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Perturbed Floer homology of some fibered three-manifolds

ZHONGTAO WU

In this paper, we write down a special Heegaard diagram for a given product three-
manifold †g�S1 . We use the diagram to compute the perturbed cHF for the 3–torus
and the perturbed HFC for nontorsion spinc –structures for †g �S1 when g � 2 .

53D40

1 Introduction

Heegaard Floer homology was introduced by Ozsváth and Szabó [4; 5] and has proved
to be a powerful 3–manifold invariant. The construction of the invariant requires
an admissibility condition though, which in general is not met by those “simplest”
Heegaard diagrams for a given 3–manifold Y with b1.Y / � 1. A variant of the
construction using the Novikov ring overcomes this shortcoming, and in some sense
embraces the ordinary homology as a special case. The invariants, usually called
perturbed Heegaard Floer homology, have proved to be useful in some situations. For
example, Jabuka and Mark made use of them in calculating Ozsváth–Szabó invariants
for certain closed 4–manifolds [1].

This paper aims to compute the perturbed Heegaard Floer homologies for product
three-manifolds †g �S1 . The result is a little surprising as we find that the homology
groups are independent of the exact direction of perturbations.

We would also like to point out that although the computation is made solely for the
product three-manifolds in this paper, the method can in fact be applied to the more
general setting of certain fibered three-manifolds; see the author’s paper [8].

This paper is organized as follows: In Section 2, we review the backgrounds of the
Novikov ring A and the perturbed Heegaard Floer homology. Treating homology
groups as A–vector spaces, we prove a rank inequality and an Euler characteristic
identity. In Section 3, we write down a special Heegaard diagram for T 3 and compute
its perturbed Heegaard Floer homology. In Section 4, we compute the homology for
nontorsion Spinc structures for †g �S1 .
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2 Preliminaries on perturbed Heegaard Floer homology

Ozsváth and Szabó [5, Section 11] sketch a variant of Heegaard Floer homologies
analogous to the perturbed version of Seiberg–Witten Floer homology. For its construc-
tion, we work over the Novikov ring A (which is in fact a field) consisting of formal
power series

P
r2R ar T r , for which ar 2Z2 and #far j ar ¤ 0; r <N g<1 for any

N 2R, endowed with the multiplication law�X
r2R

ar T r

�
�

�X
r2R

br T r

�
D

X
r2R

�X
s

asbr�s

�
T r :

For a pointed Heegaard diagram .†; ˛; ˇ; z/ for Y , define the boundary map @ by

@CŒx; i �D
X

y

� X
f�2�2.x;y/ jnz .�/�ig

# �M.�/TA.�/ � Œy; i � nz.�/�

�
;

where A.�/ denotes the area of the domain D.�/. This construction depends on
the area of each periodic domain, which can be thought of as a real two-dimensional
cohomology class � 2H 2.Y IR/. It is also shown that the corresponding homology
groups, denoted by HFC.Y; sI �/, are invariants of the underlying topological data
only.

It is a natural question to ask for an explicit dependence of HFı.Y I �/ on �. We have
not achieved this yet, but our result provides a bound for the rank of cHF.Y I �/ as a
vector space over A. More precisely, it is bounded by cHF.Y I!/ and cHF.Y I�/ for
two very special cohomology classes Œ!� and Œ��, where Œ!� is a generic class in the
sense that !.D/¤ 0 for any integral periodic domain D and � is a trivial class where
�.D/D 0 for any periodic domain D .

Proposition 2.1 (1) The rank of cHF.Y I�/ over A is the same as the rank of the
ordinary unperturbed cHF.Y / over Z2 .

(2) The rank of cHF.Y I!/ over A is the same as the rank of the nontorsion part of
the completely twisted cHF.Y IZ2ŒH

1.Y IZ/�/ over the ring ZŒH 1.Y IZ/�.

(3) In general, we have a rank inequality

rank cHF.Y I!/� rank cHF.Y I �/� rank cHF.Y I�/:
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The proof is based on the following simple fact from linear algebra:

Lemma 2.2 The rank of a matrix M is the largest integer n such that there exists
some n� n minor of M with nonzero determinant.

