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Cabling sequences of tunnels of torus knots

SANGBUM CHO

DARRYL MCCULLOUGH

In previous work, we developed a theory of tunnels of tunnel number 1 knots in S3 .
It yields a parameterization in which each tunnel is described uniquely by a finite
sequence of rational parameters and a finite sequence of 0s and 1s, that together
encode a procedure for constructing the knot and tunnel. In this paper we calculate
these invariants for all tunnels of torus knots

57M25

Introduction

In previous work [5], we developed a theory of tunnels of tunnel number 1 knots
in S3 . It shows that every tunnel can be obtained from the unique tunnel of the
trivial knot by a uniquely determined sequence of “cabling constructions”. A cabling
construction is determined by a rational parameter, called its “slope,” so this leads to a
parameterization of all tunnels of all tunnel number 1 knots by sequences of rational
numbers and “binary” invariants. Various applications of the theory are given in our
papers [5; 4; 6], as well as other work in preparation.

Naturally, it is of interest to calculate these invariants for known examples of tunnels.
In [5], they are calculated for all tunnels of 2–bridge knots, and in the present paper
we obtain them for all tunnels of torus knots. Tunnels of torus knots are a key example
in our study of the “depth” invariant in [6]. Also, torus knots are special in that their
complements have zero (Gromov) volume, so they should be critical to understanding
how hyperbolic volumes of complements of tunnel number 1 knots are related to the
sequences of slope and binary invariants of their tunnels.

In the next section, we will give the main results. Section 2, Section 3 and Section 4
provide a concise review of the parts of the theory from [5] that will be needed in this
paper. The main results are proven in Section 5 for the middle tunnels and Section 6
for the upper and lower tunnels.

The calculations in this paper enable us to recover the classification of torus knot tunnels
given by M Boileau, M Rost and H Zieschang [2] and Y Moriah [8], although not their
result that these are all the tunnels. We give this application in Section 7 below.
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All of our algorithms to find the invariants are straightforward to implement computa-
tionally, and we have done this in software available at [7]. Sample computations are
given in Section 1.

In work in progress, we are developing a general method for computing these invariants
for all .1; 1/–tunnels. In particular, this will recover the calculations for tunnels of
2–bridge knots, given in [5], and for some of the tunnels of torus knots that we give
here (the upper and lower tunnels, but not the middle tunnels). Still, we think it is
worthwhile to give the method of this paper, which is more direct and more easily
visualized.

We are grateful to the referee for a prompt and careful reading of the original manuscript.

The second author was supported in part by NSF grant DMS-0802424.

1 The main results

To set notation, consider a (nontrivial) .p; q/ torus knot Kp;q , contained in a standard
torus T bounding a solid torus V � S3 . In �1.V /, Kp;q represents p times a
generator. The complementary torus S3�V will be denoted by W .

The tunnels of torus knots were classified by M Boileau, M Rost and H Zieschang
[2] and Y Moriah [8]. The middle tunnel of Kp;q is represented by an arc in T that
meets Kp;q only in its endpoints. The upper tunnel of Kp;q is represented by an arc ˛
properly imbedded in W , such that the circle which is the union of ˛ with one of the
two arcs of Kp;q with endpoints equal to the endpoints of ˛ is a deformation retract of
W . The lower tunnel is like the upper tunnel, but interchanging the roles of V and W .
In certain cases, some of these tunnels are equivalent, as we will detail in Section 7.

To state our results for the middle tunnels, assume for now that p; q > 1. Since Kp;q

and Kq;p are equivalent by an orientation-preserving homeomorphism of S3 taking

middle tunnel to middle tunnel, we may also assume that p > q . Put U D

�
1 1

0 1

�
and

LD

�
1 0

1 1

�
.
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Cabling sequences of tunnels of torus knots 3

Theorem 1.1 Let p and q be relatively prime integers with p > q � 2. Write p=q as
a continued fraction Œn1; n2; : : : ; nk � with all nj positive and nk ¤ 1. Let

Ai D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

L �n1 � i � �1

U 0� i � n2� 1

L n2 � i � n2C n3� 1

U n2C n3 � i � n2C n3C n4� 1

� � �

L k odd and n2C n3C � � �C nk�1 � i � n2C n3C � � �C nk � 1

U k even and n2C n3C � � �C nk�1 � i � n2C n3C � � �C nk � 1:

