Volume 9, issue 1 (2009)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Bitwist 3–manifolds

J W Cannon, W J Floyd and W R Parry

Algebraic & Geometric Topology 9 (2009) 187–220
Abstract

Our earlier twisted-face-pairing construction showed how to modify an arbitrary orientation-reversing face-pairing on a faceted 3–ball in a mechanical way so that the quotient is automatically a closed, orientable 3–manifold. The modifications were, in fact, parametrized by a finite set of positive integers, arbitrarily chosen, one integer for each edge class of the original face-pairing. This allowed us to find very simple face-pairing descriptions of many, though presumably not all, 3–manifolds.

Here we show how to modify the construction to allow negative parameters, as well as positive parameters, in the twisted-face-pairing construction. We call the modified construction the bitwist construction. We prove that all closed connected orientable 3–manifolds are bitwist manifolds. As with the twist construction, we analyze and describe the Heegaard splitting naturally associated with a bitwist description of a manifold.

Keywords
3–manifold constructions, Dehn surgeries
Mathematical Subject Classification 2000
Primary: 57N10
References
Publication
Received: 13 June 2008
Revised: 13 January 2009
Accepted: 13 November 2008
Published: 2 February 2009
Authors
J W Cannon
Department of Mathematics
Brigham Young University
Provo, UT 84602
USA
W J Floyd
Department of Mathematics
Virginia Tech
Blacksburg, VA 24061
USA
http://www.math.vt.edu/people/floyd/
W R Parry
Department of Mathematics
Eastern Michigan University
Ypsilanti, MI 48197
USA