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Functoriality for the su; Khovanov homology

DAvVID CLARK

We prove that the categorified su3 quantum link invariant is functorial with respect
to tangle cobordisms. This is in contrast to the categorified su, theory [8; 1], which
was not functorial as originally defined [7; 5].

We use methods of Morrison and Nieh [12] and Bar-Natan [2] to construct explicit
chain maps for each variation of the third Reidemeister move. Then, to show functo-
riality, we modify arguments used by Clark, Morrison and Walker [5] to show that
induced chain maps are invariant, up to homotopy, under Carter and Saito’s movie
moves [4; 3].

5TM25; 5TM27, 57Q45

1 Introduction

1.1 The suj link invariant and its categorification

Khovanov first categorified the sus link invariant in [9]. It was later generalized by
MacKaay and Vaz in [11] and independently by Morrison and Nieh in [12]. The latter
paper gives a local geometric construction in the spirit of Bar-Natan [1], using the
language of planar algebras and canopoleis!. Indeed, the su; quantum link invariant
can be thought of as a map of planar algebras, defined on generators by

X- 91
Xer Lo

IWe find this to be a pleasing plural form of canopolis, and surely the purest from
the standpoint of Greek etymology (cf metropolis, metropoleis [15]). By way of analogy,
formulae : formulas : : canopoleis : canopolises.
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and subject to the relations of Kuperberg’s su3 spider [10]

(1) O =a*+1+472

) =qt+q”"

) ¢

which will reduce a Z[q, ¢~ ']-linear combination of trivalent graphs (“webs”) to a
polynomial.

Morrison and Nieh use a technique similar to Bar-Natan’s [1] to categorify this map of
planar algebras. The new source category (technically a canopolis) Ortang is that of
oriented tangles and their cobordisms, and the target category Kob(su3) consists of
formal complexes of webs with chain maps given by seamed cobordisms (“foams”).
In [12], Morrison and Nieh show that this categorified map, which we’ll call Kh(sus3)
(technically a canopolis morphism), is well-defined on objects, ie, isotopy of a tangle
does not change the homotopy type of the image complex. Put yet another way,
“Kh(sus), considered to be valued in the category of chain complexes up to homotopy
equivalence, is a link invariant.”

1.2 Main result

What’s not shown in [12] is whether Kh(sus) is truly functorial, ie, that it is also well-
defined on morphisms (up-to-isotopy tangle cobordisms) and thus an honest map of
canopoleis. Conveniently, we can view a tangle cobordism in 4—space as a sequence of
tangle diagrams called a “movie”.? Further, any cobordism admits a movie presentation
such that the tangles in subsequent frames differ by either a single Reidemeister move
or a single Morse move (the birth or death of a circle, or the splicing of two strands).
This partitioning of a cobordism C into simple combinatorial steps gives us an obvious
way to attempt a definition of a chain map Kh(su3)(C).

Thanks to Carter and Saito [3; 4] (and also Roseman [13]), there is also a way to
view isotopies of tangle cobordisms in this movie presentation context: two tangle
cobordisms are isotopic if and only if they are related by a sequence of the movie

2There is some subtlety here about being able to assume that such cobordisms are in general position;
this is addressed carefully in Clark, Morrison and Walker [5].
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moves3 in Figure 1. Thus Kh(sus) is only well-defined if it yields homotopic chain
maps when applied to the cobordism on each side of every movie move.
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Figure 1: Carter and Saito’s unoriented movie moves, numbered according to
Bar-Natan [1]. Note that first ten moves are circular, and so should be paired
with the constant movie of the first frame.

This turned out not to be the case in for the categorified su, invariant in Khovanov [8]
and Bar-Natan [1], as first documented by Jacobsson [7]: certain movie moves changed
the sign of the induced chain map. This issue was resolved in Clark, Morrison and
Walker [5] with a modified construction designed to incorporate a previously neglected
piece of representation theory: the fact that the fundamental representation of su; is
antisymmetrically self-dual, and the source of the sign anomaly.

3In an oriented theory, like the one in this paper, one must consider all possible orientations of these
moves, in addition to the usual variations resulting from reflections and crossing changes.
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The categorified suj3 invariant was shown to be functorial up to a sign by Mackaay and
Vaz [11] using an argument of Bar-Natan [1]. However, the representation theoretic
problem for su, does not exist for sus, whose fundamental representations are dual
to each other, but not self-dual. This, along with some experimental evidence, led
Morrison and Nieh to conjecture that the sus theory is honestly functorial, with no
sign anomaly. In this paper, we’ll prove it as a theorem.

Theorem 1.3 Kh(su3): Ortang — Kob(su3) is a canopolis morphism; in particu-
lar, oriented tangle cobordisms induce well-defined (up to homotopy) chain maps in
Kob(su3).

In Section 2 we’ll review the suj theory of Morrison and Nieh. Much of the work comes
in Section 3, when we explicitly define the induced maps for oriented Reidemeister
moves. In Section 4 we’ll look at the induced maps on each side of the movie moves
and see that in each case they are homotopic. Finally, in Section 5, we will briefly
discuss the possible extension of this theory to WebCob, the category of knotted webs
and seamed cobordisms in four-space.

Acknowledgements The author would like to thank Justin Roberts and Scott Morrison
for many useful discussions. Additional thanks are due to Scott Morrison and Ari
Nieh for allowing me access to their wonderful foam diagrams and to Scott Carter and
Masahico Saito for letting me reuse their movie move diagrams from [4]. Thanks also
to the referee for helpful comments and corrections.

2 The suj theory

2.1 Planar algebras and canopoleis

We’ll give a brief recap of the construction of Morrison and Nieh here, and refer the
reader to Bar-Natan [1], Morrison and Nieh [12] and Webster [14] for more technical
details regarding planar algebras and canopoleis.

Recall that an oriented planar arc diagram is, colloquially, just an oriented crossingless
tangle in a disk with (possibly) some smaller disks removed and with the remaining
holes given some ordering. Two such diagrams can be composed whenever the outer
boundary of one diagram matches one of the inner boundaries of the other: we just
shrink the first diagram and paste it into the second, giving a new planar arc diagram.
More generally, let P be a planar arc diagram with n holes; we’ll label each from 1
up to n and think of the outer boundary of P as the “O-th hole.” If Q; is the set of
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Figure 2: Composition in the oriented planar arc diagram operad

planar arc diagrams that match the boundary of the i —th hole of P, then P defines an
operation P: Q1 x---x Q, — Qq. See Figure 2 for an example.

This operation on oriented planar arc diagrams gives them the structure of a colored
operad, where the coloring just refers to the labels (incoming and outgoing strands) on
the disk boundaries. Such an operad can act on a collection of objects in some monoidal
category C: we associate to each color s; an object P(s;), and to each collection of
composable colors s1,...,S5,, 5o we associate the space of maps Hom (P (s7) x--- X

P(sn), P(s9)). Of course, a properly colored planar arc diagram P specifies a map
P(s1) x -+ xP(sp) = P(s0).

Definition 2.2 A planar algebra in C is a collection (P(s;)) € Ob(C) that admits the
above action of the operad of oriented planar arc diagrams.

1 ”\Q — %

Ul i ’ /-\ N '_>

r~ N o /f AN
Y

Figure 3: A planar algebra: the operad action on oriented tangle diagrams

Practically speaking, this structure gives us an associative way of “multiplying” elements
of our collection, in a planar fashion. As an easy example, the set of oriented tangle
diagrams forms a planar algebra in the category of sets (see Figure 3), with generating

set {X’X}’

we shall, of course, consider these diagrams up to Reidemeister equivalence. Similarly,
Kuperberg’s su3 spider forms a planar algebra in the category of Z[q, ¢~ !]-modules,

Algebraic €& Geometric Topology, Volume 9 (2009)
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where we quotient by the sujz spider relations (Equation (1)); the spider is generated,

as a planar algebra, by

We can thus view the su3 quantum link invariant as a map of planar algebras, which is
convenient for both computational efficiency and organizing philosophy.

The goal, then, is to categorify this local picture of a quantum invariant: to do this, we
invoke the notion of a canopolis, first appearing in [1].

Definition 2.3 A canopolis is a planar algebra in some (monoidal*) category of
categories (C(s;)). In particular, both the collection of objects and the collection of
morphisms form planar algebras.

Now a planar arc diagram P will define a functor P: C(s1) x---xC(sp) — C(s¢). We
can view each category C(s) as a “can” (rather than just a disc) with a specified label s
that can be plugged into a cylinder with a matching label in P x [0, 1]: objects will
live on the tops and bottoms of cans, and morphisms will live inside cans. Further, the
fact that P defines a functor guarantees that planar operations commute with the usual
composition of morphisms within their categories. Thus, we can build a “city of cans’
by composing vertically or horizontally in any order. It will also be useful to talk about
maps between canopoleis.

2

Definition 2.4 A canopolis morphism C — C’ is a collection of functors

(C(s1)) = (C'(5))

that commute with all planar algebra operations.

Our first example of a canopolis will be the categorification of the set of oriented tangles.
Let Ortang(s) be the category of tangle cobordisms with fixed boundary denoted by
s € §, where S indexes the set of strand intersections with the boundary circle and
their orientations, up to cyclic permutation. Then we define Ortang to be the canopolis
in the category | ;¢ Ortang(s). (Note that we need more than just the cobordisms
between two individual crossings to generate all possible tangle cobordisms.) Here we
want all morphisms considered up to four-dimensional isotopy; when viewing a generic
morphism as a movie of tangle diagrams, this means we mod out by the movie moves.

4Here the monoidal structure is just given by cartesian product.
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2.5 Categorifying the suj spider

A more interesting example, because it involves relations, is the categorification of the
suj spider. Let Cob(sus)s be the category of cans with fixed boundary as above: the
objects are su3 webs and the morphisms are seamed cobordisms (or foams), which are
just CW-complexes modeled on Y x [0, 1], plus some additional data.