Put N D n2C n3C � � �C nk � 2, and for 0� t �N put

Mt D

�
at bt

ct dt

�
D

�n1Y
iDt

Ai ;

where the subscripts in the product occur in descending order. Then:

(i) the middle tunnel of Kp=q is produced by N C 1 cabling constructions whose
slopes m0 , m1; : : : , mN are�

1

2n1C 1

�
; a1d1C b1c1; a2d2C b2c2; : : : ; aN dN C bN cN ;

(ii) for each t , the cabling corresponding to the slope invariant mt produces the
.at C ct ; bt Cdt / torus knot; in particular, the first cabling produces the .2n1C

1; 2/ torus knot,

(iii) the binary invariants of the cabling sequence of this tunnel, for 2� t �N , are
given by st D 1 if At ¤At�1 and st D 0 otherwise.

If pq < 0, then Kp;q is equivalent to Kjpj;jqj by an orientation-reversing homeomor-
phism taking middle tunnel to the middle tunnel, so the cabling slopes for middle
tunnel of Kp;q are just the negatives of those of Kjpj;jqj given in Theorem 1.1, while
the binary invariants are unchanged.

It is not difficult to implement this calculation computationally, and we have made a
script for this available [7]. For K41;29 , we find the following.

TorusKnots> middleSlopes(41, 29)
[ 1/3 ], 5, 17, 29, 99, 169, 577
and for K181;�48
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TorusKnots> middleSlopes(181, -48)
[ 6/7 ], -15, -23, -31, -151, -271, -883, -2157, -3431

The torus knots that are the intermediate knots in the cabling sequence are found by
the following.

TorusKnots> intermediates( 41, 29 )
(3,2), (4,3), (7,5), (10,7), (17,12), (24,17), (41,29)
and the binary invariants by
TorusKnots> binaries(41, 29)
[1, 0, 1, 0, 1]

Now we consider the upper and lower tunnels. Since these are semisimple tunnels,
their binary invariants si are all 0 (see Section 4). The cabling slopes are given as
follows.

Theorem 1.2 Let p and q be relatively prime integers, both greater than 1. For
integers k with 1� k � q , define integers pk by

pk D dkp=qe Dminfj j j q=p � kg ;

and let k0 Dminfk j pk > 1g. Then the upper tunnel of Kp;q is produced by q � k0

cabling operations, whose slopes are

Œ1=.2pk0
� 1/�; 2pk0C1� 1; : : : ; 2pq�1� 1:

As before, when pq < 0 the slopes are just the negatives of those given in Theorem
1.2 for Kjpj;jqj . The lower tunnel of Kp;q is equivalent to the upper tunnel of Kq;p ,
so Theorem 1.2 also finds the slope sequences of all lower tunnels.

Again, this algorithm is easily scripted and is available at [7]. Sample calculations are
as follows.

TorusKnots> upperSlopes( 18, 7 )
[ 1/ 5 ], 11, 15, 21, 25, 31
TorusKnots> upperSlopes( 7, 18 )
[ 1/ 3 ], 3, 3, 5, 5, 7, 7, 7, 9, 9, 11, 11, 11, 13, 13
TorusKnots> lowerSlopes( 18, 7 )
[ 1/ 3 ], 3, 3, 5, 5, 7, 7, 7, 9, 9, 11, 11, 11, 13, 13

Theorem 1.1 and Theorem 1.2 show immediately the following integrality result.
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Corollary 1.3 Let � be a tunnel of a torus knot. Then the first slope invariant m0 of
� is of the form Œ1=n� for some odd integer n, and all other slopes are odd integers.

For the middle tunnels, the integrality of the slope invariants mi for i � 1 follows from
the work of Scharlemann and Thompson [10] (which inspired our work in [5]). For as
shown in [5, Section 14], their invariant �.�/ is our final (or “principal”) slope invariant
mN reduced modulo 2 (that is, viewed as an element of Q=2Z). Scharlemann and
Thompson computed that the �–invariants of the middle tunnels are 1, so it follows
that mN must be an odd integer. As our construction in Section 5 will show, the
intermediate slope invariants mi are principal slope invariants for middle tunnels of
other torus knots, so they too must be odd integers.

