Volume 9, issue 1 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Circular thin position for knots in $S^3$

Fabiola Manjarrez-Gutiérrez

Algebraic & Geometric Topology 9 (2009) 429–454
Bibliography
1 G Burde, H Zieschang, Neuwirthsche Knoten und Flächenabbildungen, Abh. Math. Sem. Univ. Hamburg 31 (1967) 239 MR0229229
2 A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 MR918537
3 D Gabai, The Murasugi sum is a natural geometric operation, from: "Low-dimensional topology (San Francisco, Calif., 1981)" (editor S J Lomonaco Jr), Contemp. Math. 20, Amer. Math. Soc. (1983) 131 MR718138
4 D Gabai, Foliations and the topology of $3$–manifolds. III, J. Differential Geom. 26 (1987) 479 MR910018
5 H Goda, On handle number of Seifert surfaces in $S^3$, Osaka J. Math. 30 (1993) 63 MR1200821
6 H Goda, Circle valued Morse theory for knots and links, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 71 MR2249249
7 J Johnson, A Thompson, On tunnel number one knots that are not $(1,n)$ arXiv:math/0606226v3
8 Y Matsumoto, An introduction to Morse theory, Transl. of Math. Monogr. 208, Amer. Math. Soc. (2002) MR1873233
9 J Milnor, Morse theory, Annals of Math. Studies 51, Princeton Univ. Press (1963) MR0163331
10 S P Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981) 31 MR630459
11 A V Pajitnov, Circle-valued Morse theory, de Gruyter Studies in Math. 32, de Gruyter (2006) MR2319639
12 A Ranicki, Circle valued Morse theory and Novikov homology, from: "Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001)" (editors T F Farrell, L Göttsche, W Lück), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys. (2002) 539 MR1937024
13 D Rolfsen, Knots and links, Math. Lecture Ser. 7, Publish or Perish (1976) MR0515288
14 M Scharlemann, J Schultens, Annuli in generalized Heegaard splittings and degeneration of tunnel number, Math. Ann. 317 (2000) 783 MR1777119
15 M Scharlemann, A Thompson, Thin position for $3$–manifolds, from: "Geometric topology (Haifa, 1992)" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231 MR1282766
16 K Veber, A Pazhitnov, L Rudolf, The Morse–Novikov number for knots and links, Algebra i Analiz 13 (2001) 105 MR1850189
17 F Waldhausen, On irreducible $3$–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56 MR0224099
18 W Whitten, Isotopy types of knot spanning surfaces, Topology 12 (1973) 373 MR0372842