Definition 2.6 [12] Given two webs D; and D, drawn in a disc, both with boundary
d, a seamed cobordism from Dq to D, is a 2—dimensional CW-complex F with

e exactly three oriented 2—cells meeting along each oriented singular 1—cell, such
that the orientations on the 2—cells all induce the same orientation on the seam;

e acyclic ordering on those three 2—cells;

 and an identification of the boundary of F with Dy U D, U (9 x [0, 1]) such that

— the orientations on the sheets induce the orientations on the edges of D;
and the opposite orientations on the edges of D;;

— the cyclic orderings around the singular seams agree with the cyclic orderings
around a vertex in D; or D, given by its embedding in the disc; the
anticlockwise ordering for “inwards” vertices, the clockwise ordering for
“outwards” vertices.

Note that a foam is an abstract space; while its boundary is identified with lines on the
surface of the can D? x [0, 1] (and thus it is picturesque to view foams as in Figure 4),
the foam doesn’t literally live in the can.

—>
gl (o ») 3@ BB

!
ES

Figure 4: Planar composition of foams in Cob(su3). It is convenient to view
these foams in cans, though really they are not embedded there.

We define Cob(su3) to be the canopolis in the category | J,cg Cob(sus)s (see Figure 4),
where, for R a ring in which 2 and 3 are invertible’, we allow formal R-linear
combinations of morphisms, and where we impose the following local relations on
foams:

3In this paper, we’ll assume R = Z[%, %]
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“Closed foam” relations:
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The “airlock” relation:

@
D

The “tube” relation
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The “seam-swap” relation: reversing the cyclic order of the three 2—cells attached
to a closed singular seam is equivalent to multiplication by —1.
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The “sheet relations” (which can be derived from the relations above):

_ = _
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(10) =0 =0

The first of these four is the extremely useful “blister relation.”

Remark (1) Cob(suj) is generated, as a canopolis, by the cup, cap, saddle, zip
and unzip morphisms below.

~_ o 7
(2) As a consequence of the local relations, all closed foams in Cob(su3) can be
evaluated to scalars [12, Lemma 3.3].

As it turns out, Cob(su3) will benefit from slightly more structure. First we’ll make it
into a graded canopolis by endowing web diagrams with formal grading shifts given by
powers of g. Further, define the grading of a morphism C from ¢ Dy to ¢"*2 D, by

Vv
(11) degC:2x(C)—B+5+m2—m1

where B is the number of boundary points on D; and V is the total number of
trivalent vertices in the webs D and D, . Note that the local relations above are degree
homogeneous and that degree is additive under canopolis composition.

Second, we form Mat(Cob(sus)) by introducing formal direct sums of objects and
allowing matrices of morphisms between these direct sums. Morrison and Nieh prove
that the graded decategorification of Mat(Cob(su3)) is, in fact, Kuperberg’s suj spider.

Finally, for the coup de grace, we arrive at the canopolis Kom(Mat(Cob(sus3))) by
considering chain complexes (up to chain homotopy equivalence) with objects and
morphisms in Mat(Cob(su3)). We’ll have to be slightly more explicit about the action
of planar arc diagrams now that cans will be associated with complexes and chain maps,
rather than just objects and morphisms in Cob(suz). However, the rule is simple: apply
the usual construction for tensor product of complexes, but use the planar arc diagram
to “multiply” objects and morphisms instead of ®. (See Appendix B.1 for details.)
For convenience, let’s make the abbreviation Kob(sus) := Kom(Mat(Cob(su13))).

Algebraic €& Geometric Topology, Volume 9 (2009)
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2.7 A link homology

Having defined the relevant canopoleis, Morrison and Nieh proceed to construct a link
homology that categorifies the su3 quantum link invariant, ie, a map

Kh(susz): Ob(Ortang) — Ob(Kob(sus3)).

Such a map is easily defined on objects in Ortang by the following categorified skein
relations:

RN S

N

X ) ()

The homological heights here are —2, —1, 0, 1 and 2; the webs with q:‘:2 shifts lie at
height 0 in each case. (Let’s also establish the following nomenclature for the webs in
this picture: we’ll call the ones with ¢*2 shifts the smoothly resolved webs for these
crossings, and the ones with g3 shifts the I-resolved webs for these crossings.)

These crossings will compose under planar operations to make larger tangles, as
will the associated complexes. One important subtlety is that planar composition of
complexes is independent of the order of composition, up to chain isomorphism, but this
isomorphism is not the obvious permutation: one needs to sprinkle some minus signs
into the permutation to make it a chain map. The upshot is that (1) for well-definition
of complexes, all crossings in a tangle diagram must be equipped with an ordering (of
course, this is equivalent to the ordering of holes in a planar arc diagram), and (2) there
are (slightly) nontrivial chain maps that will reorder the crossings. See Appendix B.2
for details.

To complete our map on objects, we need only check that the map Kh(su3) is invariant
under isotopy of tangles, ie, that Reidemeister moves applied to the source tangle do
not change the homotopy type of the resulting complex. This is essentially done in
[12] by constructing a chain homotopy equivalence for each version of the oriented
Reidemeister moves, though we will provide additional details in Section 3.

Algebraic € Geometric Topology, Volume 9 (2009)
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2.8 A canopolis morphism?

There is a natural way to define Kh(sus) on morphisms (tangle cobordisms) as well.
Since a surface in 4—space can be presented by a movie, we can view a cobordism as a
sequence of tangles diagrams that, at each stage, differ by a Reidemeister or Morse
move. Thus we need only define chain maps for these six generating moves. This is
easy: Morse moves induce the obvious gluing of 0-, 1-, or 2-handles into a foam, and
Reidemeister moves already have chain maps defined for the link homology. Again,
the heart of the issue here is whether these induced maps are well-defined, ie, invariant
under the movie moves. If they are, then Kh(sus3) is a canopolis morphism.

3 Reidemeister maps

3.1 The Reidemeister one and two maps

We’ll take these (more or less) directly from their definition in [12], where they are
derived and proven to be homotopy equivalences. The Reidemeister one maps are shown
in Figure 5 and Figure 6 for the positive (R1a) and negative (R1b) twist, respectively.

\f) = ¢ )0 ——¢

Figure 5: A homotopy equivalence for Rla: the positive twist

The Reidemeister two maps come in two flavors, parallel or antiparallel, and the maps
are given in Figure 7 and Figure 8. Note that changing which strand moves over top
does not change our maps, except that we will always use the following ordering
convention: the negative crossing is 1, and the positive crossing is 2.

It’s also worth noting that our antiparallel map (Figure 8) is —1 times the original
map in [12]; we’re free to multiply any of these maps by a scalar, and some brief
experimentation confirms that this particular scalar, in this particular place, is needed
for functoriality.

Algebraic €& Geometric Topology, Volume 9 (2009)
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Figure 6: A homotopy equivalence for R1b: the negative twist

== d
= | YA
H\,_/H _ A N .
/)~ ——

Figure 7: A homotopy equivalence for R2a: parallel strands

3.2 The Reidemeister three maps

Here we have some work to do: in order to compute movie move maps, we’ll need to
know the R3 maps explicitly, for every flavor of the move. The “categorified Kauffman
trick” (CKT) (first used by Bar-Natan in [1] and then by Morrison and Nieh in [12])
provides an efficient method for computing the R3 maps.

There are eight different versions of the oriented Reidemeister three move, and we’ll
use them all for the movie move calculations. To use the CKT here, we’ll first need
to look at some smaller complexes: the “before” and “after” complexes of the move
that slides a strand past a trivalent vertex. There are eight variations of this move: the
vertex can be a sink or a source, and the moving strand can lie on top or below the

Algebraic €& Geometric Topology, Volume 9 (2009)
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Figure 8: A homotopy equivalence for R2b: antiparallel strands

vertex strands and can be oriented in two possible ways. For convenience, let’s name
them based on whether the vertex strands point I(n) or O(ut), the crossing strand is
A(bove) or B(elow) the vertex strands, and the crossing strand is oriented L(eft) or
R(ight). The following lemmas from [12] provide homotopy equivalences® for two of
the variations using Bar-Natan’s simplification algorithm [2].

Lemma 3.3 (IBL variation [12, Lemma 4.4]) The complex

[‘VT\’}]: q4<>L< @ q5<>j>< (—z2)

b
is homotopy equivalent to the complex

CIS.QL< qGﬁL{

qs[[%}][ﬁ] = ( qu — q6% )

via the simplifying map sg1., which separates by homological height into

SIBL,0 = (0) SIBL,1 = (—ZO d 1) SIBL,2 = (}") .

Here d is the debubbling map, z is the zip map, u is the unzip map, and r is the
“downward-open half barrel" cobordism.

%Note that these maps include both homological and g —grading shifts and so are not completely honest
homotopy equivalences of the two sides of the move.

Algebraic €& Geometric Topology, Volume 9 (2009)



638 David Clark

Remark For our movie move calculations, we’ll also need the inverse (unsimplifying)
map #pr, given by

—b _
hpL,1 = ( lo u) hpL,2 = (_r) ,

where b is the bubbling map and 7 is the “upward-open half barrel.”

These maps are shown in Figure 9, and their origin is discussed in Appendix A.

A ) ( H
o ™ G 1Y

Figure 9: The maps d, b, r and 7

Lemma 3.4 (OBL variation [12, Lemma 4.5]) The complex

5 <
(2) !
S SSL < (z —z)
Pry-| e s ey
qs‘?
is homotopy equivalent to the complex

qg[[‘Y]][H] = ( qSV e q6¥ )

via the simplifying map SogL, given by

SOBL,0 = (0) SOBL,1 = (ZO d —1) SOBL,2 = (”) .
Remark Again we’ll need the inverse map fopr, wWhich is given by

b —
loBL,1 = ( _olu) topL,2 = (7).

’

Explicit homotopy equivalences for the other six variations of the “strand-past-vertex’
move are given below.
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Lemma 3.5 (1) IBR: The complex

H:)\ :|:| ?‘éﬁ' =
is homotopy equivalent to the complex

SN SRS

via the simplifying map sgr, given by

_5><L
RGN

oy L

SIBR,—2 = (’”) SIBR,—1 = (—ZO d 1) SIBR,0 = (0) .

The inverse map tgr is given by

_ —-b
hBr,—2 = (—”) IBr,—1 = ( 10 u) .

(2) OBR: The complex

s>
(]5

oo o
61‘5??5’

is homotopy equivalent to the complex
q° [[\\\(/ﬂ]] [-2] = ( q*y — q‘5y )

via the simplifying map Sogg, given by

SOBR,—Z == (I") SOBR,—I = (ZO d —1) SOBR,O = (0) .