Note that Lemma 2.2 provides us an algorithm to compute the rank of homology: choose
a basis for the vector space cCF , and write the boundary map @ in a matrix form M .
By definition, cHF D Ker M=Im M and dim.Ker M /C dim.Im M /D dim cCF , so

rank cHF D dim Ker M � dim Im M D dim cCF� 2 rank M:

In other words, in order to find the rank of cHF , it suffices to find the rank of M , which
in turn is completely determined by the determinants of all its minors.

Both A and Z2ŒH
1.Y IZ/� consist of formal power series as their elements – this is

a special property we are going to employ in deciding if a determinant is zero. More
specifically, for a matrix .Mij /D .T

�ij / 2Mat.Z2ŒH
1.Y IZ/�/,

det M D
X

f�1;�2;:::;�ngDf1;2;:::;ng

T �1�1
C�2�2

C���C�n�n :

Being a formal sum, terms can not be added unless their exponents are equal. Hence,
det M D 0 if and only if we can pair all the terms in the summand and paired terms are
cancelled out. More formally, we find n!=2 pairs, where within each pair of permuta-
tions � and � we have T �1�1

C�2�2
C���C�n�n D T �1�1

C��2
C���C�n�n , or equivalently

�1�1
C�2�2

C � � �C�n�n
D �1�1

C��2
C � � �C�n�n

:

In general, entries of M don’t have to be monomials like T �ij ; some entries could be
like T �1

ij
C�2

ij
C��� and some may vanish. These conditions may occur either when there

are more than two holomorphic disks connecting two generators, or there is no disk.
Nonetheless, we are still able to write the determinants as sums of the products of entries,
and whether detD 0 or not is still dependent on the existence of the aforementioned
pairing. While finding the exact pairing could be difficult, we will only apply the
following simple philosophy: “the more terms in the summand are equal, the more
likely the sum is zero.” This philosophy is only valid in those fields with characteristic 2
and whose elements are formal sums. Fortunately, that is so for A and Z2ŒH

1.Y IZ/�.

Proof of Proposition 2.1 Fix an admissible diagram for Y , and find all generators
xi 2 cCF.Y /. If the boundary map is given by

@xi D

X
j

� X
�2�2.xi ;xj /

# �M.�/T �xj

�
;
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construct the corresponding matrix .Mij /D .
P
�2�2.xi ;xj /

# �M.�/T �/. Since Mij 2

Z2ŒH
1.Y IZ/�, it can be evaluated with respect to a given two-form �, producing a

matrix .Mij .�//D .
P
�2�2.xi ;xj /

# �M.�/T �.�// 2Mat.A/.

Take an arbitrary k � k minor of M , and compute its determinant. Denoting this
function by D , the corresponding determinant of M.�/ is D.�/. As explained earlier,
we want to find the likelihood for D.�/D 0. For each pair of terms, we want to check

�
�
.�1�1

C � � �C�k�k
/� .�1�1

C � � �C�k�k
/
�
D 0:

Denote .�1�1
C � � �C�k�k

/� .�1�1
C � � �C�k�k

/ by � . There are two possibilities:
either �D 0 or �¤ 0. Note that �i�i

(resp. �i�i
) is a holomorphic disk connecting xi

and x�i
(resp. x�i

), so .�1�1
C � � � C �n�n

/� .�1�1
C � � � C �n�n

/ corresponds to a
periodic domain in �2.x1;x1/. Hence, by assumption, �.�/ D 0, !.�/ ¤ 0 when
� ¤ 0, while �.�/ may or may not be zero.

In other words, when we write D.�/ as a formal sum, all terms are identical. For D.!/,
they cannot be identical unless they are initially identical in D . For a general D.�/,
the bigger the kernel of � is, the more terms in the summand are equal. Therefore,
D.!/D 0 implies D.�/D 0 and D.�/D 0 implies D.�/D 0; but the reverse is not
true. Apply Lemma 2.2, we obtain part (3) of our proposition.