2 Tunnels as disks

This section gives a brief overview of the theory in [5]. Fix a standard unknotted
handlebody H in S3 . Regard a tunnel of K as a 1–handle attached to a neighborhood
of K to obtain an unknotted genus–2 handlebody. Moving this handlebody to H , a
cocore disk for the 1–handle moves to a nonseparating disk in H . The indeterminacy
due to the choice of isotopy is exactly the Goeritz group G , studied in Akbas [1],
Cho [3] and Scharlemann [9]. Consequently, the collection of all tunnels of all tunnel
number 1 knots, up to orientation-preserving homeomorphism, corresponds to the
orbits of nonseparating disks in H under the action of G . From [1; 3; 9], the action
can be understood and the equivalence classes, ie the tunnels, arranged in a treelike
structure which encodes much of the topological structure of tunnel number 1 knots
and their tunnels.

When a nonseparating disk � �H is regarded as a tunnel, the corresponding knot is a
core circle of the solid torus that results from cutting H along � . This knot is denoted
by K� .

A disk � in H is called primitive if there is a disk � 0 in S3�H such that @� and @� 0

cross in one point in @H . Equivalently, K� is the trivial knot in S3 . All primitive
disks are equivalent under the action of G . This equivalence class is the unique tunnel
of the trivial knot.

A primitive pair is an isotopy class of two disjoint nonisotopic primitive disks in H . A
primitive triple is defined similarly.

Algebraic & Geometric Topology, Volume 9 (2009)



6 Sangbum Cho and Darryl McCullough

3 Slope disks and cabling arcs

This section gives the definitions needed for computing slope invariants. Fix a pair
of nonseparating disks � and � (for “left” and “right”) in the standard unknotted
handlebody H in S3 , as shown abstractly in Figure 1. The pair f�; �g is arbitrary, so
in the true picture in H in S3 , they will typically look a great deal more complicated
than the pair shown in Figure 1. Let N be a regular neighborhood of �[ � and let B

be the closure of H �N . The frontier of B in H consists of four disks which appear
vertical in Figure 1. Denote this frontier by F , and let † be B \ @H , a sphere with
four holes.

� �

Figure 1: A slope disk of f�; �g , and a pair of its cabling arcs contained in B .

A slope disk for f�; �g is an essential disk in H , possibly separating, which is contained
in B �F and is not isotopic to any component of F . The boundary of a slope disk
always separates † into two pairs of pants, conversely any loop in † that is not
homotopic into @† is the boundary of a unique slope disk. (Throughout our work,
“unique” means unique up to isotopy in an appropriate sense.) If two slope disks are
isotopic in H , then they are isotopic in B .

An arc in † whose endpoints lie in two different boundary circles of † is called a
cabling arc. Figure 1 shows a pair of cabling arcs disjoint from a slope disk. A slope
disk is disjoint from a unique pair of cabling arcs, and each cabling arc determines a
unique slope disk.

Each choice of nonseparating slope disk for a pair � D f�; �g determines a corre-
spondence between Q[ f1g and the set of all slope disks of �, as follows. Fixing
a nonseparating slope disk � for �, write .�I �/ for the ordered pair consisting of �
and � .

Definition 3.1 A perpendicular disk for .�I �/ is a disk �? , with the following
properties:
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(1) �? is a slope disk for �,

(2) � and �? intersect transversely in one arc,

(3) �? separates H .

There are infinitely many choices for �? , but because H � S3 there is a natural way
to choose a particular one, which we call �0 . It is illustrated in Figure 2. To construct
it, start with any perpendicular disk and change it by Dehn twists of H about � until
the core circles of the complementary solid tori have linking number 0 in S3 .

�C �C

�� ��

� � �

K� K�

�0

Figure 2: The slope-zero perpendicular disk �0 . It is chosen so that K� and
K� have linking number 0 .

For calculations, it is convenient to draw the picture as in Figure 2, and orient the
boundaries of � and �0 so that the orientation of �0 (the “x–axis”), followed by the
orientation of � (the “y –axis”), followed by the outward normal of H , is a right-hand
orientation of S3 . At the other intersection point, these give the left-hand orientation,
but the coordinates are unaffected by changing the choices of which of f�; �g is � and
which is � , or changing which of the disks �C , �� , �C , and �� are “C” and which
are “�”, provided that the “C” disks both lie on the same side of �[�[� in Figure 2.

Let e† be the covering space of † such that:

(1) e† is the plane with an open disk of radius 1=8 removed from each point with
coordinates in Z�ZC .1

2
; 1

2
/,

(2) the components of the preimage of � are the vertical lines with integer x–
coordinate,

(3) the components of the preimage of �0 are the horizontal lines with integer
y –coordinate.
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Figure 3 shows a picture of e† and a fundamental domain for the action of its group of
covering transformations, which is the orientation-preserving subgroup of the group
generated by reflections in the half-integer lattice lines (that pass through the centers of
the missing disks). Each circle of @e† double covers a circle of @†.