The inverse map fogr Is given by

_ b
Topr,—2 = (—’”) loBr,—1 = ( _olu) .
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(3) IAR: The complex

T T 46
[[ Eacta'y ] % < 1
is homotopy equivalent to the complex

N N

via the simplifying map siar, given by

SIAR,0 = (0) SIAR,1 = (ZO d —1) SIAR,2 = (V) .

The inverse map tiar is given by

b _
liaR,1 = ( _olu) liaR,2 = (—V) .

(4) OAR: The complex

>
q° Td’

®
qs‘\\%

is homotopy equivalent to the complex

Pha-(v7 o)

via the simplifying map soar , given by

(—z2)

SOAR,0 = (0) S0AR,1 = (—ZO d 1) S0AR,2 = (V) .

The inverse map toar is given by

—b _
foar,1 = ( lo u) loar,2 = (—r) :

Algebraic € Geometric Topology, Volume 9 (2009)



Functoriality for the sus Khovanov homology 641

(5) IAL: The complex
-5
q j>‘(
<
(uu)
@ uu

—u
|:|: v :|:| . —6 i ( u )
I~2 - q ——
T
q_s%
is homotopy equivalent to the complex

q* [[/x\]] [-2]= ( 61‘6% — q‘s% )

via the simplifying map sia1., given by

—4
1 ‘><L’

SIAL,—2 = (”) S1AL,—1 = (ZO d —1) S1AL,0 = (0) .

The inverse map ta1 is given by

_ b
har,—2 = (—r) har,—1 = ( _olu) .

(6) OAL: The complex
@

]|
v 1T ¢

q—s;\/ﬁj
is homotopy equivalent to the complex

PR (e )

via the simplifying map Soar, given by

(= q_5><f<

(uu) _ Z
q 4‘57

SOAL,—2 = (7’) SOAL,—1 = (—z od 1) SOAL,0 = (()) .

The inverse map toaL i given by
— —bou
loaL,—2 = (—V) loaL,—1 = 1 .

Proof See Appendix A.5. |
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Remark Notice that, modulo orientations, reflections and rotations, the above com-
plexes are very similar. This leads us to make the following observations, which we’ll
use when computing the R3 moves:

(1) For moves IBL, OBL, IAR and OAR, the lowest homological component of the
s map, which originates at the doubly smoothly resolved object, is zero; the
highest component is the half-barrel r.

(2) For moves IBR, OBR, IAL and OAL, the highest homological component of
the s map, which originates at the doubly I-resolved object, is zero; the lowest
component is r.

Before explicitly computing the eight R3 maps, we’ll need some basic results from
homological algebra.

Definition 3.6 Given a chain map f: A® — B®, the coneover f is C(f)*=A*T1®
B*, with differential
d _ (dA 0 )
(N f —dg)-

Definition 3.7 A map r: B®* — C* is a strong deformation retract’ with inverse i if
e lg—ir=dgh+hdp,
e 1¢c=vri,and
e hi=rh=0,

where h: B®* — B* 1.

Remark Each s map above is a strong deformation retract with inverse ¢; see Ap-
pendix A.

The following two lemmas about cones were first presented and proven in [1]; we’ll
refer to them as “cone-reducing” lemmas:

Lemma 3.8 If f: A®* — B® is a chain map, r: B®* — C* is a strong deformation
retract, and i: C® — B® is the inverse of r via the homotopy h, then the cone C(rf)
is homotopic to the cone C( f), via:

(< ?)

(67)

In [12] this is called a simple homotopy equivalence.

C(f)*=4"""®B* AT e Ct =C(rf)*

Algebraic € Geometric Topology, Volume 9 (2009)
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Lemma 3.9 If f: B®* — A® is a chain map, r: B®* — C* is a strong deformation
retract, and i: C®* — B® is the inverse of r via the homotopy h, then the cone C( fi)
is homotopic to the cone C( f), via:

(61)

(fn 1)

We’ll also need these two, which are proven analogously:

C(N)*=B*t"og4a* C*Hl@a® =C(fi)

Lemma 3.10 If f: C* — A® is a chain map, r: B®* — C* is a strong deformation
retract, and i: C®* — B® is the inverse of r via the homotopy h, then the cone C(f1)
is homotopic to the cone C( f), via:

(1)

C(f)y=C"tlga® " B*tl@A®=C(fr)°

(%)

Lemma 3.11 If f: A®* — C* is a chain map, r: B®* — C* is a strong deformation
retract, and i: C* — B® is the inverse of r via the homotopy h, then the cone C(if)
is homotopic to the cone C( f), via

(=2
[l =]

(7)
(67)

Now we’re ready to attack the R3 complexes themselves. First, let’s name the eight
variations, six of which are braidlike and two of which are starlike. As in [5], we’ll
label the braidlike moves by circling anticlockwise around the tangle boundary and
recording the height of each outgoing strand (h for high, m for middle and I for low).
The starlike moves are labeled either clockwise or anticlockwise, depending on which
way we have to circle to see the low, middle and then high outgoing strands. We also
need to pick a time direction for each move and will use the convention that the “before”
diagram has a crossing to the right of the low strand, while the “after” diagram has a
crossing to the left. All of these labels and conventions are shown in Figure 10.

O —
N O

C(f)y=a*opcC* ATt e B*=C(if)*

The CKT works by decomposing the nine-object “before” and “after” complexes of
an R3 move as cones over the local differential for a particular crossing. For the time
being, let’s take this to be the highest crossing. It’s important at this point to introduce
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AN R3pm N\ i vd R3m N\ /
X e A //\\ o X

/ N Ry R3

AN R3un N\ / N\ /. R3um /
//\\‘ e K = X

R3.h R3 N
AN /. R AN X /Ry /
P = //\\ X o /\/\\

Figure 10: The eight variations of the R3 move

another set of conventions: the way in which we order crossings. For variations hml,
Imh, mlh and ©, we’ll use the following ordering: in the initial tangle the crossings
will be ordered “middle”, “low”, “high”, while in the final tangle they will be ordered
“low”, “middle”, “high”. For variations lhm, mhl, hlm, (5, we’ll instead use the inverse
ordering: the crossings of the initial tangle will be ordered “low”, “middle”, “high”,
and of the final tangle, “middle”, “low”, “high”. 8

Consider, for example, the initial complex of the hml move

€ N Jabove
|[T _(:\z_ =¢ i [IUE R

is the zip differential for the high crossing. Morrison and Nieh used this
decomposition, as well as the one for the final complex of the hml move, to show that
the two complexes were homotopy equivalent. We will restate their argument from
[12] here, while fleshing out some more details to give us an explicit map.

where z2bove

8 This ordering convention is more cumbersome still than the one used in [5], and even worse must be
altered when we resolve the low crossing instead of the high. It is a necessary evil, though, as the alert
reader may notice as we work though the CKT for the different variations.
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Remark The initial and final tangles in the Propositions below may be rotated relative
to their definitions in Figure 10, for convenience.

First we need an easy lemma.

Lemma 3.12 The two compositions

z SIBL
E—— —_— [,
-|—|- P
AR —
Ny —
- ——|- 1 2
L2 z SOBL
and — — 1,

using the maps defined in Lemma 3.4 and Lemma 3.3, are equal.

Proof This is a straightforward, object-by-object comparison; there is only foam
isotopy involved—no foam relations are necessary. |

Proposition 3.13 (The hml variation of R3)

V ~C izabove i> C lzbelow ~ _I\_« =
T\ Soml 3\

is a homotopy equivalence via the map

ot = ( 1 0 )
hunl —hopLOZ topL O SBL)

The homotopy inverse of this map is given by

—_— ( 1 0 )
hond —hLoz tigLoSopL)

The maps hog,. and higy are just the homotopies for the simplifications of the OBL and
IBL complexes; we won’t compute them explicitly.

Algebraic €& Geometric Topology, Volume 9 (2009)



646 David Clark

Proof We shall follow through the composition one piece at a time.

z SIBL©Z
— ~C — >
L& | P -|—|-
A
I 2|” soBL°z
=C —_— s — 1
Ny —
- - z 1 2
(=Y

The homotopy equivalences on the first and last lines follow from Lemma 3.8 and are

(1 0) and ( 1 0)
0 siL —hopLoz tipL)

Equality on the second line is exactly Lemma 3.12. O

©

given by the matrices

We’ll now determine the homotopy equivalences for the other seven R3 variations.
The techniques for lhm, mhl and Imh are essentially the same as for hml, and we will
omit the details of the proofs. The other four moves will require some modification.

Proposition 3.14 (1) The lhm variation:
_|_)_|_ ( | 1 \
Ao l | \
~ C Zabove C Zbelow ~
[ Ks i -
\ I \—I— )

is a homotopy equivalence via the map

p _( 1 0 )
thm —higroz tigr © Sopr /)

The homotopy inverse of this map is given by

1 0
§ihm = (_hOBR ©Z Iopr © SIBR) '

ll?
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(2) The mhl variation:

I

[1%1—}] c ib —c lu‘““’w = [—X_}]

is a homotopy equivalence via the map

foBL O S 0
fmhl:(OBL IBL 1).

uo

The homotopy inverse of this map is given by

_ figL © SopL 0
&mhl wohos 1)

( I ) _I_ )
|LXI_}I ~C iuabm = c | fbiw N |[_;. '_}]
)T
is a homotopy equivalence via the map

HBR O S 0
ﬁmh — (IBR OBR 1) )

u o fiopr

(3) The Imh variation:

lu

The homotopy inverse of this map is given by

_ (tOBR O SIBR 0)
&imh = 1]

uo hpr
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Remark Notice that, for the mhl and Imh variations, the interesting partial homotopy
equivalences occur at the source complexes in the cones, rather than the target complexes.
Thus the relevant cone-reducing lemma here is Lemma 3.9.

