D Gabai, The
Murasugi sum is a natural geometric operation, from:
"Low-dimensional topology (San Francisco, Calif., 1981)"
(editor S J Lomonaco Jr), Contemp. Math. 20, Amer. Math.
Soc. (1983) 131 MR718138
H Goda, Circle
valued Morse theory for knots and links, from: "Floer
homology, gauge theory, and low-dimensional topology" (editors
D A Ellwood, P S Ozsváth, A I Stipsicz, Z
Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 71 MR2249249
7
J Johnson, A
Thompson, On tunnel number one knots that are not
$(1,n)$arXiv:math/0606226v3
8
Y Matsumoto, An
introduction to Morse theory, Transl. of Math. Monogr. 208,
Amer. Math. Soc. (2002) MR1873233
S P Novikov,
Multivalued functions and functionals. An analogue of the
Morse theory, Dokl. Akad. Nauk SSSR 260 (1981) 31 MR630459
11
A V Pajitnov,
Circle-valued Morse theory, de Gruyter Studies in Math.
32, de Gruyter (2006) MR2319639
12
A Ranicki, Circle
valued Morse theory and Novikov homology, from: "Topology
of high-dimensional manifolds, No. 1, 2 (Trieste, 2001)"
(editors T F Farrell, L Göttsche, W Lück), ICTP Lect.
Notes 9, Abdus Salam Int. Cent. Theoret. Phys. (2002) 539
MR1937024
13
D Rolfsen, Knots
and links, Math. Lecture Ser. 7, Publish or Perish (1976)
MR0515288
M Scharlemann, A
Thompson, Thin position for $3$–manifolds, from:
"Geometric topology (Haifa, 1992)" (editors C Gordon, Y Moriah,
B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231
MR1282766
16
K Veber, A
Pazhitnov, L Rudolf, The Morse–Novikov number for
knots and links, Algebra i Analiz 13 (2001) 105 MR1850189