When � ¤ 0, !.�/ ¤ 0, so D.!/ equals zero if and only if D equals zero. This
implies rank M D rank M.!/, proving part (2).

Since all terms in D.�/ are identical, we may replace all T � with 1, and denote
the corresponding matrix as M.0/. Then, D.�/ D 0 if and only if D.0/ D 0, so
rank M.�/D rank M.0/. Observe that M.0/ corresponds to the boundary map for
the ordinary unperturbed HF.Y /, which proves part (1).

Similar results hold for HFC in a nontorsion Spinc structure s:

Proposition 2.3 (1) When s is a nontorsion Spinc structure, HFC.Y; sI �/ is finite-
ly generated, and the Euler characteristic

�.HFC.Y; sI �//D �.HFC.Y; s//D˙�t .Y; s/;

where �t is Turaev’s torsion function, with respect to the component t of
H 2.Y IR/� 0 containing c1.s/.

(2) The rank of HFC.Y; sI�/ over A is equal to the rank of the ordinary unperturbed
HFC.Y; s/ over Z2 .

(3) The rank of HFC.Y I!/ over A is equal to the rank of the nontorsion part of the
completely twisted HFC.Y IZ2ŒH

1.Y IZ/�/ over the ring ZŒH 1.Y IZ/�.

Algebraic & Geometric Topology, Volume 9 (2009)



Perturbed Floer homology of some fibered three-manifolds 341

(4) In general, as A–vector spaces, we have the inequality

rank HFC.Y; sI!/� rank HFC.Y; sI �/� rank HFC.Y; sI�/:

Proof The first part is proved by a similar argument as in Ozsváth and Szabó [4,
Section 5]. As soon as we know that HFC.Y; sI �/ is finitely generated, the argument
in the proof of Proposition 2.1 can be adopted to prove the remaining parts.

3 Computations for T 3

In this section, we compute the perturbed Heegaard Floer homology for T 3 . It was
shown in Ozsváth and Szabó [2, Section 8.4] that cHF.T 3/ŠH 2.T 3IZ/˚H 1.T 3IZ/.
By Proposition 2.1, this is equivalent to cHF.T 3I�/ D A6 . We aim to computecHF.T 3I �/ for a general � 2H 2.T 3IZ/D Z3 . Our result is:

Theorem 3.1 For a nonzero two-form �, cHF.T 3I �/DA2 .

Our proof is based on a certain “special Heegaard diagram” first introduced by Ozsváth
and Szabó [6], in which some genus 2g C 1 Heegaard diagrams were constructed
for †g bundle over S1 . In this paper, we use a slightly different presentation by
drawing two standard 4g–gons to represent left and right hand side genus–g surfaces
respectively. Two holes are created in either side to form a connected sum of a 2gC 1

Heegaard surface.
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x
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x y
x
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z
D5D1 D2D2 D6 D6

D7D3 D4D4 D8 D8

D7D3 D4D4 D8 D8

˛2˛2

ˇ1ˇ1

˛1 ˇ2˛1 ˇ2

ˇ3

˛3

Figure 1: This is a Heegaard diagram for T 3 : Tori are represented by
rectangles with opposite sides identified, and two holes are punctured in each
side, represented by shaded disks. The Heegaard surface is divided into eight
regions D1; : : : ;D8 by ˛ ’s and ˇ ’s.

Algebraic & Geometric Topology, Volume 9 (2009)



342 Zhongtao Wu

Figure 1 is a special diagram for T 3 : rectangles with opposite sides are identified to
represent tori. The curves ˛ and ˇ are drawn on both sides and connected through
the holes to represent closed curves. Put the base point z in the region D1 . Note that
this is NOT an admissible diagram as periodic domains D1 WDD2CD4CD6CD8 ,
D2 WDD3CD4CD7CD8 and D3 WDD5CD6CD7CD8 have positive coefficients
only.