For the hlm, mlh, O and O variations of R3, the high crossing resolves parallel to
the low strand, rather than perpendicular to it, which makes the cone slightly more
complicated. Consider, for example, the complexes in the O move. The initial complex

1S
— Rj T C u Zabuve
= — ,
Tﬁ(— 1__ _2!_<_\l_ S[—<\T

-i\_<;_ zc(_lb’jz—z_bﬂ_o“_;i_‘_]_).
RN Ve

Here neither the source nor target complexes in the cones are the same; instead, the
source complexes are related by two R2 moves, and the target complexes by a different
sequence of strand-past-vertex moves. This will ultimately make our string of homotopy
equivalences longer, but the idea is essentially the same. As before, we’ll give the gory
details in only one of the cases.

with final complex

First, however, we’ll need a statement analogous to Lemma 3.12.

Lemma 3.15 The two compositions

and —_—— E—— E——

are equal. Here, py and p, are the R2 tuck maps on the bottom two strands and on the
top two strands, respectively, and o is the obvious crossing-reordering map.

Proof Again, as in the proof of Lemma 3.12, this is a straightforward exercise in foam
isotopy. Just remember that o is the identity on all objects except the doubly I-resolved
ones, on which it acts by —1. O
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Proposition 3.16 (The O version of R3)

W) ()
_Zf_:\'_ ™M

A ~ A
ﬂ:7 ﬁ(— _ ~C \Lzabove f_o) C \Lzbelow ~ {3

) (A

is a homotopy equivalence via the map

gopyop ] 0
sz( P20 p; )

SoBr © tigr ©Z 0 M1 Sopr © tigr

The homotopy inverse of this map is given by

_ P10 P, 0
g@ - h .
SIBR © foBR ©Z O /13 SIBR © [OBR

Here, the maps hy and h, are homotopies for the R2 equivalences, and we won’t
compute them explicitly.

Proof This time we have the following composition:

oJ z W/ oz <\
()= la—h
~C u tIBRozopl >_<
e
—C u tOBROZOUOPZ >_<
‘o -
~C o5 _foBrRoZe0 >’\_<
)
_1\_(_}? 700 2\— =
~C _

-
M

Algebraic €& Geometric Topology, Volume 9 (2009)



650 David Clark

The homotopy equivalences on the first and fifth lines follow from Lemma 3.11 and

are given by the matrices
1 0 1 0
and .
(0 fIBR) (0 SOBR)

The equivalences on the second and fourth lines come from Lemma 3.9 and are given

by the matrices
—1
Pq 0 p2 0
(ZIBROZOhl 1) and (0 1)

Equality on the third line is just Lemma 3.15, and the equivalence (in fact, isomorphism)
on the last line is given by the matrix

o0

01)°

Note that without this crossing reordering our R2 moves would fail to be consistent in
the cone. O

The explicit maps for the remaining three R3 variations are computed in much the
same way, and we will omit the details.

Proposition 3.17 (1) The hlm variation:

<]

(- ) ()

A
C Zabove C Zbelow ~
i h Shim l . HZTF’— B

ll?

lle

is a homotopy equivalence via the map
ogopyo ,02_1 0
fhlm = .
S1BL © foBL ©Z 0 /1y L © oBL
The homotopy inverse of this map is given by

oploco 0
ghlm:( P2 /01 )

SoBL O tigr, ©Z 0 My SopL © tipL
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_H_ /_+_ )
o lubemw = |[—>>— 1—]

(2) The mlh variation:

I |NI
Xt
-~ =
=
12
a
-
::a
ll?

is a homotopy equivalence via the map

S1BL © foBL 0
Jmih = ( ) .

—1
_hZOuOSIBLOtOBL O'0,0l Op2

The homotopy inverse of this map is given by

_ ( SoBL © f1BL 0 )
8mlh = .

-1
—hjouosopLolipL P20p] ©O

/_>__(_<_ \ (_H_ \ N
R e e [\*ﬂ]

=) L)

(3) The O variation:

B

lle

is a homotopy equivalence via the map

for = ( SOBR © 71BR 0 ) ‘

—1
—hiouosopr0ligr 00020 p]

The homotopy inverse of this map is given by

_ ( SIBR © fOBR 0 )
80 = :

-1
—hyouosprolopr P10OP, OO

Remark The proof for the hlm variation uses Lemma 3.11 and Lemma 3.9, as in the
O case above, while the O and mlh variations require Lemma 3.10 and Lemma 3.8.
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Having determined the R3 maps explicitly, we see they are various and complicated.
However, to compute with movie moves we only need a small list of facts that apply to
all eight R3 variations. The following lemmas provide this distillation and apply to
both the R3 moves and their inverses.

First, we’ll reintroduce some notation from [5]. As we’ve seen, the CKT essentially
separates each R3 “before” and “after” complex into two smaller complexes, which
we’ll call “layers,” whose diagrams differ by the resolution of a single crossing. We’ll
denote layers that look like (a rotated version of) either

1]« H

by O, since the strands involved in the crossing appear to be Orthogonal to the
uninvolved strand. In contrast, we’ll denote layers that look like (a rotated version of)

either
J X
/e O AL

by P, for “/Parallel to the uninvolved strand.” Notice that the homological ordering
of the layers may be either O — P or P — O, depending on the crossing signs and
orientations for each R3 move:

e the hml, lhm, mlh and O variations are ordered © — P

e the mhl, Imh, hlm and O variations are ordered P — O

This allows us to decompose each R3 map as

R3, =R3970 4 R397P 1 R3P~0O L R3TP,
where « is one of the eight variations and R3‘j_’b is the component from the a layer to
the b layer. Of course, we’ve already performed this decomposition in the propositions

above. For example, the matrix for f5 (from Proposition 3.17, part (3)) can be written,
using this notation, as

0—0 O—>P
R357C R3G

P—0O P—>P
R3579 R3%
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Let’s also name a morphism that will arise frequently:

Lemma 3.18 If the layers of R3, are arranged as O — P, then the map from the
parallel layer to the orthogonal layer, R3¥~© | is zero. Otherwise, if the layers are
arranged as P — O, then the map R37 ™9 is zero. (That is, the diagonal map pointing
backwards in homological height is always zero.)

Lemma 3.19 The map between the orthogonal layers, R3(3_’O , is the identity chain
map when * = hml, lhm, mhl, or Imh. When * = hlm or mlh, the map R3(3_>O,
restricted to the two homologically extreme objects, is —id. When * =0 or O, the
restriction of R397© to extreme objects is the appropriate rotation of the morphism
—R.

Lemma 3.20 The map between the parallel layers, R3T 7 | kills the doubly smoothly
resolved object (which resides at either the highest or lowest homological height) when
* = hml, lhm, mhl or Imh and kills both extreme objects when * = hlm, mlh, O, or
O. Further, for each variation, in the middle homological height there is a pair of
objects (one in the source complex and one in the target complex) that have the same
unoriented diagram; the component of the R3f_’7) map between these objects is —id
for x = hml, lhm, mhl or Imh, the identity for x = hlm or mlh, and the appropriate
rotation of R for x =0 or (5. Every other entry of the R3¥ ™" map in the middle
homological height is some multiple of a foam that looks locally a cup, a cap, or one of

@or@

near all circles or bigons in either the source or target.

These lemmas follow easily by observation of our CKT complexes and direct calculation
of the maps therein, involving only foam isotopy. It turns out we will need one more
(rather obscure) piece of data for movie move 6, which is again easily computed: it
concerns the @ — O map for the O R3 variation.
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Lemma 3.21 The R3g_’o map acts on the middle homological height objects in the
following way:

-
/(\
i

2=

R397C: —

gL
kﬁ/ H)

where T = %\ ,

and T’ is the appropriate rotation/reflection.

For our movie move calculations, it will also be convenient to have the analogous
lemmas when we determine the O and P layers by resolving the lowest crossing,
rather than the highest. The CKT works just as well in this context, this time using
the four versions of the strand-past-vertex move we haven’t seen so far (computed
in Lemma 3.5). The maps look very similar to the ones we’ve worked out above;
this time, however, the hml, Imh, hlm and mlh variations will more closely resemble
the CKT from Proposition 3.13, while the mhl, lhm, ©, and O variations will take
after Proposition 3.16. It’s also worth noting that a different set of crossing ordering
conventions will become much more convenient here. For variations hml, Imh, hlm
and mlh, we’ll use the following ordering: in the initial tangle the crossings will be
ordered “middle”, “high”, “low”, while in the final tangle they will be ordered “high”,
“middle”, “low”. For variations mhl, lhm, ©, and O, we’ll instead use the inverse
ordering: the crossings of the initial tangle will be ordered “high”, “middle”, “low”,
and of the final tangle, “middle”, “high”, “low”. We’ll demonstrate two of these R3
homotopy equivalences below (denoting them with a bar) and leave the rest as an
exercise to the reader.
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Proposition 3.22 (1) The hlm variation:

[3¢]-

<7
:Q
ln
a
-
:O"
g
Il
—
>0
N
—

ﬁﬂm

is a homotopy equivalence via the map

— fOAR © S 0
ﬁ)lm — (OAR IAR 1) )

u o AaR

The homotopy inverse of this map is given by

o _ fiar © Soar 0
&hlm uohOAR 1]

(2) The lhm variation:

(4 = \
]| b 2] o [R]
Sy m

is a homotopy equivalence via the map

- SIAR © f0AR 0
ﬁhm - ( ) .

-1
—hjiouosiroloar P20 ©0

The homotopy inverse of this map is given by

T = ( SOAR © f1AR 0 )
m = |\ -17]-
hy 0uosoaR ©tiar O © P O Py

The following lemmas are analogous to Lemmas 3.18, 3.19 and 3.20: they give the

summary information we need about the R3 maps (and their inverses) obtained by
resolving the lowest crossing, which we’ll denote R3., .
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Lemma 3.23 If the layers of R3, are arranged as O — P, then the map from the
parallel layer to the orthogonal layer, R3,F 9, is zero. Otherwise, if the layers are
arranged as P — O, then the map R3,7~© is zero. (That is, the diagonal map pointing
backwards in homological height is always zero.)

Lemma 3.24 The map between the orthogonal layers, R3,°~© | is the identity chain
map when * = hml, Imh, hlm or mlh. When » = mhl or lhm, the map R3,9709,
restricted to the two homologically extreme objects, is —id. When » =0 or O, the
restriction of R3,979 to extreme objects is the appropriate rotation of the morphism
—R.

