Volume 9, issue 1 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
The concordance genus of a knot, II

Charles Livingston

Algebraic & Geometric Topology 9 (2009) 167–185
Abstract

The concordance genus of a knot K is the minimum three-genus among all knots concordant to K. For prime knots of 10 or fewer crossings there have been three knots for which the concordance genus was unknown. Those three cases are now resolved. Two of the cases are settled using invariants of Levine’s algebraic concordance group. The last example depends on the use of twisted Alexander polynomials, viewed as Casson–Gordon invariants.

Keywords
knot genus, concordance
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 57N70
References
Publication
Received: 17 October 2008
Accepted: 11 January 2009
Published: 28 January 2009
Authors
Charles Livingston
Mathematics Department
Indiana University
Bloomington, IN 47405
USA