Nevertheless, Figure 1 is useful in the computation of the perturbed Floer HomologycHF.T 3I �/; the only restriction of nonadmissibility is given by �.Di/ > 0 for all i .
However, nonadmissible diagrams at least can still be used to compute cHF.T 3I!/.

Lemma 3.2 For a generic two-form ! , cHF.T 3I!/DA2 .

Proof The Adjunction Inequality in [4, Section 7] implies cHF.T 3; sI!/ vanishes for
any nontorsion Spinc structures s. Recall the first Chern class formula [4, Section 7.1]

hc1.sy/; ŒP �i D �.P/� 2xnz.P/C 2
X
p2y

xnp.P/;

where sy is a Spinc structure corresponding to y . We find two generators x and y incCF.T 3; s0I!/, where s0 is the unique torsion Spinc structure of T 3 .

Observe that D1 is a holomorphic disk connecting x to y . Any other holomorphic
disks � connecting x to y must differ from D1 by a periodic domain with Maslov
index 0, hence � can be written as D1C k1D1C k2D2C k3D3 for some integers
k1 , k2 and k3 . A holomorphic disk has a nonnegative coefficient in each region, in
particular D2 , D3 and D5 . Hence ki � 0, which implies that � strictly contains D1 .

We claim that there is no holomorphic disk connecting y to x . Otherwise, suppose  
is a disk connecting y to x with the smallest area. Then

.@C/2Œx; i �D .@C/.T !.D1/Œy; i � 1�C � � � /

D T !.D1/ �T !. /Œx; i � 1� nz. /�C higher order terms in T ;

contradicting .@C/2 D 0.

Hence, @yD 0, and for any holomorphic disk � connecting x to y , we have nz.�/¤ 0.
So @x D 0, and consequently cHF.T 3I!/DA2 .

Certain modifications of Figure 1 enable us to compute the perturbed Floer homology
for some other two-form �. For example, Figure 2 can be used for �1 with �1.D1/D

�1.D2/ D 0 and Figure 3 can be used for �2 with �2.D1/ D �2.D3/ D 0. In both
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Figure 2: This is a modified Heegaard diagram for T 3 : ˛1 and ˛2 are
twisted across ˇ2 and ˇ1 respectively. In this diagram, there exists a two-
form �1 such that �1.D1/D �1.D2/D 0 .
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Figure 3: This is a modified Heegaard diagram for T 3 : ˛1 is twisted
across ˇ2 , and ˛3 is winding across ˇ3 . In this diagram, there exists a
two-form �2 such that �2.D1/D �1.D3/D 0 .

cases, there are two generators x and y , and no boundary map by a similar argument.
Hence, cHF.Y I �1/D cHF.Y I �2/DA2 .

Figure 4 is another Heegaard diagram for T 3 , and it is admissible. Unlike previous
cases though, this time we have six generators, labeled by x , y , p , p0 , q and q0 ,
which is reasonable since cHF.T 3/ has rank six. The boundary map in our case is
complicated as well: Figure 4 can be used for computing cHF.T 3; �/, cHF.T 3; �1/,cHF.T 3; �2/ and cHF.T 3; !/, and the answers are A6 for the first three homologies,
and A2 for the last homology. So there must exist some cancelling pair of holomorphic
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disks for the area form � that is no longer cancellable in �1 , �2 or ! . It would be
helpful if all boundary maps could be found explicitly.
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��
��
��

x

y
p0; q0

p; q

x; q

x

y

y;p

p

q

z

˛2˛2

ˇ1ˇ1

˛1 ˇ2˛1 ˇ2

ˇ3

˛3

Figure 4: This is an admissible diagram for T 3 : ˛1 , ˛2 are twisted across
ˇ2 , ˇ1 , respectively, and ˛3 is winding across ˇ3 . In this diagram, there
exists a two-form � such that �.D1/D �.D2/D �.D3/D 0 .