Lemma 3.25 The map between the parallel layers, R3,7 =T kills the doubly smoothly
resolved object (which resides at either the highest or lowest homological height) when
* = hml, Imh, hlm or mlh and kills both extreme objects when » = mhl, lhm, O or
O. Further, for each variation, in the middle homological height there is a pair of
objects (one in the source complex and one in the target complex) that have the same
unoriented diagram; the component of the R3,” =7 map between these objects is —id
for x = hml, Imh, hlm or mlh, the identity for x = mhl or lhm, and the appropriate
rotation of the morphism R for x =0 or 5. Every other entry of the R3,” =7 map
in the middle homological height is some multiple of a foam that looks locally a cup, a

cap, or one of
@ or ( )

near all circles or bigons in either the source or target.

4 Checking movie moves

Here we will prove Theorem 1.3, which asserts functoriality for the theory. This requires
showing that chain maps in Kob(sus3), induced by link cobordisms, are well-defined,
ie, they are invariant under changing a cobordism presentation by a movie move. The
overall strategy will be very similar to the one used in [5].

4.1 Duality and homotopy isolation

We begin by stating a result about duality with respect to Hom—sets. For tangles P
and Q, denote any gluing of them by P e O, and let QO denote the reflection of Q.
The following proposition was first presented in [5]:
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Proposition 4.2 Given oriented tangles P, Q and R, there is an isomorphism be-
tween the spaces of chain maps up to homotopy

F: Homgy ([P » QI}, [R]) = Homgn ([ P]. [R » OI)).

While this result was originally proven in the context of Khovanov’s su, theory, it
clearly holds for the suj case without any changes to the statement or proof (for whose
details we refer the interested reader to [5]). It’s important to note, however, that the
proof assumes the theory is already invariant under MM9, the ninth movie move. As
such, invariance under MM9, shown in Section 4.10, must take place with complete
independence of the material in this section.

From this we get an easy corollary, also given in [5], which will be highly useful during
our movie move checks. In particular, note that it applies to (the first and last frames
of) every movie move.

Corollary 4.3 Let Ty and T, be tangles with k endpoints such that Ty eT, is an
unlink with m components. Then the space of chain maps modulo chain homotopy
from [[T1]] to [T3]] in grading m — k is 1—dimensional, and all chain maps of grading
higher than m — k are chain homotopic to zero.

The second component of machinery we’ll need is the “homotopy isolation” idea
from [5].

Definition 4.4 Let C*® and D*® be complexes in a graded additive category, with A a
direct summand in some C?. We’ll say A is C—D homotopically isolated if, for any
grading zero homotopy 4: C®* — D®~!, the restriction of dh + hd to A is zero.

Lemma4.5 Let f,g: C* — D® be chain maps, and say f >~ ag are homotopic for
some scalar . If f and g agree and are nonzero on a C —D homotopically isolated
object A in C*, then we have that f ~ g are homotopic.

By Corollary 4.3, we know that any movie move (except for MM9) changes the induced
map in Kob(su3) by at most a scalar. We’ll show this scalar is always 1 by computing
with homotopically isolated objects, which have a convenient description in the st
web case.

Lemma 4.6 Let [7T1]] and [[T,]] be the complexes for two tangle diagrams, and let
D1 be a web appearing as a direct summand somewhere in [[T1]]. Then

(1) Dy is [[T1]]-[[T1]] homotopically isolated if it contains no cycles (as a graph)
and is not connected by differentials to webs containing cycles;
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(2) Dy is [[T1]]-[[T>]] homotopically isolated it [ T]] and [[T;]] contain only acyclic
webs.

To prove this, we’ll first need a more general result about Hom—sets of foams.

Definition 4.7 The bare grading of a morphism C between webs D; and D, is given
by
, |4
deg'(C) =2x(C)— B + ER
where B is the number of boundary points on /2 and V' is the total number of trivalent
vertices in Dy and D,.

Proposition 4.8 If D, and D, are acyclic then there are no nonzero morphisms with
positive bare grading between them.

Remark Morrison and Nieh demonstrate a curious difference between the Hom—sets
in the su, and suj theories. In the former, basis webs (ie, crossingless matchings) were
guaranteed not to have positive morphisms between them. In contrast, su; basis webs®
can have morphisms between them in arbitrarily large positive degree [12]. Proposition
4.8 provides a condition sufficient to avoid positive morphisms: webs must be acyclic,
rather than nonelliptic.

Proof Let C: D; — D,. Our first task is to remove the closed seams from C,
producing a new foam called C. Begin by performing neck cutting on each sheet
incident on a closed seam. (If there are & closed seams to begin with, there will be
3k operations). This will produce 33k terms, in which all the original closed seams
are sequestered in closed foams. We can evaluate each one of these closed foams to a
scalar by the remark in Section 2.5, leaving us with a new presentation of C =) C;, a
degree-homogeneous linear combination. Here the C; may still have closed seams, but
only of the variety appearing in the neck cutting relation: locally, they will all look like
“choking handles” (G@) At this point, we can perform neck cutting once again (to
remove unwanted tubes connecting sheets) so that each C; has the following pieces:

e (O-—cells given by trivalent vertices and boundary points
e 1-—cells given by seams, boundary lines and edges in D;

e 2-cells given either by discs in choking handles, or by sheets that intersect
D1 U D, nontrivially and that may have handles or choking handles

the “nonelliptic" webs, whose internal faces have at least six sides [10].

Algebraic € Geometric Topology, Volume 9 (2009)



Functoriality for the sus Khovanov homology 659

Now pick any C; # 0 and consider the foam C obtained from C; by removing
all handles and choking handles. Since these pieces have bare grading —1 and O,
respectively, we have that deg/(C) = deg’(C;) < deg/(C). Also note that C has no
closed seams and no handles and can thus be decomposed as follows:

e (—cells given by trivalent vertices and boundary points
e 1—cells given by seams, boundary lines and edges in D;

e 2-cells given by genus zero sheets that intersect Dy U D, nontrivially

It suffices to prove the result for this much simpler foam C.

Let F be the number of seams in C , and let S be the number of sheets. We now claim
that X(5 ) =S —2F, which we can see as follows. Imagine building C outof its S
disjoint sheets. We’ll then add seams, joining together three sheets at each seam. Each
of these operations will reduce the Euler characteristic by 2, giving the formula. Thus,
since F = % deg/(C) =28 —3F — B.

Next we’ll show that, if D; and D are acyclic, this formula can be modified to
deg/(é) =28 —4F — N, where N = (D7) + mo(D3), ie, the total number of
connected components of the boundary webs. Assuming D; and D, are acyclic just
means that each of their components is a tree. This says that B = V; + 2n;, where n;
is the number of connected components and V; is the number of trivalent vertices in
D;. Adding these two equations we get

2B =V; +V2+2(l’l1 +7l2)
=V 42N

.
= B=_+N=F+N.

Thus we have that deg/(é) =28 —-3F—-B=2S—4F—N.

Remember, our goal is to show that deg’ (5 ) <0, which is now equivalent to proving

N
(12) S <2F+ 5
We’ll get there by considering the boundary 1-—cells of the sheets in C, which, as
mentioned before, consist of seams, boundary lines and edges in D;. It’s an easy
observation that the total number of edges, £, in D; and D, isjust E =2V + N.
These segments, as well as the boundary lines, can serve as part of the boundary for
a single sheet. Each seam, however, will serve as a boundary component for three
distinct sheets (from our acyclicity assumption).
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For an example, let’s say that every sheet in C werea d —gon. Then we would have that
Sd = E + B + 3F: each side of each sheet corresponds to a graph edge, a boundary
line, or one third of a seam. Let’s make a more general assumption: that every sheet in
C has at least four sides. If this is the case, then

4S <E+ B+3F
<QV+N)+(F+N)+3F
<8F +2N.

This would give us Equation (12). Note that there cannot be three-sided sheets (or in
fact any odd-sided sheets, by acyclicity); unfortunately, there can be bigons. However,
we observe that bigons in C must have one edge in one of the D; and the other edge a
seam intersecting the same D; twice. In other words, this bigon must be part of a zip
or unzip morphism. Thus we can factor C into a stack of zips, unzips and a foam in
which each sheet has at least four sides. Since the zip and unzip morphisms have bare
degree —1, we have our result. m]

Proof of Lemma 4.6 A degree zero homotopy is a morphism
h: ¢™D; — ¢™ ' D;.

(Here, we could have D, in either [[T7]] or [[T>]], depending on which part of the
lemma we’re trying to prove.) Thus, by Equation (11), deg’(4) = 1. And by Proposition
4.8, h must be the zero map. O

The first part of this lemma is well-suited for the reversible movie moves (MM6-10)
and the second part for the those involving Morse moves. It’s an easy observation that
every web in the initial (and final) complex C of movie moves 6, 7 and 8 is C-C
homotopically isolated, and every web in the initial and final complexes C and D of
11, 13 and 15 is C—D homotopically isolated. This means we can compare induced
chain maps simply by applying them to a single object of our choice. Movie moves 12
and 14, unfortunately, do not contain homotopically isolated objects, so we’ll need to
compute the induced maps on all objects; luckily the complexes are small, and this is
not a great burden. We’ll handle movie moves 9 and 10 with different techniques. The
former needs special care for the reason described in the paragraph after Proposition
4.2. In the case of movie move 10, we will use a redundancy argument to give a
computation-free proof of invariance.

Keep in mind that, as always, all crossings in these moves must be ordered, and they
may need to be reordered to be consistent with the conventions we’ve defined for the
Reidemeister maps. (Recall the discussion about planar compositions of complexes in
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Section 2.7 and Appendix B.2) However, the chain maps induced by crossing reorderings
are trivial in every movie move except MM6 and MM9. The signs appearing in MM6
are particularly nasty, but we will show some sample calculations.

49 MM1-5

The first five movie moves are trivial; they simply say that a Reidemeister move
followed by its inverse is the identity.