�C �� �C ��

�C �� �C ��

�C �� �C ��

�C �� �C ��

�C ��

�C ��

�0

�

Figure 3: The covering space z†! † , and some lifts of a pair of Œ1;�3�–
cabling arcs. The shaded region is a fundamental domain.

Each lift of a cabling arc ˛ of † to e† runs from a boundary circle of e† to one of
its translates by a vector .p; q/ of signed integers, defined up to multiplication by
the scalar �1. In this way ˛ receives a slope pair Œp; q�D f.p; q/; .�p;�q/g, and is
called a Œp; q�–cabling arc. The corresponding slope disk is assigned the slope pair
Œp; q� as well.

An important observation is that a Œp; q�–slope disk is nonseparating in H if and only
if q is odd. Both happen exactly when a corresponding cabling arc has one endpoint in
�C or �� and the other in �C or �� .

Definition 3.2 Let �, � , and � be as above, and let �D f�; �g. The .�I �/–slope of
a Œp; q�–slope disk or cabling arc is q=p 2Q[f1g.

The .�I �/–slope of �0 is 0, and the .�I �/–slope of � is 1.

Slope disks for a primitive pair are called simple disks, and are handled in a special
way. Rather than using a particular choice of � from the context, one chooses � to be
some third primitive disk. Altering this choice can change Œp; q� to any ŒpCnq; q�, but
the quotient p=q is well-defined as an element of Q=Z[f1g. This element Œp=q� is
called the simple slope of the slope disk. The simple slope is Œ0� exactly when the slope
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disk is itself primitive, and has q odd exactly when the simple disk is nonseparating.
Simple disks have the same simple slope exactly when they are equivalent by an element
of the Goeritz group.

4 The cabling construction

In a sentence, the cabling construction is to “Think of the union of K and the tunnel
arc as a � –curve, and rationally tangle the ends of the tunnel arc and one of the arcs of
K in a neighborhood of the other arc of K .” We sometimes call this “swap and tangle,”
since one of the arcs in the knot is exchanged for the tunnel arc, then the ends of other
arc of the knot and the tunnel arc are connected by a rational tangle.

Figure 4 illustrates two cabling constructions, one starting with the trivial knot and
obtaining the trefoil, then another starting with the tunnel of the trefoil.

�0 � �1 �0

�0

�1

�1

�0

�0

�1

�0

�0

Figure 4: Examples of the cabling construction.

More precisely, begin with a triple f�; �; �g, regarded as a pair �Df�; �g with a slope
disk � . Choose one of the disks in f�; �g, say �, and a nonseparating slope disk � 0 of
the pair f�; �g, other than � . This is a cabling operation producing the tunnel � 0 from
� . In terms of the “swap and tangle” description of a cabling, � is dual to the arc of
K� that is retained, and the slope disk � 0 determines a pair of cabling arcs that form
the rational tangle that replaces the arc of K� dual to � .
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Provided that f�; �; �g was not a primitive triple, we define the slope of this cabling
operation to be the .f�; �gI �/–slope of � 0 . When f�; �; �g is primitive, the cabling
construction starts with the tunnel of the trivial knot and produces an upper or lower
tunnel of a 2–bridge knot, unless � 0 is primitive, in which case it is again the tunnel of
the trivial knot and the cabling is called trivial. The slope of a cabling starting with a
primitive triple is defined to be the simple slope of � 0 . The cabling is trivial when the
simple slope is Œ0�.

[5, Theorem 13.2] shows that every tunnel of every tunnel number 1 knot can be
obtained by a uniquely determined sequence of cabling constructions. The associated
cabling slopes form a sequence

m0;m1; : : : ;mn D Œp0=q0�; q1=p1; : : : ; qn=pn

where m0 2Q=Z and each qi is odd.

There is a second set of invariants associated to a tunnel. Each mi is the slope of a
cabling that begins with a triple of disks f�i�1; �i�1; �i�1g and finishes with f�i ; �i ; �ig.
For i � 2, put si D 1 if f�i ; �i ; �ig D f�i�2; �i�1; �ig, and si D 0 otherwise. In terms
of the swap-and-tangle construction, the invariant si is 1 exactly when the rational
tangle replaces the arc that was retained by the previous cabling (for i D 1, the choice
does not matter, as there is an element of the Goeritz group that preserves �0 and
interchanges �0 and �0 ).