Now, we are prepared for the proof of Theorem 3.1. The idea is to start from some
special two-form �0 such that cHF.T 3I �0/ D A2 and Ker.�0/ is a codimension–1

subspace of H 2.T 3IQ/DQ3 (both �1 and �2 meet the requirements). Then we look
for some element of the large automorphism group of T 3 to map Ker.�0/ to some given
hyperplane of Q3 , namely Ker.�/. Functoriality of Heegaard Floer homology implies
that the corresponding map from cHF.T 3I �0/ to cHF.T 3I �/ is also an isomorphism,
giving A2 .

Proof of Theorem 3.1 As mentioned earlier, both �1 and �2 can serve as our �0 .
Instead, we describe a nonconstructive way of finding �0 that is valid in general situation.
Fix an admissible Heegaard diagram and find all generators and boundary maps. There
are only finitely many � ’s as proven by Proposition 2.1, so we can find a hyperplane
H 0 in Q3 missing all the � ’s. Let �0 evaluate zero on the hyperplane, and nonzero
elsewhere. Clearly, Ker.�0/ D H 0 has codimension 1. Since �0 evaluates nonzero
on all � ’s, it essentially plays the role of a generic form ! , hence by Lemma 3.2,cHF.T 3I �0/D cHF.T 3I!/DA2 .

Suppose Ker.�/ is another hyperplane H . It is always possible to find some element
of SL3.Z/ that maps H 0 to H . On the other hand, any element of SL3.Z/ can be
realized as the underlying H 2.T 3IZ/ map induced by some T 3 automorphism, say ˆ
in this case. Then, cHF.T 3I �/D cHF.T 3Iˆ�.�//D cHF.T 3I �0/DA2 .
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4 Computations for †g � S 1

In this section, we compute the perturbed Heegaard Floer homology of †g �S1 for
g > 1. Our result is:

Theorem 4.1 For a nonzero two-form �,

HFC.†g �S1; kI �/D .AŒU �=U /.
2g�2

d /;

where d D g� 1� jkj, k ¤ 0.

Here, HFC.†g �S1; kI �/ denotes the summand of HFC.†g �S1I �/ corresponding
to the Spinc structure s with hc1.s/; Œ†g�i D 2k and hc1.s/; 
 �S1i D 0 for all curves

 �†g .

Remark 4.2 When k ¤ 0, ie hc1.s/; Œ†g�i ¤ 0, perturbations in the †g –direction
do not have any effect on the Heegaard Floer homology. Hence, we can restrict our
consideration of � to the subspace H 2.†gIZ/ of H 1.†g �S1IZ/.

We can compare this result with the unperturbed case computed by Ozsváth and Szabó
in [3, Section 9]:

Theorem 4.3 Fix an integer k ¤ 0. Then, there is an identification of Z–modules

HFC.†g �S1; k/ŠX.g; d/;

where d D g� 1� jkj, and

X.g; d/D

dM
iD0

ƒ2g�iH 1.†g/˝Z .ZŒU �=U d�iC1/:

It is interesting to compare the Euler characteristic of HFC . Recall the following
combinatorial identity:

Lemma 4.4
Pm

iD1.�1/iC1i
�

2g
m�i

�
D
�
2g�2
m�1

�
:

Proof Write out the identity .x=.1Cx/2/.1Cx/2g D x.1Cx/2g�2 in formal series� 1X
iD0

.�1/iC1ixi

�
�

� 1X
iD0

�
2g

m� i

�
xm�i

�
D

1X
mD0

�
2g� 2

m� 1

�
xm;

and compare their coefficients for xm .
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Hence, replacing d by m� 1 in the formula, we have

�.HFC.†g �S1; k//D

dX
iD0

.�1/iC1.d � i C 1/

�
2g

i

�
D .�1/d�1

�
2g� 2

d

�
:

This agrees with the Euler characteristic of HFC.†g �S1; kI �/ as expected from
Proposition 2.3. Compare also with Jabuka and Mark [1, Corollary 1.8] and Salamon [7,
Section 6].

In fact, we will use the Euler characteristic as one of the key ingredients in our proof
of Theorem 4.1.