410 MMe6-10

Movie moves 6 through 10 involve no Morse moves, and so are reversible. We only
need to check one time direction, and in all cases we’ll be comparing the map induced
by the movie shown to the identity map (induced by the constant movie).!°

There are 24 variations of MM6. To see this, we’ll first make use of rotational symmetry
to require that the “horizontal” strand (the one not involved in either R2 move) points
from left to right. There are then sixteen possibilities for the initial frame of the
movie move; these come from four choices of height orderings and four choices of
orientations. The horizontal strand can either lie entirely above or entirely below the
two vertical strands (“noninterleaved”), or it may pass under one and over the other
(“interleaved”, “ascending” or “descending”). The two vertical strands may be either
parallel or antiparallel. When they are parallel, they may point up or down, and when
they are antiparallel they may have a clockwise or anti-clockwise orientation. All of
these variations are displayed in Figure 11.

MMé6

Further, the eight variations in which the strands are “noninterleaved” (the first two
rows of Figure 11) each have two subvariations, which we don’t see until the second
frame of the movie Of the two vertical strands, either one can pass above the other
during the R2 moves; in Figure 11, the “left passing above the right” subvariation is
listed to the left of the slash. In the “interleaved” variations, there is no choice here.

We will thus treat four major cases:
¢ noninterleaved, parallel variations

10We apologize to the thorough reader of [5], for whom much of the prose and organization of the
MM6 and MMS calculations may induce déja vu.
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parallel antiparallel

— ~~ —

up down clockwise anticlockwise

below ;HI-: " iHizl - —'Hi’ 5 iHﬁ’ "
lhmm/lm[E hmml/mrﬂl mlh/ Om/r(n)

. non- him
interleaved T T T
A - 4 1 1 1
above | |him—! /hmi l Imh mpp=t | ib o 1 | =" /ihm!
hml / him™! mlh—‘/ Imh mm—l/ mhl™! O / O
ascending = —>T+ £ —>|' = _>| - = _,T"'
| mlh—! thm |o hml~!
. mhl hlm Imh~! O
interleaved |
, ] | 4+ At
descending +T - _>_1 -> —
mhl hlm I O l Imh™!
mlh~! lhm hml™! o

Figure 11: 16 variations for the initial frame of MM6

¢ noninterleaved, antiparallel variations
¢ interleaved, parallel variations

¢ interleaved, antiparallel variations.

Noninterleaved parallel variations There are four possible initial frames that are
“noninterleaved” and have parallel vertical strands. Each of these initial frames has
two possible subvariations, depending on the relative heights of the vertical strands
during the R2 moves. For each of the four initial frames, we will treat uniformly the
subvariations in which the upper R2—induced crossing is negative and the lower one is
positive and then indicate how to treat the other four subvariations.

Recall that our lemmas encapsulating the details of the R3 variations require that we
separate the initial and final complexes into layers O and P by resolving a crossing.
Maneuvering through the pair of R3s in this movie move is most efficiently managed
by resolving the R2—induced crossings: the upper one for the first R3, and the lower
one for the second R3. Notice that since the upper crossing is negative, the first R3 will
have homological ordering O — P, while the second R3 will have ordering P — O.
Since the horizontal strand could be either above or below the vertical ones, these
two crossing could be either the high or low crossings in their respective R3 moves.
Luckily, we have lemmas that deal with either case, so we needn’t treat them separately.

Our “bundle” of maps for this subcase is given in Figure 12, where Os and P's describe
whether the indicated crossing resolution has strands orthogonal or parallel to the
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9
/%\ A

e

@
@
/3
H/—’ N— N——
R2 R3 R3 R2™!
Figure 12: MMG6 maps for the noninterleaved variations

horizontal strand. For example

is our notation for

K

(&

T

if the vertical strands are antiparallel). Also, we’ve cheated slightly with this diagram:
the fourth column should contain two additional summands, those with mixed Os and
Ps. However, while there are nonzero maps into these summands, the R2~! maps out
are always zero. Thus we needn’t excessively complicate things with their presence.

(or, thinking ahead,

We’re left with a sum of four compositions. The two middle compositions are both
zero, as each contains a leg (labelled with “0”’) that’s zero by Lemma 3.18. The top
composition (; ’s) is just the identity: «; and oy are components of R2a moves, and
o and o3 are each the identity, by Lemma 3.19. (Each map is a component of the
O — O map; when the horizontal strand lies below, the R3 variations are Imh, lhm,
mhl and hml, which are exactly the four for which the O — O part of the R3 map
is the identity, and when the horizontal strand lies above, the R3 variations are hml,
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hlm, Imh and mlh, which are exactly the four for which the @ — © part of the R3
map is the identity.)

The bottom composition is slightly more mysterious, but we see that the map 8 sends
doubly smoothly resolved objects to zero by Lemma 3.20. Thus, if we choose a doubly
smoothly resolved object to begin with, it will map to the doubly smoothly resolved
object in

and thereafter to zero. Further, as mentioned before, any initial object here is homo-
topically isolated, so the computation with this particular one suffices. Note also that,
with this choice, the top composition involves only objects with smoothly resolved
crossings, so we needn’t worry about extra signs from crossing reorderings.

The other four subvariations, in which the signs of the R2—induced crossings are
reversed, are proven analogously: note that the objects in Figure 12 will then have all
Os and Ps swapped.

Noninterleaved antiparallel variations First consider those cases in which the left
vertical strand is oriented downward and the right upward. Again we’ll be referring to

Figure 12. Consider the object

which, since the two signs of the initial crossings now differ, has homologically extreme
height.

The composition a4 0 a3 0 &ty o &3 now specifies to

T=g=-g=g={1
PF%Q%H%FF% -

where 7 and r are the upward- and downward-opening half barrels appearing in the
R2 (and strand-past-vertex) chain maps, and R is the (appropriately rotated) morphism
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from Lemma 3.19, shown again below:

This composition reduces via an airlock relation to id.

Of course, starting with an extreme object also guarantees this & composition is the
only one we need to worry about, as 8 = 0 from Lemma 3.20. There’s no crossing
reordering sign here, either, but we do need to check. Below is an example calculation
for one of the variations (we leave the others as an exercise), giving a total sign of
(—=1)2. Recall that a crossing reordering map o; j only gives a sign when mapping an
object in which the crossings labeled 7 and j are both I-resolved. The unlabeled maps
have already been described above.

— e | = =
1 2 R \ <2 034 < <1
_Rb Z
\ .\
—1
R3 ) 034 R2b o12
—_— —_— —_— —_—
A A 2 1 1 2
2 1 2 —I== —I==l=

I
— P

The argument for the case in which the left vertical strand is oriented upward and the
right downward, is essentially the same.

Interleaved variations There are eight variations, and essentially two distinct com-
putations will cover them all. Start with hml™!/ ©, ¢ /Imh™!, mlh~!/mhl and
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lhm/hlm™!: we’ll show the calculation for the first and explain the necessary alterations
for the other three versions.

A %QH J?F%J(Jr

0O—-0
ﬁE)f* e F{,
-~ P—P 0—0

Notice that our first R3 map is ordered O — P and the second P — O, each with the
high crossing resolved and that the maps for these moves are labeled by their source
and target layers; in particular, the initial O layer for the second move and the final P
layer for the first move coincide.

Lemma 3.18 tells us there are only four compositions we need to keep track of here.
The first map into the second row has a doubly smoothly resolved target in the initial
P layer of R3;L, which thereafter maps to zero by Lemma 3.20. The composition
including the rest of the second row contains a blister, and thus is the zero map; this
is because the second map has a bubble from Lemma 3.20, the third map unzips the
bubbled bigon by Lemma 3.21, and the fourth map, an R2b untuck, caps it off. The
composition terminating at zero in the third row also uses Lemma 3.21.

Thus we’re left with only the first row, which is easily seen to be the same composition
we saw in the noninterleaved antiparallel case: the identity.

The calculations for the 0! /lmh™!, mlh™! /mhl™! and lhm™! /hlm variations are
very similar. For O~ /Imh™!, the initial object will have an I-resolved left crossing and
a smoothly resolved right crossing, and we’ll resolve each R3 move into layers using
the low crossing. Thus we’ll need to compute using the R3 maps. The mlh™! /mhl
and lhm/hlm™! variations are even easier: we start with the doubly smoothly resolved
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object in each case and resolve into layers using the high crossings or the low cross-
ings, respectively. Also, in each of these three variations, there is no need for an
analogy of the obscure Lemma 3.21. This is because the corresponding O — O
map originating in the second row always has just one component, the identity,
by Lemma 3.19. Crossing reordering maps are trivial in all four of these varia-
tions.

The computations for © /hml™!, Imh™!/ ©~!, mhI™! /mlh™! and hlm/Ihm™! are
somewhat different; again, we’ll explicitly show the first.

TR T
)C;,, O—»Oép—ﬂ? ‘S-‘%)H"

Now our first R3 map is ordered P — O with the high crossing resolved, and the
second is ordered O — P with the low crossing resolved. Again, we’ll keep track of
the layers to which objects belong by referring to the labels on the maps.

By Lemma 3.18, we have three compositions to consider. Two of them factor through
the second row, and thus map to a complex with the left crossing I-resolved; since
our map is a multiple of the identity, these compositions must sum to zero. (Note that
the @ — O map on the second row comes from Lemma 3.21.) So we’re left with the
first row. Using Lemma 3.19 for the first R3, Lemma 3.24 for the second R3 (where
our map comes from resolving the low crossing), the R2b map definitions, and an
application of the airlock relation, we get the map (—r) oido(—R) o7 = —id. We’ll
also get a crossing reordering sign here ((—1)>, shown below), giving us the identity
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on the nose.

e L2
oy g, 9\_1
o
o12 1/2 034 <2 023 _l%?)
{2
el
1

T
%’J(")T'*’J(Ji'

There are a few modifications necessary for Imh™!/ (5, mhl/mlh™! and for him™! /Ihm.
In the Imh™!/ (O case, we start with the object with smoothly resolved left crossing
and I-resolved right crossing and resolve the first R3 on low and the second on high; a
crossing ordering sign will appear here. For each of mhl/mlh™! and him™!/Ihm our
initial object will be the doubly smoothly resolved one; him™! and mlh™! should be
resolved on low, while mhl and lhm should be resolved on high. In all three cases, the
identity will result.
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T T [J

There are only four variations of MM7, depending on the orientation of the strand and
whether the leading crossing is positive or negative. It’s easy to check that reversing
orientations has little effect on the two subsequent calculations.