In the sequence of triples described in the previous paragraph, the disks �i and �i form
the principal pair for the tunnel �i . They are the disks called �C and �� in [10].

A nontrivial tunnel �0 produced from the tunnel of the trivial knot by a single cabling
construction is called a simple tunnel. As already noted, these are the “upper and lower”
tunnels of 2–bridge knots. Not surprisingly, the simple slope m0 is a version of the
standard rational parameter that classifies the 2–bridge knot K�0

.

A tunnel is called semisimple if it is disjoint from a primitive disk, but not from any
primitive pair. The simple and semisimple tunnels are exactly the .1; 1/–tunnels, that
is, the upper and lower tunnels of knots in 1–bridge position with respect to a Heegaard
torus of S3 . A tunnel is semisimple if and only if all si D 0. The reason is that both
conditions characterize cabling sequences in which one of the original primitive disks
is retained in every cabling; this corresponds to the fact that the union of the tunnel arc
and one of the arcs of the knot is unknotted.

A tunnel is called regular if it is neither primitive, simple, or semisimple.
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q
q� .qq0� 1/=p

.qq0� 1/=p

� �

�

q0 p� q0 p

.p; q/

�

�

�

K�

K�

Figure 5: The properties of q0 . The darker segments correspond to K� , a
.q0; .qq0� 1/=p/ torus knot. The picture on the right shows K� in the torus
T � S3 , and K� pulled slightly outside of T .

5 The middle tunnels

In this section we will prove Theorem 1.1. We have relatively prime integers p> q� 2,
and we use the notations T , V , and W of Section 1.

First we examine a cabling operation that takes the middle tunnel � and produces a
middle tunnel of a new torus knot. Let q0 be the integer with 0 < q0 < p such that
qq0 � 1 .mod p/. If the principal pair f�; �g of � is positioned as shown in Figure 5
and Figure 6 (our inductive construction of these tunnels will show that the pair shown
in the figures is indeed the principal pair), then K� is a .q0; .qq0� 1/=p/ torus knot,
and K� is a .p�q0; q� .qq0�1/=p/ torus knot. We set .p1; q1/D .q

0; .qq0�1/=p/

and .p2; q2/ D .p � q0; q � .qq0 � 1/=p/, so that K� and K� are respectively the
.p1; q1/ and .p2; q2/ torus knots.

In Figure 5, the linking number of K� with K� , up to sign conventions, is q1p2 . One
way to see this is to note that a Seifert surface for K� can be constructed using q2

meridian disks of V and p2 meridian disks of W (by attaching bands contained in a
small neighborhood of T ). When K� is pulled slightly outside of V , as indicated in
Figure 5, it has q1 intersections with each of the p2 meridian disks of W , all crossing
the disks in the same direction.

Figure 6 shows the new tunnel disk � 0 for a cabling construction that produces a
.pCp2; qC q2/ torus knot K� 0 . This disk meets T perpendicularly. The drawing on
the right in Figure 6 illustrates the setup for the calculation of the .f�; �gI �/–slope
pair of � 0 . The qp2 turns of �0 , with the case qp2 D 2 drawn in the figure, make the
copies of K� DKp;q and K� DKp2;q2

in its complement have linking number 0. A
cabling arc for � 0 is shown. Examination of its crossings with @� and @�0 shows that
the slope pair of � 0 is Œ1; 2qp2C 1�.
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�

�

K� 0

� 0 �

� 0
K� 0

�C

�0

�

�C

��

qp2

��

Figure 6: The cabling construction that replaces � (compare with Figure 2)
with � 0 . The left drawing shows the new tunnel disk � 0 and the knot K� 0 .
The right drawing shows a cabling arc for � 0 , running from �C to �� , and
the disks � and �0 used to calculate its slope.

Put U D

�
1 1

0 1

�
and LD

�
1 0

1 1

�
. If K1 is a .p1; q1/ torus knot and K2 is a .p2; q2/

torus knot, we denote by M.K1;K2/ the matrix
�

p1 q1

p2 q2

�
. In our case, this is the

matrix M.K�;K�/. Adding the rows of M.K�;K�/ gives .p; q/, corresponding to
K� , so

M.K� ;K�/D U �M.K�;K�/ :

The left drawing of Figure 6 can be repositioned by isotopy so that �, � , and � 0 look
respectively as did �, � , and � in the original picture, with � 0 as the tunnel of the
.pCp2; qCq2/ torus knot. Thus the procedure can be repeated, each time multiplying
the matrix by another factor of U .

