Volume 9, issue 1 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Cabling sequences of tunnels of torus knots

Sangbum Cho and Darryl McCullough

Algebraic & Geometric Topology 9 (2009) 1–20
Bibliography
1 E Akbas, A presentation for the automorphisms of the 3–sphere that preserve a genus two Heegaard splitting, Pacific J. Math. 236 (2008) 201 MR2407105
2 M Boileau, M Rost, H Zieschang, On Heegaard decompositions of torus knot exteriors and related Seifert fibre spaces, Math. Ann. 279 (1988) 553 MR922434
3 S Cho, Homeomorphisms of the 3–sphere that preserve a Heegaard splitting of genus two, Proc. Amer. Math. Soc. 136 (2008) 1113 MR2361888
4 S Cho, D McCullough, Constructing knot tunnels using giant steps arXiv:0812.1382
5 S Cho, D McCullough, The tree of knot tunnels, Geom. Topol. 13 (2009) 769
6 S Cho, D McCullough, Tunnel leveling, depth, and bridge numbers arXiv:0812.1396
7 S Cho, D McCullough, Software
8 Y Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math. 91 (1988) 465 MR928492
9 M Scharlemann, Automorphisms of the 3–sphere that preserve a genus two Heegaard splitting, Bol. Soc. Mat. Mexicana $(3)$ 10 (2004) 503 MR2199366
10 M Scharlemann, A Thompson, Unknotting tunnels and Seifert surfaces, Proc. London Math. Soc. $(3)$ 87 (2003) 523 MR1990938