MM?7

When the leading crossing is positive, we get
\\/ Rla \b/ R1b \Q/ R2b~! U
\_/ saddle \k_/ cup \\—/ W
- O

}%OI—>

while a negative crossing results in

\\/ R1b \{ Rla \\( R2b~! U

O N2 N € U

Either composition is easily seen to be the identity morphism.

MMS

<

)

O3 | 10|

This is the only movie move involving all three Reidemeister moves. First let’s note
some symmetries. By a rotation of the whole diagram, we can assume the R1 move
happens on the horizontal strand, beginning on the right. Moreover, we can assume that
the horizontal strand is oriented right to left (otherwise, we can obtain this condition
by a & rotation of its time reversal).

There are then sixteen variations, depending on whether the vertical strand lies above
or below the horizontal strand, its orientation, the sign of the crossing introduced by
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the first Reidemeister move in the first frame and finally whether the first Reidemeister
move introduces a twist on the left or right side. Figure 13 shows all the maps involved.
The dotted/dashed lines are contingent upon crossing signs and orientations: either all

R1 R2 R3 R27! R17!

Figure 13: Possible compositions for MMS8

of the dotted lines will appear, and none of the dashed, or vice versa. Note that the
crossing introduced by the R1 move is always either the low or high crossing in the R3
move, so we will denote its resolution with either O or P as we did in the computation
for MM6. We can also observe that any map factoring through the resolution
must be zero, since this object maps to zero under R1. Thus we need only concern
ourselves with the other two compositions in Figure 13.

Consider the case of a negative twist, but ignore whether the twist appears on the left
or right side of the horizontal strand, as this barely changes any of the calculations.
Our computation will work regardless of whether the vertical strand is above or below
the horizontal strand. If above, we’ll see the hml, Imh, mhl and lhm variations of R3
and use Lemma 3.19; if below, the relevant R3 moves are hml, Imh, hlm and mlh and
we can apply Lemma 3.24. Either way, all R3 map components we’ll encounter are
just the identity. The two compositions when the vertical strand is oriented downward
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sl
§(9¢>SD‘“°‘1J T
9?_

are as follows:

A
WP_;)

Here f is the seamless component of the R2b map, and s is the saddle from R1b.
The bottom map in this composition is just the identity (there are clearly no crossing
reordering issues here), while the top map contains a blister and is thus zero.

If the vertical strand is oriented upward, we’ll see the following:

‘\t R1b ’9 R2a ‘ip R3 q R2b~! 91 Rib~! #
—_— —_— e —_— e

- da dZ

This time the top map contains a sphere and is thus zero. The bottom map takes some
patience to see, but modulo the airlock relation it’s just the identity. Crossing reordering
maps act trivially here.

The calculations for the positive twist case are almost identical.

A

Remember that the proof of Proposition 4.2 in [5] assumed invariance under this movie
move. Thus, since we don’t have access to Corollary 4.3, we can’t know in advance

MM9
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that the space of chain maps between the first and last frames is one dimensional. As
such, we’ll have to calculate the map on every object in the initial tangle complex,
checking it’s the identity on each of these objects.

There are four variations of MM9: after fixing the orientation of one strand, we have
two possible orientations for the other strand, and a choice of sign for the initial crossing.
We’ll do the calculations for both types of crossings with a given orientation. It’s easy

to see that changing orientation essentially interchanges the maps in these two cases.

With a positive initial crossing, we have

\\/ R2a ’\,/ o12 ’\,/ R2a~! /
AT AT AT AL

where o is the necessary crossing reordering map. The components of the chain map
are given by

\/ \_/ | \_/ D\
><>< —— ><><
>{ boz M i M —ued >_<
\ . . /
.
and the composition is just the identity.

With a negative crossing, we have

//$%\~/v\/”—> ;?ZV'/L//’
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with the components of the chain map given by:

200C D=

> <ﬂ>>o®o<%>o®o<%> <
R

Here, again, our composition is the identity.

MM10
N \\ \ SN A 0\ ~ Iy N
-~ NS K N Nire - LA —f )| — L
AKX < S \\7%\/?/ > \//\/
\T/%/\“\Q x/\gf/ﬁ y\ <

This move has the most frames and the most crossings, in addition to forty-eight
variations: assuming the highest strand is oriented to the right, we have 3! height
orderings and 23 orientation possibilities for the other three strands. Various shortcuts
have been successfully employed in [1] and [5] for the su, theory; however, we will
build on the technique of the latter to give a completely computation-free proof of
invariance under MM10.

Let’s first establish that one particular variation induces the identity map. To do this,
consider the nongeneric projection in Figure 14: a cusp over a crossing. Decomposing
the space of projections of smooth tangles (with our specific boundary data) into strata
of “genericness”, we can view this projection as a 3—cell in the dual complex (where a
k—cell corresponds to a codimension k stratum). Here, O—cells correspond to generic
immersions, 1—cells correspond to Reidemeister moves and 2—cells correspond to
movie moves. The 3—cell in question, shown in Figure 15, is bounded by 2—cells
representing MM 10, MM6 and MMS, as well as five 2—cells corresponding to the
“zeroth movie move” (two simultaneous but distant Reidemeister moves). Since we’ve
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already shown that MM6 and MMS give the identity, we get this variation of MM 10

X

Figure 14: A nongeneric projection corresponding to a 3—cell involving
MM10, MM6 and MM8

Figure 15: The 3—cell for the singularity in Figure 14. The O—cells here
are the generic tangle projections neighboring this singularity, achieved by
straightening (z direction) and translating (x and y directions) the kink. The
2—cells marked with an asterisk correspond to distant Reidemeister moves.

To check the remaining variations, we’ll just repeat the argument in [5]: the projection
in Figure 16 has a dual 3—cell bounded by two MM10 2—cells, four MM6 2—cells and
six distant Reidemeister move 2—cells. Having proved invariance for MM6, we see that
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invariance for either of the two MM10 variations present follows from invariance of the
other. It’s then straightforward to show that, with proper choices of strand orientations,
invariance under the MM10 variation discussed above propagates (one variation at a
time) to the other forty-seven variations.

K

Figure 16: A nongeneric projection corresponding to a 3—cell involving
MM10 and MM6

4.11 MM11-15

The final five movie moves involve Morse moves and so aren’t reversible; we’ll have
to compute the map for each movie (left and right) and see that they coincide.

N
o)
2 P

This is easy: every complex involved consists of a single object, and the cobordisms
on either side are clearly isotopic, in either time direction.

MM11

MM12
O O
-
<) (o
) CO

We can’t use a homotopy isolation argument here, but a brute-force computation of all
components is not difficult. Keep in mind there are two variations: the twist could be
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either positive or negative. Treating the positive twist, in the forward time direction (ie,
reading down) we’ll see on the left

o0
®=®Q=S OO

while on the right we have
VY
OO0
VY
o000

where s is a saddle. Either way, the morphism is a bent tube.

In reverse time, reading up, we have on the left

o200
O:Q ODOO
0—5C().

while on the right we have

- QQ Rla_l%
- O‘O DQOO
—0 (0.

These maps are each just a pair of discs.
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The mirror image movie move, in which the twist is negative, is similar: the morphisms
appearing will be the same, but swapped with respect to the forward and reverse
directions.

MM13

T
R~

o

e
. \

The saddle in this move restricts the possible orientations we can see, and by symmetry

we can assume that both strands are oriented upward. Let’s consider the case of a
positive twist. In the forward time direction, we see on the left

) (= p=
) (o) ¢

) ()=
) (—of—) (

where sy, is a saddle to left sheet, and sg is a saddle to the right sheet. Either way, our
composition is a tube between the sheets.

and on the right,

In the reverse time direction, we have

) (=X
) (—ol——)(
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on the left, and

) ()= X
) (—jol—=—)

on the right, giving us the identity compositions.

Again, the mirror image move (with a negative twist) has the same morphisms, though
swapped with respect to time direction.

MM14

ol4io)

o] o

We have some orientation choices for this move, and the circle may end up above or
below the vertical strand. Assume first the circle is oriented anticlockwise and lies

above an upward-oriented vertical strand. In the forward time direction, on the left we
have

A

. birth O . R2b @
T r

U
PN

| O
y 8

L&
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while on the right we have
birth O R2b

v/
A
id

—0O

!

@)

@/ [

\

The top composition in each case is just

v/

while the bottom composition is given by:

P
J

The reverse time direction is similar and easily described in words. First, reverse all
arrows and turn all morphisms upside down in the diagrams above. Then add a negative
sign to each of the two diagonal arrows, as dictated in our definitions of the R2 maps.
Clearly, the left and right sides again yield the same compositions.

Changing orientations and strand height do not change the calculations.

MM15
~ N
N N
— -

e Y =
3 b
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By symmetry we can assume that the middle strand is oriented left to right. The
other strands must be oriented oppositely for the saddle to occur, leaving two possible
orientations, and the middle strand can either pass above or below the other two. Thus
there are a total of four variations, and we’ll show calculations for one.

In forward time, we have on the left

\/ R2a >\/:\/\ saddle >_)_ <
/<\ /4\

~,
. 1 /—>\ saddle

" 2 K«
ey

R2b \\’// saddle >_}_<
X
\

200 A1l
= > or
o0 4
\ ® ®
\/
We need only concern ourselves with the component of the maps going to }\*/( and

have left the other components unlabeled. Clearly, the relevant composition on each
side is just a saddle between the lower two strands, and we have equality.

il

and on the right

i

In the reverse time direction, we have on the left

R2a~! >\/:\/\ saddle >+<
TN

1 % saddle \+/
| -

e J K

i
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and on the right

Rp-t " addie
\/‘\/ AN
N
N—
1 Jor

FoL S~ LY
DO ?\*/Q

Again we see a saddle between the lower strands on each side.

I

The other three variations are almost exactly the same, and we leave them as an exercise.
4.12 The end

Having now shown that movie moves do not change induced maps, the proof of
Theorem 1.3 is complete.

5 Extension to WebCob?

So not really “The End.” It would be a natural next step to extend this theory to
WebCob, the category of knotted webs and seamed cobordisms in four-space. For
objects, well-definition relies on two additional Reidemeister-type moves: sliding a
strand past a vertex (R4) and flipping a vertex over (R5). See Figure 17.

| w X &Q
Y A /

Figure 17: Additional Reidemeister-type moves for knotted foams. Note that
RS changes the cyclic ordering of the edges around the vertex.