Figure 7 illustrates the similar calculation of the slope of the cabling construction
replacing � by a new tunnel � 0 . This produces a .pCp1; qC q1/ torus knot. In this
case we have

M.K�;K� /DL �M.K�;K�/:
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�

��

�0

��

�C

�C

pq1

Figure 7: Calculation of the slope of � 0 for a cabling construction replacing
� . The cabling arc runs from �� to �C .

The slope pair of � 0 is Œ1; 2qp1� 1�. One might expect 2qp1C 1 as the second term,
in analogy with the construction replacing � . However, as seen in Figure 7, the pq1

twists needed in �0 are in the same direction as the twists in the calculation for � , not
in the mirror-image sense. This results in two fewer crossings of the cabling arc for � 0

with �0 than before. In fact, the slope pairs for the two constructions can be described
in a uniform way: For either of the matrices M.K� ;K�/ and M.K�;K� /, a little bit
of arithmetic shows that the second entry of the slope pair for the cabling operation
that produced them is the sum of the product of the diagonal entries and the product of
the off-diagonal entries, that is, Œ1;pq2C qp2� in the first case and Œ1;pq1C qp1� in
the second.

We can now describe the complete cabling sequence. Still assuming that p and q

are both positive and p > q , write p=q as Œn1; n2; : : : ; nk � with all ni positive. We
may assume that nk ¤ 1. According as k is even or odd, we consider the product
U nk Lnk�1 � � �U n2Ln1 or Lnk U nk�1 � � �U n2Ln1 .

Start with a trivial knot regarded as a .1; 1/ torus knot, and the “middle” tunnel � in
T . For the disks � and � shown in Figure 6, K� is a .1; 0/ torus knot and K� is a
.0; 1/ torus knot. For this positioning of the trivial knot, the disks �, � , and � are all
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primitive, so f�; �g may be regarded as the principal pair for the tunnel � . Cablings of
the two types above will preserve the fact that the pair f�; �g shown in Figure 6 is the
principal pair.

At this point, the matrix M.K�;K�/ is the identity matrix. Multiplying by Ln1

corresponds to doing n1 cabling constructions of the second type described above
(replacing �). These cablings have slope Œ1�D Œ0� 2Q=Z, so are trivial cablings, but
their effect is to produce the trivial knot positioned as an .n1C1; 1/ torus knot. At that

stage, M.K�;K�/ is
�

1 0

n1 1

�
, which is the matrix M�1 in the statement of Theorem

1.1. Then, multiplying by U corresponds to a nontrivial cabling construction of the first

type (replacing �). The new matrix M.K� ;K�/ is
�

n1C 1 1

n1 1

�
, or in the notation of

Theorem 1.1, M0 , and the knot K� 0 is a .2n1C 1; 2/ torus knot. As explained above,
the construction has slope pair Œ1; 2n1C1�, so the simple slope is m0D Œ1=.2n1C1/�.
Continue by multiplying n2�1 additional times by U , then n3 times by L and so on,
performing additional cabling constructions with slopes calculated as above from the
matrices of the current K� , K� , and K� . This produces the sequence of matrices Mt

in Theorem 1.1 and the corresponding slope invariants mt D atdt C btct .

At the end, there is no cabling construction corresponding to the last factor L or U . For
specificity, suppose k was even and the product was U nk Lnk�1 � � �U n1Ln1 . At the
last stage, we apply nk � 1 cabling constructions corresponding to multiplications by
U , and arrive at a tunnel � for which M.K�;K�/ is U nk�1Lnk�1 � � �U n2Ln1 DMN .
The sum of the rows is then .p; q/ (multiplying by U and using the case “q=s” of
[5, Lemma 14.3]), so K� is the .p; q/ torus knot. The case when k is odd is similar
(multiplying by L and using the “p=r ” case of [5, Lemma 14.3]). In summary, there
are �1C

Pk
iD2 ni D N C 1 nontrivial cabling constructions, whose slopes can be

calculated as in Theorem 1.1.

When mt is calculated from the matrix
�

at bt

ct dt

�
, the knot K� is an .atCct ; btCdt /

torus knot, which is part (ii) of Theorem 1.1. For part (iii), we have st D 1 when the
constructions change from replacing � to replacing �, or vice versa. This occurs when
we change from multiplying by U to multiplying by L, or vice versa, that is, when
At ¤At�1 .

