16: The graph multiplihedron of a path along with its realization

(2) One equation for each thick tube u given by:X
".vi /Du

xi D 3juj�
X
sbu

3jsj:

In the case of an upper or lower marked tubing V , the associated subspace HV is
actually a hyperplane, described by the single equation indicated by its single unbroken
tube. One result of Theorem 17 is that these are precisely the facet hyperplanes of
a realization of the polytope JG . Indeed, the upper tubings correspond to facet-
including hyperplanes that bound the polytope above, while the lower tubings yield
facet-including hyperplanes that bound the polytope below.

Example Figure 11 shows examples of upper and lower tubings. Based on the previous
definition, the following hyperplanes will be associated to each of the appropriate
tubings of the figure:

(a) x1Cx2Cx3 D 27 (b) x2 D 21 (c) x2Cx3 D 24 (d) x1 D 21

(e) x1Cx2Cx3 D 9 (f) x1Cx2 D 3 (g) x1 D 1

5.2 Quotient polytopes

The multiplihedron contains within its face structure several other important polytopes.
The classic multiplihedron discovered by Stasheff, here corresponding to the graph
multiplihedron of a path, encapsulates the combinatorics of a homotopy homomorphism
between homotopy associative topological monoids. The important quotients of the
Stasheff’s multiplihedron then are the result of choosing a strictly associative domain
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or range for the maps to be studied. The case of a strictly associative range is described
in [17], where Stasheff shows that the multiplihedron Jn becomes the associahedron
KnC1 . The case of an associative domain is described in [8], where the new quotient of
the n–th multiplihedron is the composihedron, denoted CK.n/. These latter polytopes
are the shapes of the axioms governing composition in higher enriched category theory,
and thus referred to collectively as the composihedra. Finally the case of associativity
of both range and domain is discussed in [1], where the result is shown to be the
n–dimensional cube.

Note that in Stasheff’s multiplihedron, an associative domain corresponds to identifying
certain points within the lower facets, while an associative range corresponds to identi-
fying certain points within the upper facets. In the case of a graph multiplihedron, the
simplest generalizations along these lines give rise to two families of convex polytopes.
We begin by demonstrating these two polytopes as convex hulls, using variations on
Equation (5–1) which reflect the desired identifications.

Definition 19 The polytope JGd is the convex hull of the points cd .MG/ in Rn

where

cd W MG!Rn; U 7! .x1; : : : ;xn/ where xiD

�
1 if ".vi/ is thin,

3 �fU .vi/ if ".vi/ is thick.

This generalizes strict associativity of the domain to graphs.

A lower facet of JG is an isomorphic image of JG�.t/�KG.t/ for some thin tube t .
The quotient polytope JGd is achieved by identifying the images of any two points
.a; b/� .a; c/ in a lower facet, where a is a point of JG�.t/ and b; c are points in
KG.t/. In terms of tubings, the face poset of JGd is isomorphic to the poset JG

modulo the equivalence relation on marked tubings generated by identifying any two
tubings U � V such that U � V in JG precisely by the addition of a thin tube inside
another thin tube, as in Figure 5(c).

Definition 20 The polytope JGr is the convex hull of the points cr .MG/ in Rn

where

cr W MG!Rn; U 7! .x1; : : : ;xn/ where xi D

�
fU .vi/ if ".vi/ is thin,

3n if ".vi/ is thick.

This generalizes strict associativity of the range to graphs.

Recall that an upper facet of JG is the isomorphic image of

KG�.t1[ � � � [ tk/�JG.t1/� � � � �JG.tk/

Algebraic & Geometric Topology, Volume 8 (2008)



2100 Satyan Devadoss and Stefan Forcey

for broken tubes tube t1; : : : ; tk : The quotient polytope JGr is achieved by identifying
the images of any two points .x;y1; : : : ;yk/� .z;y1; : : : ;yk/ in an upper facet. In
terms of tubings, the face poset of JGr is isomorphic to the poset JG modulo the
equivalence relation on marked tubings generated by identifying any two tubings U �V

such that U � V in JG precisely by the addition of a thick tube, as in Figure 5(e).

Remark It is interesting to note that the polytope JGr appears in the context of
deformations of bordered Riemann surfaces in [6], arising from the work of C. Liu [11].
Indeed, it is the first example we know of where the associahedra (in the case when G

is a path) appear as truncations of cubes.

Performing both quotienting operations simultaneously on the polytope JG will always
yield the n–dimensional cube, where n is the number of nodes of G . Thus we have
the following equation relating numbers of facets of the three polytopes defined here:

j facets of JGd j C j facets of JGr j � j facets of JGj D 2n

since the number of facets of the hypercube is 2n. Compare this with Lemma 13. The
following is a corollary of Theorem 8 and the definitions above. We leave it to the
reader to fill in the details.

