Volume 8, issue 4 (2008)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Topological nonrealization results via the Goodwillie tower approach to iterated loopspace homology

Nicholas Kuhn

Algebraic & Geometric Topology 8 (2008) 2109–2129
Abstract

We prove a strengthened version of a theorem of Lionel Schwartz [Invent. Math. 134 (1998) 211–227] that says that certain modules over the Steenrod algebra cannot be the mod 2 cohomology of a space. What is most interesting is our method, which replaces his iterated use of the Eilenberg–Moore spectral sequence by a single use of the spectral sequence converging to H(ΩnX; 2) obtained from the Goodwillie tower for ΣΩnX. Much of the paper develops basic properties of this spectral sequence.

Keywords
loopspace homology, Goodwillie towers
Mathematical Subject Classification 2000
Primary: 55S10
Secondary: 55T20, 55S12
References
Publication
Received: 8 July 2008
Revised: 10 October 2008
Accepted: 13 October 2008
Published: 19 November 2008
Authors
Nicholas Kuhn
Department of Mathematics
University of Virginia
Charlottesville, VA 22904
USA