6 The upper and lower tunnels

Again we use the notations T , V , and W of previous sections. Denoting the unit
interval Œ0; 1� by I , fix a product T � I �W with T D T � f0g.
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Definition 6.1 Let p and q be relatively prime integers, both greater than 1. For
integers k with 1� k � q , put

pk D dkp=qe Dminfj j j q=p � kg :

Figure 8 shows the points .pk ; k/ for 1 � k � q for the cases .p; q/ D .3; 7/ and
.p; q/D .7; 3/.

Figure 8: The points .pk ; k/ for 1� k � q for the cases .p; q/D .3; 7/ and
.p; q/D .7; 3/ .

Define knots K.p; qI k/� T � I as follows.

Definition 6.2 In the universal cover R2 � I of T � I , take the arc (ie line segment)
from ..0; 0/; 0/ to ..kp=q; k/; 0/. If k < q , add to this arc the arc from ..kp=q; k/; 0/

to ..kp=q; k/; 1/, followed by the arc from ..kp=q; k/; 1/ to ..pk ; k/; 1/, followed
by the arc from ..pk ; k/; 1/ to ..pk ; k/; 0/. The image of these arcs in T � I � S3 is
K.p; qI k/. In particular, K.p; qI q/ is the standard .p; q/ torus knot.

Figure 9 shows the knots K.3; 5I 1/, K.3; 5I 2/, K.3; 5I 3/, and K.3; 5I 4/.

The upper tunnel �.p; qI k/ of K.p; qI k/ is best described by a picture, given as
Figure 10. In particular, �.p; qI q/ is the standard upper tunnel of the .p; q/ torus knot.
Figure 10 shows tunnel arcs for the upper tunnels �.3; 5I 3/ and �.3; 5I 4/. We will
see, inductively, that the unions of such knots with the particular arcs shown in Figure
10 are the � –curves dual to the disks of the principal vertex of the tunnel.
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Figure 9: The knots K.3; 5I 1/ , K.3; 5I 2/ , K.3; 5I 3/ , and K.3; 5I 4/ . The
first two are trivial, K.3; 5I 3/ is a .2; 3/ torus knot, and K.3; 5I 4/ is a .2; 5/
torus knot.

Figure 10: Representative arcs of the tunnels �.3; 5I 3/ and �.3; 5I 4/ .

The cabling construction that takes �.p; qI k/ to �.p; qI kC 1/ is illustrated in Figure
11 for the case of �.3; 5I 3/. The resulting knot is isotopic to the K.3; 5I 4/ shown in
Figure 10, by pushing the arc that was the tunnel arc of �.3; 5I 3/ down into T and
stretching out the new tunnel arc until it looks like the one in Figure 10.

We will now compute the slopes of these cabling operations. Figure 12 illustrates the
calculation for the cabling taking � D �.p; qI k/ to �.p; q; kC 1/. The ball shown in
the top drawing in Figure 12 is a regular neighborhood of the arc in the raised part of
K.p; qI k/ that connects the endpoints of �.p; qI k/. The disk � will be replaced.

The 0–slope disk �0 makes pk turns around the ball. To see this, consider a perpendic-
ular disk �? for � constructed as follows. In the boundary of the ball in Figure 12, take
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Figure 11: The result of the cabling construction producing �.3; 5I 4/ from
�.3; 5I 3/ . After isotopy, this becomes the second drawing in Figure 10.

�C

�C
�0

�

��

��

�C

�

��

�0

�

�C

�

��

Figure 12: The slope calculation for the cabling taking �.p; qI k/ to
�.p; q; kC 1/ . In the top picture, �0 makes pk turns around the ball; for the
example drawn here, pk D 3 . The cabling arc for the new tunnel disk has
2pk � 1 crossings with �0 , producing the slope pair Œ1; 2pk � 1� as seen in
the standard picture.

an arc ˛ connecting @�C to @�� , running across the front of the ball between @�C and
@�� , and cutting across @� in a single point. The frontier of a regular neighborhood
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of �C [ ˛ [ �� in the ball is �? . That is, �? is like �0 except that it has no turns
around the back of the ball. The representative of K� disjoint from �? is isotopic
to K.p; qI k/, while the representative of K� is a core circle of W that completely
encircles this K.p; qI k/. In the homology of V [T � I , K.p; qI k/ represents pk

times the generator, so (for some choice of linking conventions) K� has linking number
pk with K� . Adding pk turns around the ball to �? as in the top drawing of Figure 12
decreases this linking number to 0, and gives the perpendicular disk shown in Figure
12, which must therefore be �0 .