Corollary 21 When G is the complete graph, JGd and JGr are combinatorially
equivalent.

Example When G is a path with n nodes, the polytopes JGd and JGr are the
n–th composihedron and the .nC1/–st associahedron, respectively. Figure 17 shows
the realization of these polytopes discussed above for a path with three nodes. Part (a)
shows the cube, encapsulating associativity in both domain and range. Parts (b) and (c)
produce the associahedron and composihedron respectively; compare with [6] and [8].
Finally, truncating using the full collection of hyperplanes given by Equation (5–1)
produces the multiplihedron.

Figure 17: A cube, associahedron, composihedron and multiplihedron from
a path with three nodes

Algebraic & Geometric Topology, Volume 8 (2008)



Marked tubes and the graph multiplihedron 2101

6 Proof of Theorem 17

6.1 Using weights

The proof of Theorem 17 will use induction on the number of nodes of G . This
is feasible since we can characterize the structure of the facets of our polytope via
Propositions 15 and 16. Indeed, the dimension of the convex hull will be established,
and together with the discovery of bounding hyperplanes, a characterization of the
facets of the convex hull will be demonstrated. Simultaneously, we can build a poset
isomorphism out of (inductively assumed) isomorphisms that are restricted to the facets.
To begin, we will need a more general set of points and hyperplanes based on weights.

Let G be a graph with n nodes, numbered by i D 1 : : : n. Let w1; : : : ; wn be a list of
positive integers (weights) which are associated to the respective nodes of G . For any
tube t of G , let

w.t/D
X
vi2t

wi :

As before, let JG be the collection of maximal marked tubings of G . Mimicking
Equation (5–1), we define a map from MG to Rn based on these weights. Let U be
an element of MG , v a node of G , and ".v/ the smallest tube in U containing v . Let

f w
U .v/D 3w.".v//�1

�

X
sb".v/

3w.s/�1:

Now define cwW MG!Rn where

(6–1) cw.U /D .x1; : : : ;xn/ where xi D

�
f w

U
.vi/ if ".vi/ thin,

3 �f w
U
.vi/ if ".vi/ thick.

Definition 22 Let U be any marked tubing of G and let ".vi/ be the smallest tube
containing node vi . Define an affine subspace H w

U
�Rn by the following equations:

(1) One equation for each thin tube u given by:X
".vi /Du

xi D 3w.u/�1
�

X
sbu

3w.s/�1:

(2) One equation for each thick tube u given by:X
".vi /Du

xi D 3w.u/
�

X
sbu

3w.s/:

Lemma 23 Let G be a graph with n nodes. Let M �
G

be the subset of MG corre-
sponding to all thick (or all thin) tubes. The convex hull of cw.M �

G
/ yields the graph

associahedron KG .
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Proof This is seen by the remarks in Section 5 of [5]. Having assigned weights wi to
the nodes of G; the function � from unmarked tubes of G to the integers is given by
�.u/D 3w.u/�1 . This function satisfies the inequality

�.u/ > �.u1/C�.u2/

for u1;u2 any two proper subsets of the tube u. To see this, let W1; : : : ;Wk be the
same list of weights as the wi for node vi in u, but ordered by decreasing size. Let

W .uj /D

juj jX
iD1

Wi :

Now without loss of generality, let ju1j � ju2j. Thus,

3w.u1/�1
C 3w.u2/�1

� 3W .u1/�1
C 3W .u1/�1 < 3 � 3W .u1/�1

� 3W .u/�1
D 3w.u/�1;

as desired.

Proposition 24 For graph G with n nodes, the dimension of the convex hull of
cw.MG/ is n.

Proof This is by inclusion of an n–dimensional prism within our convex hull. For
graph G with n nodes, there are two special tubings, the lower and upper tubings
for which the only tube is G . Both of these, by Propositions 15 and 16, have poset
of refinements isomorphic to the unmarked tubings of G . Thus, by Lemma 23, the
convex hulls of the points associated to their respective maximal marked tubings are
both isomorphic to the graph associahedra KG of dimension n� 1. Indeed, Equation
(6–1) shows the thick version scaled by a factor of three. Moreover, the hyperplanes
associated to these two tubings are parallel, so that the convex hull of just their vertices
is a prism on KG . Thus, the entire dimension of JG is n.

6.2 Three lemmas

The following three lemmas are needed for proving the main theorem.