Just like the case of T 3 , we divide the proof of Theorem 4.1 into two steps:

Step 1 We use a special Heegaard diagram for †g �S1 in Figure 5. There are two
generators in spinc structures k D g� 1, marked out in the figure by dots and squares.
In general, there are 2

�2g�1
d

�
generators in Spinc structure k D g� 1� d , obtained

by moving d of the intersection points between ˛i and ˇi (i � 2g ) from the upper
polygon to the lower polygon. These generators are further divided into four classes:

� Class A consists of
�2g�2

d�1

�
generators. These generators have the intersection

between ˛2g�1 and ˇ2g�1 in the lower polygon.

� Class A’ consists of
�2g�2

d�1

�
generators. These generators have the intersection

between ˛2g and ˇ2g in the lower polygon.

� Class B consists of
�2g�2

d

�
generators. These generators have the intersection

between ˛2g and ˇ2g in the upper polygon.

� Class B’ consists of
�2g�2

d

�
generators. These generators have the intersection

between ˛2g�1 and ˇ2g�1 in the upper polygon.

Denote the hexagon region where we put the base point z by D and the corresponding
hexagon region in the lower polygon by D0 . Pairs of generators from Class A to A’ are
connected by D0 , while pairs of generators from Class B to B’ are connected by D .

All of the information gathered so far for the chain complex cCFC may be summarized
in Figure 6. If there were no other holomorphic disks besides D and D0 in the diagram,
then

HFC D .AŒU �=U /.
2g�2

d /:

However, with a little assumption on the two-form ! , we would be able to prove the
fact without much further knowledge of the boundary map @.
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˛2

˛1

˛2

˛1

˛2g

˛2g�1

˛2g

˛2g�1

˛2

˛1

˛2

˛1

˛2g

˛2g�1

˛2g

˛2g�1

ˇ1

ˇ2

ˇ1

ˇ2

ˇ2g

ˇ2g�1

ˇ2g

ˇ2g�1

ˇ1 ˇ2

ˇ1

ˇ2

ˇ2g

ˇ2g�1

ˇ2g

ˇ2g�1

˛2gC1

ˇ2gC1z

Figure 5: This is a nonadmissible Heegaard diagram for †g � S1 . Two
holes are punctured in each 4g–gons and connected to a genus 2g C 1

Heegaard surface. The two generators in spinc structures k D 2g � 2 are
marked out by dots and squares. In general, there are 2

�
2g�1

d

�
generators in

Spinc structure k , which are obtained by moving d of the intersection points
between ˛i and ˇi from the upper polygon to the lower polygon.
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nz D 0

D0D0D0DDD

nz D 1

b1 b2 b
.2g�2

d /

b0
1
U�1 b0

2
U�1 b0

.2g�2
d /

U�1 a
.2g�2

d�1 /
a2a1

a0
.2g�2

d�1 /
a02a01

� � � � � �

Odd

Even

Figure 6: This diagram includes all the information we know about CFC .
Class A, A’, B and B’ generators are denoted by

a1; : : : ; a.2g�2
d�1 /

; a01; : : : ; a
0

.2g�2
d�1 /

; b1; : : : ; b.2g�2
d /

and b01; : : : ; b
0

.2g�2
d /

;

respectively. In Z=2Z grading, Classes B and A’ have odd degrees, and
Classes A and B’ have even degrees. HFC may be determined completely
with this little amount of information.

Proposition 4.5 For a generic two-form ! with !.D/D !.D0/� !.other regions/,
we have

HFC.†g �S1; kI!/D .AŒU �=U /.
2g�2

d /;

where d D g� 1� jkj, k ¤ 0.

Proof Use A, A0 , B and B0 to denote the vector spaces generated by Class A, A’, B
and B’ generators respectively, and define

Odd WD .BCA0/ � .1CU�1CU�2C � � � /;

Even WD .ACB0/ � .1CU�1CU�2C � � � /;

M WD BCA0 � .1CU�1CU�2C � � � /;

N WD B � .U�1CU�2C � � � /;

Ker WD Kernel of the boundary map Odd �! Even;
Im WD Image of the boundary map Even �! Odd;
eKer WD projection of Ker into M :fIm WD projection of Im into M :

We have the following:

� OddDM ˚N , Im� Ker� Odd.

