Volume 8, issue 4 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Homology and finiteness properties of $\mathrm{SL}_2(\mathbb{Z}[t,t^{-1}])$

Kevin P Knudson

Algebraic & Geometric Topology 8 (2008) 2253–2261
Bibliography
1 P. Abramenko, On finite and elementary generation of $\SL_2(\R)$ arXiv:0808.1095
2 K U Bux, K Wortman, A geometric proof that $\mathrm{SL}_2(\mathbb{Z}[t,t^{-1}])$ is not finitely presented, Algebr. Geom. Topol. 6 (2006) 839 MR2240917
3 K P Knudson, The homology of $\mathrm{SL}_2(F[t,t^{-1}])$, J. Algebra 180 (1996) 87 MR1375567
4 K P Knudson, Unstable homotopy invariance and the homology of $\mathrm{SL}_2(\mathbf{Z}[t])$, J. Pure Appl. Algebra 148 (2000) 255 MR1758571
5 S Krstić, J McCool, The non-finite presentability of $\mathrm{IA}(F_3)$ and $\mathrm{GL}_2(\mathbf{Z}[t,t^{-1}])$, Invent. Math. 129 (1997) 595 MR1465336
6 A Kurosch, Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934) 647 MR1512914
7 J P Serre, Trees, Springer (1980) MR607504
8 U Stuhler, Homological properties of certain arithmetic groups in the function field case, Invent. Math. 57 (1980) 263 MR568936
9 A A Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11 (1977) 221 MR0472792