Both diagrams in Figure 12 show the cabling arc for the slope disk that defines
�.p; qI kC1/, and the bottom picture verifies that its slope coordinates are Œ1; 2pk�1�.
This yields the value for mk given in Theorem 1.2.

We can begin the process with the knot K.p; qI 1/. For the standard tunnel arc, all
three of the disks �, � , and � in the first drawing of Figure 12 are primitive, since K� ,
K� , and K� are trivial knots. For k < k0 , pk D 1 and K.p; qI kC1/ is a trivial knot.
This can be seen geometrically, but also follows inductively from the fact that these

cablings have simple slope
h 1

2 � 1� 1

i
D Œ0� 2Q=Z. The process terminates with the

cabling corresponding to k D pq�1 , which produces K.p; qI q/DKp;q .

7 Applications

Here we will recover the classification of the torus knot tunnels of M Boileau, M Rost,
and H Zieschang [2] and Y Moriah [8], although not their result that these are all the
tunnels. We consider three cases for Kp;q .

Case I. jp� qj D 1.

We may assume that .p; q/ D .nC 1; n/ with n � 2. For both the upper and lower
tunnels, Theorem 1.2 gives Œ1=3�, 5, 7; : : : , 2n� 1 as the slope sequence. For the
middle tunnel, Theorem 1.1 gives the same slope sequence, and all si D 0, showing
that all three tunnels are the same.

Case II. jp� qj ¤ 1, but p �˙1 mod q or q �˙1 mod p .

Again we assume that p; q � 2, and reduce to the case when p > q . Suppose first
that p D mq C 1 with m � 2. For the upper tunnel, Theorem 1.2 gives slopes
Œ1=.2mC 1/�; 4mC 1; 6mC 1; : : : ; 2m.q� 1/C 1 (to find the pk , notice that the line
segment in R2 from .1; 0/ to .mqC1; q/ passes through the lattice points .mC1; 1/,
.2mC 1; 2/, .3mC 1; 3/, and so on, then slide the left endpoint from .1; 0/ to .0; 0/).
This equals the sequence obtained for the middle tunnel using the continued fraction
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expansion .mqC 1/=q D Œm; q�, and Theorem 1.1 also gives all si D 0. For the lower
tunnel, the sequence is Œ1=3�; 3; : : : ; 3; 5; : : : ; 5; 7; : : : ; 7; : : : ; 2q�1, where each value
is repeated m times, except that 3 appears m� 1 times. Thus the middle tunnel is
equivalent to the upper tunnel and distinct from the lower tunnel.

For the case when p Dmq � 1, a similar examination (using the line segment from
.0; 0/ to .mq; q/ and sliding the right-hand endpoint to .mq� 1; q/) finds the slopes
to be Œ1=.2m � 1/�; 4m � 1; : : : ; 2m.q � 1/ � 1. The continued fraction expansion
is .mq � 1/=q D Œm � 1; 1; q � 1�, and the algorithm for the middle tunnel gives
the same slope sequence and all si D 0. For the lower tunnel, the sequence is
Œ1=3�; 3; : : : ; 3; 5; : : : ; 5; 7; : : : ; 7; : : : ; 2q � 1, where each value is repeated m times,
except that 3 and 2q � 1 are repeated m � 1 times. Again, the middle tunnel is
equivalent to the upper tunnel and distinct from the lower tunnel.

Case III. Neither Case I nor Case II

In these cases, Theorem 1.1 shows that the middle tunnel has at least one nonzero
value of si , so is distinct from the upper and lower tunnels. Reducing to the case when
p > q � 2, Theorem 1.2 shows that the slopes are all distinct for the upper tunnel, but
there is a repeated slope for the lower tunnel. This completes the verification.

We note that the cases when there are fewer than three tunnels are exactly those for
which the middle tunnel is semisimple. This verifies the equivalence of the first two
conditions in the following proposition. The equivalence of the first and third is from
[2].

Proposition 7.1 For the .p; q/ torus knot Kp;q , the following are equivalent:

(1) p 6� ˙1 .mod q/ and q 6� ˙1 .mod p/,

(2) the middle tunnel is regular,

(3) Kp;q has exactly three tunnels.
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