� Ker\N D 0.
Write elements of N in the most general form xD

P
biU

�j kij , where kij 2A.
Suppose ki1j1

is one of the coefficients with the lowest order term in T . Then

@x D b0i1
U�.j1�1/

� .ki1j1
T !.D/

C higher order terms in T/C � � � :
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But @x D 0 if x 2 Ker, which is not possible unless x D 0.
Hence, all information of Ker is contained within eKer , so we can restrict our
attention to eKer ; the same applies for Im and fIm .

� fImCB DM �eKer .
Compute the determinant of the

�2g�2
d�1

�
�
�2g�2

d�1

�
@–matrix from A to A0 . There

is a unique lowest order term T in the determinant with order
�2g�2

d�1

�
�!.D0/,

hence it is nonzero, and so the map is surjective. The same argument carries
on for larger spaces A.1CU�1C � � �CU�k/, and the map is surjective onto
A0.1CU�1C� � �CU�k/. Letting k!1, we have proved fImCBDM �eKer .

� Therefore, rank.HFCodd/� rank BD
�2g�2

d

�
. But �.HFC/D

�2g�2
d

�
, so we must

have

rank.HFCodd/D

�
2g� 2

d

�
and rank.HFCeven/D 0:

� As shown above, we can choose a set of generators xi 2B˚N , iD1; : : : ;
�2g�2

d

�
,

for HFC . We want to prove xi in fact lies in B . This would imply xi �U D 0,
finishing the proof that HFC.†g �S1; kI!/D .AŒU �=U /.

2g�2
d / .

Up to this point, we have not used any information from the boundary map in
this special Heegaard diagram. Here is the place we have to use a little: upon
investigating Figure 5, writing out all k –renormalizable periodic domain and
finding out all possible topological disks with Maslov index 1, we find that no
holomorphic disk connects generators from Class B to B’ with nz D 0. In other
words, when the boundary map @ is restricted to B and B0 , it becomes zero.
Write xi D exi Cyi , where exi 2 B and yi 2N . Then

0D @.xi/D @.exi /C @.yi/D @.yi/:

But we know Ker\N D 0, so yi D 0.

Step 2 Since †g has a large symmetric group, the perturbed floer homology group is
in some sense not sensitive to the exact direction of perturbations. More precisely:

Lemma 4.6 For any nonzero � 2 H 1.†gIZ/, we have HFC.†g � S1; kI �/ D

HFC.†g � S1; kI!/ and cHF.†g � S1; kI �/ D cHF.†g � S1; kI!/ as A–vector
spaces, for k ¤ 0.

Proof The proof is parallel to that of T 3 : Find a special two-form �0 such that
HFı.†g�S1I �0/DHFı.†g�S1I!/ and Ker.�0/ is a hyperplane H 0 of H 1.†gIQ/.
Supposing the kernel of � is another hyperplane H , it is possible to find some element
in Sp.2gIZ/ that maps H to H 0 . On the other hand, a standard result on mapping
class groups implies that any element in Sp.2gIZ/ is induced by some elements of
the mapping class group Modg . Functoriality of HFı finishes the proof.
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Proof of Theorem 4.1 Applying Lemma 4.6 and Proposition 4.5, we have as A–vector
spaces

HFC.†g �S1; kI �/DA.
2g�2

d /; cHF.†g �S1; kI �/DA2.2g�2
d /:

On the other hand, as anAŒU �–module, HFC.†g �S1; kI �/ must have the general
form AŒU �=U k1 ˚ � � �˚AŒU �=U kn . So by consideration of rank, we must have

HFC.†g �S1; kI �/D .AŒU �=U /.
2g�2

d /:

Remark 4.7 For the case of the torsion spinc –structure s0 , our method suggests the
conjecture that

HFC.†g �S1; s0I!//DA.
2g�2
g�1 /:

But we need to first establish an analog of Proposition 2.3(1).
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