Volume 8, issue 4 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Poincaré duality complexes in dimension four

Hans Joachim Baues and Beatrice Bleile

Algebraic & Geometric Topology 8 (2008) 2355–2389
Bibliography
1 H J Baues, Combinatorial homotopy and $4$–dimensional complexes, de Gruyter Expositions in Math. 2, de Gruyter (1991) MR1096295
2 H J Baues, D Conduché, The central series for Peiffer commutators in groups with operators, J. Algebra 133 (1990) 1 MR1063379
3 W Browder, Poincaré spaces, their normal fibrations and surgery, Invent. Math. 17 (1972) 191 MR0326743
4 A Cavicchioli, F Hegenbarth, On $4$–manifolds with free fundamental group, Forum Math. 6 (1994) 415 MR1277705
5 A Cavicchioli, F Spaggiari, On the homotopy type of Poincaré spaces, Ann. Mat. Pura Appl. $(4)$ 180 (2001) 331 MR1871619
6 I Hambleton, M Kreck, On the classification of topological $4$–manifolds with finite fundamental group, Math. Ann. 280 (1988) 85 MR928299
7 I Hambleton, M Kreck, P Teichner, Topological $4$–manifolds with geometrically $2$–dimensional fundamental groups arXiv:0802.0995
8 F Hegenbarth, S Piccarreta, On Poincaré four-complexes with free fundamental groups, Hiroshima Math. J. 32 (2002) 145 MR1925893
9 H Hendriks, Obstruction theory in $3$–dimensional topology: an extension theorem, J. London Math. Soc. $(2)$ 16 (1977) 160 MR0454980
10 J A Hillman, $\mathrm{PD}_4$–complexes with free fundamental group, Hiroshima Math. J. 34 (2004) 295 MR2120518
11 J A Hillman, $\mathrm{PD}_4$–complexes with fundamental group of $\mathrm{PD}_2$–group, Topology Appl. 142 (2004) 49 MR2071292
12 J A Hillman, Strongly minimal $\mathrm{PD}^4$–complexes, Preprint (2008)
13 A Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. $(3)$ 40 (1980) 87 MR560997
14 A Ranicki, Algebraic Poincaré cobordism, from: "Topology, geometry, and algebra: interactions and new directions", Contemp. Math. 279, Amer. Math. Soc. (2001) 213 MR1850750
15 G A Swarup, On a theorem of C B Thomas, J. London Math. Soc. $(2)$ 8 (1974) 13 MR0341474
16 P Teichner, Topological four-manifolds with finite fundamental group, PhD thesis, Johannes Gutenberg Uniersität Mainz (1992)
17 C B Thomas, The oriented homotopy type of compact $3$–manifolds, Proc. London Math. Soc. $(3)$ 19 (1969) 31 MR0248838
18 V G Turaev, Three-dimensional Poincaré complexes: homotopy classification and splitting, Mat. Sb. 180 (1989) 809 MR1015042
19 C T C Wall, Finiteness conditions for $\mathrm{CW}$–complexes, Ann. of Math. $(2)$ 81 (1965) 56 MR0171284
20 C T C Wall, Poincaré complexes. I, Ann. of Math. $(2)$ 86 (1967) 213 MR0217791
21 C T C Wall, Poincaré duality in dimension 3, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ. (2004) 1 MR2172477
22 J H C Whitehead, Combinatorial homotopy. II, Bull. Amer. Math. Soc. 55 (1949) 453 MR0030760
23 J H C Whitehead, A certain exact sequence, Ann. of Math. $(2)$ 52 (1950) 51 MR0035997