Lemma 25 Let V be a facet of JG and let U be a vertex of JG . If U is a vertex
of V , then cw.U / lies on H w

V
.

Proof First we note that if V is a face of U , then H w
V
� H w

U
. This is true since

when V � U it implies that V is obtained from U by a sequence of any of possible
moves described in Definition 5. It is easily checked that each of these moves leaves
inviolate the set of equations governing the coordinates x1; : : : ;xn induced by the
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original tubing, and introduces one new equation. The former is due to the fact that
none of the refinements subtracts from the existing set of thick or thin tubes. The latter
is due to the fact that each adds one more to the set of thick or thin tubes. Finally
we point out that if U is in MG then H w

U
D cw.U /; since if U is in MG , then the

tube u in each equation of Definition 18 is the smallest tube containing vi for some
node vi .

Lemma 26 Let V be a facet of JG which is a lower tubing and let U be a vertex of
JG such that U ˜ V . Then cw.U / lies inside the halfspace of Rn created by H w

V

not containing the origin.

Proof Let t be the single thin tube of V . For convenience, number the nodes of G

so v1; : : : ; vk are the nodes of t and let cw.U /D .x1; : : : ;xn/. We must show for a
vertex U not in V ,

x1C � � �Cxk > 3w.t/�1:

This is seen by recognizing that U either

(1) contains a tube that is not compatible (as an unmarked tubing) with t , or

(2) ".vi/ is thick for some nodes vi of t .

In the first case, there exists a node vi of t for which j".vi/j> jt j; and so w.".vi// >

w.t/: This leads to the desired inequality, regardless of the marking of ".vi/. If t is
compatible (as an unmarked tubing) with U; but ".vi/ is thick for some nodes vi of t ,
the inequality follows simply due to the fact that 3> 1 (recall an additional factor of 3
in the definition of cw.U / for thick tubes).

Lemma 27 Let V be a facet of JG which is an upper tubing and let U be a vertex
of JG such that U ˜ V . Then cw.U / lies inside the halfspace of Rn created by H w

V

containing the origin.

Proof Let t1; : : : ; tr be the broken tubes of V . For convenience, number the nodes of
G so v1; : : : ; vk are the nodes such that ".vi/D G . Let cw.U /D .x1; : : : ;xn/: We
need to show for vertex U not in V ,

x1C � � �Cxk < 3w.G/
�

rX
jD1

3w.tj /:

This is seen by recognizing that U either

(1) contains a tube that is not compatible (as an unmarked tubing) with some tj , or

(2) ".vi/ is thin for some nodes vi .
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For the first case, when all the tubes of U are thick, the sum of all the coordinates in
the point cw.U / is equal to 3w.G/ . For some of the broken tubes tj , there exists an
included node vi for which w.".vi// > w.tj /: For these broken tubes, the sum of the
coordinates calculated from nodes within tj is 3w.".vi //: Thus,

x1C � � �Cxk D 3w.G/
�

rX
jD1

� X
vi2tj

xi

�
< 3w.G/

�

rX
jD1

3w.tj /;

since smaller terms are being subtracted in the last expression. Again if the underlying
tubing of U is preserved and more of the tubes are allowed to be thin, the inequality
is only strengthened. If tj is compatible (as an unmarked tubing) with U but some
nodes vi are such that ".vi/ is thin, then the inequality follows since 3> 1:

6.3 Closing arguments

We are now in position to finish the proof of our key result.

Proof of Theorem 17 We will use induction on the number of nodes of G , made
possible due to Proposition 15 and Proposition 16. We will proceed to prove that the
theorem holds for the weighted version, with points cw.MG/ and that will imply the
original version for all weights equal to 1. The base case is when n D 1. The two
points in R1 are 3w1�1 and 3w1 ; whose convex hull is a line segment as expected.

The induction assumption is as follows: For all graphs G with number of nodes k < n

and for an arbitrary set of positive integer weights w1; : : : ; wk , assume that the poset
of marked tubings of G is isomorphic to the face poset of the convex hull via the map
'w

G
defined as follows:

'w
G W JG! CH fcw.MG/g; U 0 7! CH fcw.U / j U 2MG ; U � U 0g:

Now we show this implies 'w
G

to be an isomorphism in the case of n nodes in G .