Unfortunately, the complexes associated to each side of these moves are not quite chain
homotopy equivalent: there are extra grading shifts in the way.

We’ve already seen what happens in the R4 case in Section 3.2: depending on the
variation, the “before” complex is homotopy equivalent to a £2 g—grading shift of
the “after” complex. (This was not problematic at the time, because for R3 we could
compose these maps so that the shifts canceled.) A similar shift occurs in the R1 map,
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but there is no corresponding change in writhe for R4. It is not immediately obvious
how to rebalance these shifts.

Even more disturbing is the situation for R5. Let’s consider a vertex with inward
pointing strands that flips to create a positive crossing. Using techniques from Appendix
A, we simplify the after-complex as follows:

= ¢ ——q’
~
2
~ ¢° ®

L
-

Note that the remaining object lies in homological degree +1 and is thus not homotopy
equivalent to the single vertex in the initial complex (which has homological degree 0)
without a homological shift. This is in addition to the necessary g—grading shift of 4.

An extension to knotted webs will thus require a renormalized skein theory, and our
webs will probably need to be thought of as ribbon graphs that carry a framing. This, in
turn, makes morphisms more complicated, since it’s not clear exactly what a “framed”
seamed cobordism should be, or what the corresponding movie move list might look
like. We hope to address this in a future paper.

Appendix A Simplifying complexes

A.1 Gaussian elimination for complexes

The following two lemmas provide a nice tool for simplifying chain complexes without
changing their homotopy type. Note that, throughout complexes in Appendix A, we’ll
write e for any maps that we don’t need to know explicitly.
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The first lemma comes from Bar-Natan [2].

Lemma A.2 (Single Gaussian elimination) Consider the complex

° B A D
(13) 4 (a) © (&%) p (o ¢€) .
C E

in any additive category, where ¢: B S Disan isomorphism, and all other morphisms
are arbitrary (subject to d> = 0, of course). Then there is a homotopy equivalence with
a much simpler complex, “stripping oft" ¢.

° B @ A D
s (a) . (&) p (o ¢) .
C E
(1) (01) (_‘ol_lk)—mp—l 1) 1(9) (1)
M (o) s (v—ne~'1) . (¢€) M

Remark It’s an easy check that Gaussian elimination is a strong deformation retract
(Definition 3.7).

By applying Gaussian elimination twice on two adjacent isomorphisms (that aren’t
composable), we get the following corollary [12; 5].

Lemma A.3 (Double Gaussian elimination) When { and ¢ are isomorphisms,
there’s a homotopy equivalence of complexes:

(5)
. B L) ® e A F
8 ° L3
4 (a) p y D, (367) ® (*n) "

C ® G

E
_ -1
(1) (01) (=yv=1o1) 0 (“no ) 0 (1)
(—wlﬂ) (—go_lk) (1)
1 1

M (o) c (8—yy—18) . (v—nep~'1) . () I
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A.4 Three isomorphisms in Kob(su3)

To put Gaussian elimination to work for us, we’ll use the following isomorphisms [12,
Theorem 3.11].!!

(1) O ~q 2 o®q° 2Pqg® @, ak.a. “delooping,” is an isomorphism via the maps

/
\

3

w\»—

w\»—

(2) ~ ¢~ 1@ ¢4, ak.a. “debubbling,” is an isomorphism via the maps

I These isomorphisms categorify the relations in Kuperberg’s spider (Equation (1)) and are readily
proven using the local relations in Cob(su3) (Section 2.5)
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N
3) o~ @ , a.k.a. “desquaring,”’ is an isomorphism via
TN

} B |
ju ® ju
il

A.5 Proof of the strand-past-vertex moves

Proof of Lemma 3.5 This requires only a slight modification of the argument given
for Lemma 3.3 in [12].

Consider the IBR variation. In step 1, we desquare and deloop the two obvious objects,

giving an isomorphic complex:
-5
1 }'i
() <

[\‘Jﬁ}l ) q_6>&’ o :L o w}j} <

q—5
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where the differentials were calculated using the blister and airlock relations. We now
see two adjacent isomorphisms (identities, in fact) and proceed to step 2: apply Lemma

A3.
:q_6¢§ : q_s‘%:

Here the homotopy equivalence component at height —2 is given by ((1)) with inverse
(0 1); at height —1, the componentis ( 0 —z 1) with inverse

—u
()
1
Composing these components with the desquaring and delooping maps from step 1
(and Appendix A.4), we obtain the claimed s;pr and #g.

Let’s consider, instead, the OBR variation. Again, we desquare and deloop:

Algebraic € Geometric Topology, Volume 9 (2009)



Functoriality for the sus Khovanov homology 687

Applying Lemma A.3, we get:

:ﬂv ., q_Sy

with identical homotopy equivalence components to the ones we saw in IBR. Of course,
this complex is isomorphic to

AP

via the identity at height —2 and minus the identity at height —1. Composing these
three steps gives Sopr and Zopg-

J

The other four variations are proven analogously. (Note that the IAR and OAR com-
plexes will be horizontally reflected.) |

Appendix B Homological hoodoo

B.1 Planar compositions of complexes

Let’s consider the action of the planar arc diagram

O S
riy”
on the two complexes
¥ ¥
d} > d; >
A 7 A' 7 A2 7 2, A ,
Vs r3 V'3 K
A A A A
o Cox 4 g P g
B <« = Bl (.__B;_) BZ 4.__8;_) B3 <
¥ A ¥ A ¥ A k¥ A
4 4 ¥ 4
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This will give us the new complex

S S .,
dﬁ\éf= Qkng 0 *B

-
B ¥ a
riy > oy » 4
that we construct by taking the double complex and direct summing along the line
y = —Xx. (See Figure 18.) In this picture, the horizontal arrow originating at the

Al ’\é Q A ”\Q

b B3f‘*> b B3f‘*> B3f
riys riys /Ny :

IR
Al *\Q *\ A3*\Q

b 32{‘> BZf‘) BZf
fvf \ f\/y \ f\/y \

I e T e
A ’\é Q A3 ”\Q

b Blf‘%b Blf Blf
Xy riys /Ny\

Figure 18: The double complex being collapsed

(i, j)—th entry is the planar composition of (—1)/d /i1 (in hole 1) and 1p; (in hole 2).
Similarly the vertical arrow at (7, j) is the planar composition of 14 and d é. (Please
refer to the sign conventions in Appendix B.2.)

Given the associativity of planar composition, this rule easily generalizes (pairwise, if
you like) to planar arc diagrams with » holes.

B.2 Sign conventions

We’ll be using the following conventions for tensor products of complexes [6]; these
rules will translate directly to (ordered) planar compositions.
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The tensor product of two complexes (A4°,d4) and (B®, dp) is defined to be
(A®B)*= H A’ ®B/,
i+j=e
and dagpye = Y (~1)/di®1p; + 14 ®@d},.
i+j=e
If A® lies horizontally and B® stands vertically in the double complex, this rule just

says “negate the differentials in every odd row.”

As a consequence of these signs in the tensor product construction, the isomorphism
A® ® B® =~ B* ® A°® is not quite the naive permutation, which is not a chain map.
Instead, to we’ll need to define the map this way:

A®@B — B/ @A
(a,b) — (=D)7 (b, a).
Thus, performing a transposition in a tensor product will negate everything in “doubly
odd” degree. In the Kob(suj) picture, this means that each time we alter the ordering
of crossings by a transposition, we are really applying the isomorphism above. The
doubly odd objects here are the webs in which both crossings are I-resolved, and these

“doubly I-resolved” webs will pick up the additional minus signs. All other objects are
mapped via the identity.

References
[1] D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9
(2005) 1443-1499 MR2174270

[2] D Bar-Natan, Fast Khovanov homology computations, J. Knot Theory Ramifications
16 (2007) 243-255 MR2320156

[31 JS Carter, J H Rieger, M Saito, A combinatorial description of knotted surfaces and
their isotopies, Adv. Math. 127 (1997) 1-51 MR1445361

[4] JS Carter, M Saito, Reidemeister moves for surface isotopies and their interpretation
as moves to movies, J. Knot Theory Ramifications 2 (1993) 251-284 MR1238875

[51 D Clark, S Morrison, K Walker, Fixing the functoriality of Khovanov homology,
Geom. Topol. 13 (2009) 1499-1582

[6] SI Gelfand, Y I Manin, Methods of homological algebra, Springer, Berlin (1996)
MR1438306 Translated from the 1988 Russian original

[71 M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom.
Topol. 4 (2004) 1211-1251 MR2113903

Algebraic €& Geometric Topology, Volume 9 (2009)



690

(8]

[10]

(1]

[12]

[13]

[14]

[15]

David Clark

M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000)
359-426 MR1740682

M Khovanov, si(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045-1081
MR2100691

G Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109—
151 MR1403861

M Mackaay, P Vaz, The universal sl3—link homology, Algebr. Geom. Topol. 7 (2007)
1135-1169 MR2336253

S Morrison, A Nieh, On Khovanov’s cobordism theory for sus knot homology, J. Knot
Theory Ramifications 17 (2008) 1121-1173 MR2457839

D Roseman, Reidemeister-type moves for surfaces in four-dimensional space, from:
“Knot theory (Warsaw, 1995)”, (V FR Jones, J Kania-Bartoszyniska, J H Przytycki, P
Traczyk, V G Turaev, editors), Banach Center Publ. 42, Polish Acad. Sci., Warsaw
(1998) 347-380 MR1634466

B Webster, Khovanov—Rozansky homology via a canopolis formalism, Algebr. Geom.
Topol. 7 (2007) 673-699 MR2308960

Wiktionary, the free online dictionary (2008), sv “metropolis” Available at http://
en.wiktionary.org/wiki/metropolis

Randolph-Macon College
204 Henry Street, Ashland, VA 23005, USA

davidclark@rmc.edu

http://faculty.rmc.edu/davidclark/

Received: 13 January 2009 Revised: 2 March 2009

Algebraic € Geometric Topology, Volume 9 (2009)