The mapping 'w
G

clearly respects the ordering � of marked tubings. This is evident
since U � U 0 implies for sets

fV 2MG j V � U g � fV 0 2MG j V
0
� U 0g:

Therefore the convex hulls obey the inclusion

CH fcw.V / j V 2MG ; V � U g � CH fcw.V 0/ j V 0 2MG ; V 0 � U 0g:

Note that the restriction of 'w
G

to tubings that are all thick (or all thin) is an isomorphism
from the thick (thin) subposet to the face poset of the graph associahedra, by Lemma 23.
We will denote these restrictions by 'w

G
jthick and 'w

G
jthin respectively.
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Now by Proposition 15 and Proposition 16, the subposets of refinements of upper and
lower tubings have the structure of cartesian products of tubing posets of certain smaller
graphs. This will allow the restriction of 'w

G
to a lower or upper tubing V to be shown

to be an isomorphism:

'w
G jV W fU j U � V g ! CH fcw.U / j U � V; U 2MGg:

Keep in mind that the calculation of the coordinate xi is only affected by the structure
of the tubing inside of the tube ".vi/ which is the smallest tube containing node vi :

Furthermore the calculation only reflects the size of the tubes s b ".vi/ and not their
substructure.

For V a lower tubing, with thin tube t , 'w
G
jV is an isomorphism since (up to renum-

bering of nodes)

'w
G jV D

�
' ywG�.t/ �'

w
G.t/jthin

�
ı y��1;

where y� is defined in Equation (4–1). Each component of the first term is an isomor-
phism by induction. The new weighting yw is determined by adding w.t/ to each of
the original weights wi for which the node vi was connected to at least one node of t

by a single edge.

Similarly for upper tubes, the restriction of 'G to an upper tubing V is given by (up
to renumbering of nodes)

'w
G jV D

�
' ywG�.t/jthick �'

w
G.t1/ � � � � �'

w
G.tk/

�
ı y��1;

where t is the union of broken tubes t1; : : : ; tk and y� is given by Equation (4–2). Each
component of the first term is an isomorphism by induction. The new weight yw is
determined by adding w.tj / to each of the original weights wi for which the node vi

was connected to at least one node of tj by a single edge.

Notation We write X �W Y if X � Y and there does not exist a Z such that X �

Z � Y .

Show that 'w
G

is injective.

Let X and Y be two distinct marked tubings. If X;Y � V , where V �W G , then
'w

G
.X /¤ 'w

G
.Y / by induction, since as shown above the restriction of 'w

G
to an upper

or lower tubing is an isomorphism. However, if X � V �WG and Y ˜ V , then there
exists U 2MG where U 4 Y and U ˜ V: Then by Lemmas 26 and 27, we have that
'w

G
.X /¤ 'w

G
.Y /, since cw.U / …H w

V
and 'w

G
.X /�H w

V
:
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Show that 'w
G

is surjective.

The facets need to be described. First, we will show that the bounding hyperplanes H w
V

each actually contain a facet of the convex hull. Then we will check that every facet
is contained in one of these hyperplanes. The dimension of the facets is now crucial.
Recall that the total dimension of the entire convex hull is n by Proposition 24. Now
the dimension of the convex hull of the points associated to any upper or lower tubing
is n � 1 due to the following argument: Since the dimension of JG is n and the
dimension of KG is n� 1; then the restriction of 'w

G
to a lower tubing V with thin

tubing t has image with dimension .n� jt j/C .jt j � 1/ D n� 1. The restriction of
'w

G
to an upper tubing V with broken tubes t1; : : : ; tk has image with dimension

n� .jt1jC � � �C jtk j//� 1C .jt1jC � � �C jtk j/D n� 1 as well.

By Lemmas 26 and 27, the hyperplanes H w
V

are bounding planes that do contain the
convex hulls of the restriction of 'w

G
to the respective lower and upper tubings; thus,

the image of that restriction is indeed a facet of the convex hull. We now show the
images of 'w

G
jV for the upper and lower tubings V constitute the entire set of facets.

This is equivalent to arguing that every codimension two face (a facet of the image of
'w

G
jV ) is also contained as a facet in 'w

G
jV 0 for some other upper or lower tubing V 0 .

By induction, the marked tubings U �W V are the preimages of these codimension
two faces. For each U �W V , it follows from Definition 5 that there is exactly one
other upper or lower tubing V 0 with U �W V 0 . Thus each codimension two face of the
convex hull is contained in precisely two of our set of upper and lower facets, showing
that there can be no additional facets.

Finally, we prove that for any face F of the the convex hull, there exists a tubing U

such that 'w
G
.U /D F: If F is a facet, we have already shown that F D 'w

G
.V / for

the corresponding upper or lower tubing V. Otherwise, let F be a convex hull of a
collection of maximal marked tubings fU 0g; and F �H w

V
for some upper or lower

tubing V: Then since U 0 � V for each U 0 , there is a preimage of F by induction: the
preimage of F under 'w

G
jV :
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